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Abstract

The recently introduced transductive confidence machines (TCMs) framework allows

to extend classifiers such that their performance can be set by the user prior to clas-

sification. In this paper we apply the TCM framework, with a plugged in k-nearest

neighbor classifier, to the domain of (on-line) handwriting recognition. First, we modify

the original TCM algorithm to make it much more efficient. Then, we use this modified

algorithm to classify the NicIcon database of iconic gestures. Results show that the

modified TCM algorithm is a promising way to classify handwriting.

1 Introduction

Handwriting recognition is the ability of a computer to read human handwriting. It therefore
must be able to receive and interpret handwritten input. This input can be obtained by the
computer in two different ways: on-line and off-line. Off-line handwriting data is acquired by
scanning a handwritten document. Off-line data is a bitmap which consists of pixels with a
grey value or color [2]. On-line handwriting means that the computer recognizes the writing
while the user writes. The user must do this on an electric tablet or digitizer that can capture
the writing as it is written.

Both methods have their advantages and disadvantages, but in comparison to off-line
handwriting, on-line handwriting has many advantages because it can save a lot of information
about the writing. In general, velocity and acceleration of the pen tip as a function of time is
saved. From that it is possible to know the order of writing (which is useful for segmentation)
[6], the pen pressure and the location of the pen when it is not on the paper. This enables
classifiers to use a lot of features. Therefore, the results on on-line handwriting recognition
are, in general, better than the results on off-line handwriting recognition.

∗Department of Artificial Intelligence, Radboud University Nijmegen
†Donders Institute for Brain, Cognition and Behavior; Centre for Cognition
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The main disadvantage of on-line handwriting recognition is that the writer is required to
use special equipment [10], as until some years ago on-line equipment was not as comfortable
and natural to use as pen and paper [9]. This changed a lot, since the development of pen-
computing applications has been growing steadily the last years, due to, among other factors,
the introduction of devices such as personal digital assistants (PDAs) or Tablet PCs [8]. The
main characteristic of such devices is that they use the stylus as input tool, being a natural
substitute for keyboards and mouse. Therefore, on-line handwriting recognition will become
of more interest in the following years.

Till now, pen-computing applications are mainly used in situations where classification
errors do not have far-reaching consequences. In many real-world situations classification
errors actually do have far-reaching consequence, while such pen-computing applications could
be very useful. The reason why they are of limited use in such situations, is that the classifiers
of the handwriting recognition in pen-computing applications are not aware of their limits in
knowledge. In other words, they just classify all new instances, so that we can never be sure
if a particular classification is correct. They do not distinguish between certain classifications
and guesses.

As said, in many real-world situations, like the military or crisis-management, errors in
classification (of handwriting) could have far-reaching consequences. Therefore, if we want to
use handwriting recognition in such situations, it is necessary to know how certain a particu-
lar classification is. This can be done by reliable classification approaches, like Transductive
Confidence Machines (TCMs) [7] and Receiver Operating Characteristics (ROCs) [12]. Such
approaches can guarantee a desired classification performance. The user can set the perfor-
mance prior to classification. The key idea is that these approaches identify the instances
where there is uncertainty in the true label and assign multiple or no labels to it. Virtually
any classifier, like k-Nearest Neighbor or Support Vector Machines (SVM), can be plugged
into these approaches [13, 11].

TCMs are recently introduced and there is no research done in combination with handwrit-
ing recognition, while ROCs already turned out to be a good method to classify handwriting.
Further, TCMs have some advantages over ROCs: the scores are statistically underpinned,
any preset performance can be guaranted, they can be applied without modification to multi-
classification problems and they are better on small datasets [11].

In [1] Kaptein tried other reliable classification approaches on texts, but these classifiers
only say if a classification is certain or uncertain. They do not say how certain or uncertain
a classification is. Also, these texts were not handwritten. In [13] Vanderlooy et al. applied
six TCM implementations on ten well-known benchmark databases. These were all data-
bases with a binary label space (only two possible labels), which is obviously not the case in
handwriting databases.

Because of this multi-class label space and the wide variability of handwritings, hand-
writing recognition is considered a difficult task. Therefore, a classifier usually needs a lot of
training data to get good results. This also counts for TCMs. It is reasonable that this could
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be a problem, because the TCM algorithm already needs a lot of time to compute the results.
In this paper, we want to recognize (on-line) handwriting in a reliable way. We do this by

applying the TCM algorithm on the NicIcon database of handwritten icons [5]. Through this
we do not only investigate if TCMs work within a new domain (handwriting recognition), but
also if they work for a typically difficult and multi-class problem. Further we test if TCMs
work on a huge dataset, but we can already say that this is not the case. Therefore, it is
necessary to make the TCM algorithm much more efficient. We do this first, so we can apply
the modified algorithm on the NicIcon database.

The remainder of the paper is organized as follows. Section 2 describes the methods we
used. We first explain the TCM framework in Subsection 2.1, also in combination with the k-
NN classifier. In Subsection 2.2 we give some detail about the NicIcon database. In Subsection
2.3 we explain some modifications we had to apply to the TCM framework, in order to make
it much more efficient. Section 3 provides the results of our experiments. Finally, Section 4
concludes that the TCM-kNN approach is a promising way to classify handwriting datasets.

2 Methods

2.1 Transductive Confidence Machines

Most classifiers assign a single label to an instance, but TCMs are allowed to assign multiple
(or no) labels to each instance. Therefore, every instance has a so called prediction set. If
there is uncertainty in the true label of the instance, a prediction set could contain multiple
labels. To construct such a prediction set, TCMs operate in a transductive manner [13].
This means that TCMs reason from observed, specific (training) instances to specific (test)
instances. Every possible label y ∈ Y is tried as a label for the unlabeled (test) instance
xn+1. In each try the example zn+1 = (xn+1, y) is formed and added to the training data
S = {(x1, y1), . . . , (xn, yn)}:

S+ = {(x1, y1), . . . , (xn, yn), (xn+1, y)} = {z1, . . . , zn+1} . (1)

For every example in the extended set z1, . . . , zn+1, a nonconformity measure is calculated.
This measure tells us how nonconforming an example is in comparison to all other examples,
so a relative high nonconformity score means that an example is probably labeled with the
wrong label.

Virtually any classifier can be plugged into the TCM framework, because for every clas-
sifier a non-conformity measure can be calculated [13]. Therefore, nonconformity scores can
be calculated in different ways. We used the classifier k-Nearest Neighbor to calculate the
nonconformity scores. In [7], Saunders et al. already formulated how a nonconformity score
can be calculated for this classifier. This can be done as follows. Given example zi = (xi, yi),
define an ascending ordered sequence Dyi

i with distances from xi to its k nearest ‘positive’
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Figure 1: Calculation of the nonconformity score of the (black) star instance. The (green)
circles are its nearest neighbors of class yi, while the (red) triangles are its nearest neighbors
of other classes. Here k = 3, so the three smallest distances are being summed. In this
example, the non-conformity score of the (black) star instance is pretty low, so that instance
is quite conforming.

neighbors with label yi. Similarly, let D−yi

i contain ordered distances from instance xi to its
k nearest ‘negative’ neighbors with a label different from yi. Then, the nonconformity score
is defined as:

αi =

∑k
j=1 Dyi

ij∑k
j=1 D−yi

ij

, (2)

with j as the j-th element in the distance sequence. This means that an example is noncon-
forming when it is far from its nearest neighbors with the same label and close to its nearest
neighbors with a different label. See Figure 1 for clarification. We used different numbers of
nearest neighbors (k) to find the best results for the used data set.

To know how nonconforming an example is in the extended set, the nonconformity score
must be compared to all other αi in the extended set S+. The result of that is the p value of
label y assigned to unlabeled instance xn+1 and is defined as follows:

py =
| {i = 1, . . . , n + 1 : αi ≥ αn+1} |

n + 1
. (3)

Simply said, it calculates the fraction of examples that are more nonconforming than that
particular example. If the p value is low this means that the example is very nonconforming,
while a high p value means that the example is very conforming. So the p value indicates how
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likely it is that the tried label is actually the true label, it is the probability that the tried
label is correct.

A TCM outputs the set of labels with p values above a predefined significance level ε.
It checks for every unlabeled instance xn+1, which p values are bigger than the predefined
significance level ε. The associated labels are then added to the prediction set:

Γε(z1, . . . , zn, xn+1) = {y ∈ Y | py > ε} , (4)

with ε ∈ [0, 1]. If ε = 0, all prediction sets will contain all possible labels and the number of
errors (the correct prediction is not in the prediction set) will then be zero. If ε = 1, almost
all prediction sets will be empty and almost every prediction will then be an error.

Further, the number of errors Errε
n will always be equal (or less) than 1− ε. This is called

the calibration property:

lim sup
n→∞

Errε
n

n
= ε . (5)

In the on-line learning setting, when the true label is provided after prediction for feedback,
TCMs have been proven to satisfy this property [14, p. 20-22 & p. 193]. We, however, used
the off-line learning setting because this feedback is very expensive, because the classifier is in
the on-line learning setting retrained after each prediction since new information is available.
In the off-line learning setting, the classifier is learned on training data and subsequently
used to classify instances one by one. In [13], Vanderlooy et al. have found strong empirical
evidence that the calibration property also holds in the off-line learning setting. Because of
this property, the user can set the error rate prior to classification. Because we use a non-
randomized TCM for our experiments, the equality sign in (5) must be replaced by the ≤
sign. For clarification, see [13, p. 4].

To give an idea of the complexity of TCMs, consider the pseudo code of algorithm 1. We
can see that we first compute all distances needed. If we have a huge data set it could be
a problem to store all these distances in the memory of the computer, while this is actually
needed for the remaider of the algorithm. With the distances between the training instances,
we can compute all ‘basic’ nonconformity scores of the training instances. Those are thus
the nonconformity scores, based on (only) the training data S. After this, we are going to
try every possible label on all test instances. Every time, we create the extended sequence
S+, by adding the tried test instance to the training data S. Then we can recalculate the
nonconformity scores of all training instances, so these are then based on S+. A nonconformity
score changes when the distance between the training instance and the added test instance is
smaller than the k-th smallest neighbor of the training instance (when the tried label has the
same label as the training instance we look at the ‘positive’ neighbors of the training instance,
otherwise to the ‘negative’ neighbors). After all nonconformity scores of the training instances
are recalculated, we compute the nonconformity score of the tried test instance. That is
why we needed the distances between the test and training instances. When we know that
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nonconformity score, we can compute the p value of the tried label by comparing it to the
recalculated nonconformity scores of the training instances. We can see here why we need
to recalculate all nonconformity scores, every time S+ is formed. If we have computed all p

values, the prediction set for each test instance can be created by selecting all labels with a
p value higher than the predefined significance level.

Calculate distances between training instances;1

Calculate ‘basic’ nonconformity scores of training instances;2

Calculate distances between test and training instances;3

foreach Test instance do4

foreach Possible label do5

Add tried test instance to all training instances;6

foreach Training instance do7

Recalculate nonconformity score;8

end9

Calculate nonconformity score of tried test instance;10

Calculate p value of tried test instance;11

end12

end13

Create prediction sets;14

Algorithm 1: The TCM algorithm

It looks like the complexity of algorithm 1 is not that big, but it is. This is due to the
complexity of the inner loop. To recalculate the nonconformity scores of all training instances,
we have to search for the distance between the particular test and training instances. This
has a complexity of O(nr. of training instances). The total algorithm then has a complexity
of O(nr. of test instances × nr. of labels × nr. of training instances × nr. of training
instances), not counting the calculation of all distances. This is very complex, especially if
we have a huge data set (with a lot of test and training instances). To make the algorithm
more efficient, naturally we want to decrease the complexity of the inner loop. We will see in
Subsection 2.3 how we did this.

2.2 NicIcon

We applied the TCM framework on the NicIcon database [5]. This is a collection of hand-
written sketches containing iconic gestures. These data were recently collected within our
department of Artificial Intelligence. The database consists of a set of 14 icons important in
the domain of crisis management. They were designed in a way that they are easy to learn
by the users and distinguishable for the computer.

There were 32 volunteers that participated in the experiment. They all had to draw 770
iconic gestures. In spite of some skipped gestures, this resulted in a huge data set with a total
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Figure 2: Iconic gestures with their distribution

of 24441 usable iconic gestures. Figure 2 shows the different icons with their distribution.
There were made two sets of all these icons. First, a writer dependent set (WD), where

the total set was randomly divided into a training set of 60% and a test set of 40%. Secondly,
a writer independent (WI) set, where the train set contained all icons of 60% of the writers
and the test set all icons of the other 40% of the writers. It can be expected that the WI set
is more difficult to classify.

Niels et al. [5] used three different classifiers to distinguish between the different icons,
namely a multilayered perceptron, a linear multiclass SVM and Dynamic Time Warping
(DTW) [4]. The DTW classifier gave the best results of these three and we used it in our
experiment. The DTW classifier calculates the similarity between two online trajectories of
coordinates. This is done by point-to-point comparison of two trajectories. A ‘matching
path’ is then created, that represents the combinations of points on the two curves that are
matched together. The DTW score is then the summed and averaged Euclidean distance
between all couples of matching points. These scores are used in our experiment as distance
measures in the k-Nearest Neighbor classifier.

The DTW classifier had a performance of 98.06% on the WD set and a performance of
94.70% on the WI set. This is already a pretty high performance for both sets, but we will see
in Section 3 that these performances can be improved considerably using our new technique.

2.3 Modifications

We already said that TCMs try every possible label for an unlabeled instance. It could be
expected that this is very expensive if there are many possible labels. This is the case in
handwriting recognition, where a label stands for a letter or, in this case, an icon. In the
NicIcon database there are 14 possible labels (see Section 2.2). This is not exceptional in
handwriting, but it is also a very large database (24441 instances, 60% training and 40%
test instances). This is, for a TCM, very much. In Section 2.1, we said that storing all
distances for the algorithm in memory, may be a problem when you have a huge data set. In
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our case, we already needed approximately 3 GB memory to store the two distance matrices
(14667×14667×8 + 14667×9774×8 bytes). This is without the id-strings of the training
instances for the distances between test and training instances. These id-strings are needed
to search for the correct training instance, so the total amount of memory needed is even
much larger: 3 GB + 14667×9774×60 bytes (header) + 14667×9774×115 bytes (data) ≈ 28
GB. We obviously did not have a computer to our disposal with this kind of memory available,
but even if we had, the algorithm will still be taking way too much time to complete. This is
why we tried to modify the algorithm.

To calculate the p value of an unlabeled instance for a tried label, we have to calculate
the non-conformity score of that instance and all the training instances. This is because we
have to compare these non-conformity scores with each other. To calculate a non-conformity
score, we need the distances between the particular instance and its k nearest neighbors of the
correct (or assigned, in case of a test instance) class and of the set of incorrect (or unassigned)
classes (see Eq. 2).

First, we calculate all ‘basic’ non-conformity scores of the training samples, so we only
need the k smallest distances of the correct class and of an incorrect class between training
samples. All other distances could be thrown away to save a lot of memory. After this,
the non-conformity score of a training instance possibly needs to be recalculated, because of
the addition of the tried test instance to the (then extended) sequence. So, to recalculate
the non-conformity score of a training instance, we need the distance between that training
instance and the added test instance. If that distance is very small, smaller than its largest
(k-th) nearest neighbor, the non-conformity score of the training instance will change and
needs to be recalculated. For clarification, see Figure 3.

All distances between test and training instances are actually needed to calculate all p

values precisely, but it takes a lot memory to store them all and it also takes a lot of time
to search for the correct distance so many times (nr. of labels × nr. of test instances × nr.
of training instances) or, to sort all the distances in the right way. This is because when the
distances between test and training instances were provided, they were also (like the distances
between the training instances) sorted by distance, while they had to be sorted by training
instance to easily search for the correct distance.

Only a small percentage of the non-conformity scores of the training instances needs to be
recalculated, so to save a lot of memory, we do not use (and save) all the distances between
the test and training instances but only the (say m, with m ≥ k) smallest number of distances
for every class. These could be easily picked out, because the provided distances were already
sorted (see above). If the distance of the k-th nearest neighbor (of the correct class and of
the set of incorrect classes) is already smaller than the m-th smallest distance between the
test and training instances, it is very unlikely that the non-conformity score of the training
instance would change (and if it would, it would be very minimal), so we do not change
it. If the distance of the k-th smallest nearest neighbor (of the correct class or of the set
of incorrect classes) is larger than the m-th smallest distance between the test and training
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Figure 3: Recalculation of the nonconformity score of the (black) star training instance. The
(green) circles are again its nearest neighbors of class yi, while the (red) triangles are its
nearest neighbors of other classes. Here k = 3, so the three smallest distances are being
summed. The (blue) cross, diamond and square are test instances. In case of the (blue)
cross test instance, the non-conformity score of the training instance has to be recalculated
if the test instance has class yi and if it has another class. In case of the (blue) diamond
test instance, the non-conformity score of the training instance only has to be recalculated
if the test instance does not have class yi. In case of the (blue) square test instance, the
non-conformity score of the training instance does not have to be recalculated, regardless of
its class.
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instances, the chance that the non-conformity score would change is higher. In this case we
search for the particular training instance within the m smallest distances. If it is found,
we know the exact distance between the test and training instance and can recalculate the
non-conformity score of the training instance precisely. If it is not found, we do not know
the exact distance and fill in the m-th smallest distance as an approximation. In that case,
the non-conformity score will be slightly smaller (and the p value slightly larger) than the
real score if the k-th nearest neighbor of the correct class is substituted. If the k-th nearest
neighbor of all incorrect classes is substituted, the non-conformity score will be slightly larger
(and the p value slightly smaller) than the real score. Later, we will see that this is quite a
good approximation.

Finally, the non-conformity score of the unlabeled instance for a tried label has to be
recalculated. This is very easy to calculate, because we only need the k nearest neighbors of
the assigned label and of an unassigned label. We can calculate this score precisely when we
have only m nearest neighbors per label. This also takes less time in comparison with the
original algorithm, because we have to sort a much smaller number of distances.

Please consider algorithm 2, which summarizes the modifications. Some words are in
(green) italic, which point out the differences between the original algorithm. First, all
distances still have to be calculated, but only a small number of distances is stored in memory
for further use. They are directly sorted in the way we want to, so that we can simply see what
the ‘basic’ nonconformity scores are and which nonconformity scores we want to recalculate.
Therefore, we do not have to go through all training instances, but only the ones that need
recalculation of their nonconformity score. The recalculation itself is also a lot easier, because
we search only in the m nearest neighbors for the correct distance and if it is not there we
just use the m-th nearest neighbor. In that way, we only need to search in a small number
of distances. Finally, the calculation of the nonconformity score of the tried test instance is
also easier. This is because the needed distances are already sorted, so we do not need to
go through all distances between test and training instances for this. Overall, the algorithm
is similar, but uses much less distances and sorts them directly so that all calculations are a
lot easier. Also, the inner loop does not have a complexity of O(nr. of training instances)
anymore, but a complexity of O(m). The algorithm also does not get into that loop as much
as before.
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Calculate distances between training instances;1

Calculate ’basic’ nonconformity scores of training instances;2

Calculate distances between test and training instances;3

foreach Test instance do4

foreach Possible label do5

Add tried test instance to all training instances;6

foreach Training instance that needs recalculation do7

Recalculate nonconformity score;8

end9

Calculate nonconformity score of tried test instance;10

Calculate p value of tried test instance;11

end12

end13

Create prediction sets;14

Algorithm 2: The modified TCM algorithm

We estimated that 5.0% of the non-conformity scores (of training instances with the same
class) have to be recalculated for every tried test instance with k = 10. This becomes less
when k is smaller and more when k is bigger. This is not much, so the p values will certainly
not change much in this way.

In the next section, we will see that we got our best results on the WI set with a high
k. This means that there are more non-conformity scores that need to be recalculated. This
was again, computationally too expensive. Therefore, we only used 1000 test instances (out
of 9590). These had a recognition performance of 98.6% instead of the 94.7% for the whole
set. Further, we used the whole WD set.

3 Experiments and Results

This Section provides the results of our experiments. We first compared our modified TCM
algorithm with the original one (Subsection 3.1). In Subsection 3.2, we describe our results
on the WD set and in Subsection 3.3 the results on the WI set. In Subsection 3.4, we describe
our results on the error samples of the DTW-classifier in [5]. These are the test instances
that were incorrectly classified by that classifier.

3.1 Modified TCM algorithm

In Subsection 2.3 we described why and how we changed the original TCM algorithm. Before
we were going to use this modified TCM algorithm, we needed to test it in order to see if the
modifications had any effect on the results.

We did this by using the well-known pima data set from the UCI benchmark repository [3].
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Figure 4: Results on the pima data set with k = 10: (a) Original TCM algorithm with 10-
fold cross validation and 5 random permutations, (b) Original TCM algorithm with 10-fold
cross validation without random permutations, (c) Original TCM algorithm without cross
validation and (d) Modified TCM algorithm.

The results of the original TCM algorithm were already available in [13], but there they used
a 10-fold cross validation for 5 random permutations of the training data. Because we used
two predefined datasets (WD and WI) and wanted to compare our results with the results of
the DTW-classifier in [5], we could not divide the data into arbitrary subsets and thus could
not use the 10-fold cross validation. Therefore, we computed the results of the original TCM
algorithm on the pima data set without cross validation. These can be seen in Figure 4.

Figure 4 is the standard way to represent the results of a TCM. We can see the number of
certain (a prediction set of size = 1), uncertain (size > 1) and empty (size = 0) predictions.
We can also see the number of errors (the correct prediction is not in the prediction set) and
the error calibration line (number of errors must be under this line: calibration property of
Equation 5). Note that all empty predictions are also errors and that certain or uncertain
predictions are also errors if the correct prediction is not in the prediction set.
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Because there is hardly a difference noticeable between Figure 4(a) and 4(b), the number
of times cross validation is performed does not matter. The very small difference could be
caused by the random creation of the train and test set. In Figure 4(c), we can see that
the lines are not smooth anymore. The variance becomes bigger. This could be expected,
because we only have one random train and test set in this case. Besides the bigger variance,
it could be expected that the figure looks the same. The exact results are dependent of the
random sets.

Therefore, we used exactly the same randomly picked train and test set for our modified
TCM algorithm. For our modified TCM algorithm we need less distances between test and
train instances (see Section 2.3). The minimal number of distances needed per class is the
number of nearest neighbors. In our experiment we used 10 nearest neighbors and tried
different numbers of distances the algorithm used. In Figure 4(d) we can see the results of
our modified TCM algorithm, while it uses the minimal number of distances needed. It is
clear that the results are barely different from the results in Figure 4(c), where all distances
between test and train instances are used.

This indicates that our modified TCM algorithm could compute (approximately) the same
results as the original TCM algorithm much faster. This modified algorithm will be used for
the rest of our experiments. For the WD set we used 10 distances between test and train
instances per class and for the WI set 50. This is because we tried k’s bigger than 10 for the
WI set.

3.2 Writer Dependent Set

It is obvious that handwritings of various writers can be very different. This makes handwrit-
ing recognition often very difficult. In the writer dependent set, we do not have that problem.
Every writer that is in the test set is also present in the training set. This makes it easier to
recognize an icon. As said, the performance of the DTW classifier on this set was 98.06%.

It could be expected that the results on this set are highest, when using a small k. A
larger k often reduces noise in the data, but because this is a relatively easy set to recognize
(so there is probably not much noise in the data) it is not necessary to reduce the noise. A
larger k would only make the boundaries between the classes less distinct, while it is likely
that they are pretty clear. It was important in this case to have this kind of prediction,
because it is very time-consuming to try a lot of different k’s with this huge data set. Because
of this prediction, we began experimenting with small k’s. In Figure 5, we can see the results
on the WD set for k = 1 and k = 8.

It is clear that the number of empty predictions is much larger with a larger k, so a
larger k makes the boundaries between the classes indeed less distinct (less convincing p

values). Further, it is striking to see the minimal number of uncertain predictions. Almost
all predictions are certain or empty, even with a high significance level. This probably means
that the icons are very easy to distinguish (this was also a goal of the creators of the icons,
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(b) Note that the error line and the empty predictions line run almost identical

Figure 5: Results on the WD set: (a) k = 1, (b) k = 8.
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see Section 2.2). In the case of an empty prediction set, the drawing was probably just not
convincing enough.

Because the DTW classifier always gives a (certain) prediction and because a big part of
the errors the TCM makes are empty predictions, we also looked at the results of the TCM
when there are no empty prediction sets allowed. In that case, the TCM adds the label with
the highest p value to the prediction set (even if it is smaller than or equal to the significance
level), so it becomes a certain prediction. Now, a somewhat larger k is better, because it
does not matter that this creates more empty prediction sets while it reduces the noise. The
best result was a recognition of 98.62%, with k = 4. There were no uncertain predictions
created, while this was actually possible. This is slightly better than the DTW-classifier, but
relatively a big progress because there is not much to improve anymore.

3.3 Writer Independent Set

In many situations, the (handwritten) text that has to be recognized is written by a writer
that is not present in the data set. Therefore, we can not train the classifier on text, written
by the same writer as the text to be recognized. This is the idea of the writer independent
set. The training set only includes drawings of writers that are not in the test set. This is a
more realistic and (normally) a more difficult situation.

We can see this in the performance of the DTW classifier over the whole set: 94.7%. It
could be expected that a higher k is needed to get the best results on this set. This increases
the computation time, so we only used 1000 test samples out of this set to decrease the
computation time again. Unfortunately the performance of the DTW classifier on these 1000
test samples was 98.6%. This is (again) already a very high performance, so maybe a small
k still gives the best results.

We tried many different k’s. Figure 6 shows the results on the WI set for k = 2 and k = 27.
It is clear that a very small k still gives the best results. With k = 27, the percentage of
incorrect predictions at each significance level lies approximately on the error calibration line.
This means that the TCM satisfies the calibration property. With smaller k’s, the percentage
of incorrect predictions at each significance level always stays (far) below the error calibration
line. This also satisfies the calibration property, because this is a non-randomized TCM, and
is even a better result. If the percentage of incorrect predictions at each significance level
lies below the error calibration line, it means that despite of the high significance level the
TCM still makes a prediction. Otherwise it just refuses to make a prediction, while empty
predictions count as errors. In this case, it just means that the data set is very easy to classify.

When empty prediction sets are not allowed, k = 10 gave the best result. This value of k

is higher than with the WD set. The performance was 99.6%, so this is an improvement of
1.0% with regard to the DTW classifier. This is again a relatively big progress.
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(b) Note that the error line and the empty predictions line run almost identical

Figure 6: Results on the WI set: (a) k = 2, (b) k = 27.
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3.4 Error Samples

Finally, we looked at all the error samples of both sets. That are the test instances that were
incorrectly classified by the DTW classifier. It is expected a higher k is needed to get the best
results, because all test samples are very difficult to classify (or easy to classify incorrectly).
This is also the reason why we only look at the case where empty prediction sets are not
allowed. If these are allowed, almost every prediction will be empty and the TCM will not
satisfy the calibration property. This could be expected, because the noise in the data is in
this case very big and a lot of test samples will always be classified incorrectly. Even with a
relatively low significance level, just because some drawings really look like the wrong icon.

In the WD set, 190 test samples were incorrectly classified and in the WI set 508. These
sets are much smaller than before, so we were able to try many different k’s. It is difficult
to say precisely which k gave the best results. This is because uncertain prediction could
be correct, while we still do not know exactly which class the test sample has. The only
‘certain’ improvement is therefore the number of certain predictions minus the number of
certain errors.

In that case, 35 nearest neighbors give the best results on the WD set: 99.47% of the
predictions is then certain, while there is 81.58% incorrectly predicted. This gives a certain
improvement of 17.89%. On the WI set, 100 nearest neighbors gave the best results. This is,
as expected, a higher number in comparison with the WD set. Here, 99.80% of the predictions
is certain and 81.50% is incorrectly predicted. This results in an even higher improvement
on the WI set: 18.30%. These are the results on high significance levels. In Figure 7, we
can see that the results do not change anymore when the significance level is higher than
(approximately) 0.1. When the significance level is lower, there are naturally some uncertain
predictions (of which we do not know if they are correct).

4 Conclusion and Discussion

In this paper, we focused on the applicability of transductive confidence machines (TCMs) in
on-line handwriting recognition. TCMs allow to make predictions such that the error rate is
controlled a priori by the user. This property is called the calibration property. It is proven
that the calibration property holds in many different application domains in the on-line and
off-line learning setting. Nevertheless, not much research is done in the domain of handwriting
recognition, while the interest in on-line handwriting is growing because of the development
of many pen-computing applications.

We applied TCMs in the domain of on-line handwriting recognition, which is typically
a multi-class problem with a high variability of input. Because there is often a lot of data
needed to train the classifier for such a problem, we modified the TCM algorithm to reduce
the computation time. We plugged the k-nearest neighbor (k-NN) classifier into our modi-
fied TCM algorithm and used the dynamic time warping (DTW) algorithm to calculate the
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Figure 7: Results on the error samples: (a) WD set, (b) WI set.
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distances. This was then applied on the NicIcon database of iconic gestures, which contains
14 icons important in the domain of crisis management.

From the results of our experiments we may conclude that our modified TCM algorithm
gives (approximately) the same results as the original TCM algorithm, only in a much more
efficient way. Further we improved the (already high) performance of the DTW classifier
on both the writer dependent (WD) and the writer independent (WI) set of the NicIcon
database. We also looked at the test samples that were incorrectly classified by the same
DTW classifier and managed to classify almost 20% certainly correct.

Since the results of our experiments show that TCMs are a promising way to classify
handwriting, further research could focus on different data sets. Handwriting is often a
difficult task, but this data set was rather easy to classify. It is interesting to see what effects
a more difficult data set has on the results of the (modified) TCM. It could be expected
that the number of nearest neighbors needed is a bit higher and therefore also the number of
distances needed between test and training instances (m). Moreover, the number of uncertain
predictions will probably a bit higher. This number was now very minimal.

It is also interesting to investigate if there are other classifiers (than k-NN) to plug into
the TCM that work on handwriting recognition. Further, testing a TCM within a multiple
classifier system would be interesting, since this method can identify empty and uncertain
instances. Finally, it could be very useful to investigate how much distances (between test
and train instances) are needed by the modified TCM algorithm to make it most efficient,
while still obtaining good results.
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