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Abstract

The theory of Embodied Embedded Cognition (EEC) proposes that
cognition and behavior emerge out of the interaction between body and
world. The brain can be envisioned as a traffic regulator, assisting in
the selection of appropriate behavior based on cues from the body and
environment. In this paper the theory of EEC with respect to the traffic
regulator hypothesis is tested by simulation. Agents are placed in an
environment with a day and night rhythm. In order to survive, these
agents have to search for food and avoid obstacles. At day this is easy,
but at night the perception is troubled by the darkness and agents may hit
obstacles. Two types of agents are tested: purely reactive ones (based on
the subsumption architecture) and reactive ones with a control structure
on top. This control structure is a neural network with inhibitory output
links to the behavioral layers of the agent. The control structure takes
input from the body and environment.

Both types of agents are compared for their effectiveness in the envi-
ronment. Results show that the control system agents are more effective
in surviving than the reactive agents. Further investigation also showed
that this effectiveness is due to the development of a circadian rhythm.
The results support the theory of EEC with the brain as traffic regula-
tor. The control structures act as traffic regulators, inhibiting behavioral
responses when necessary.

1 Introduction

Circadian rhythms are found in many species, ranging from fruit flies to humans.
The behavior of these living beings is synchronized with periodic factors in
the environment, like the daily cycle of light and dark (Ishida, 1995; Shaw,
Cirelli, Greenspan, & Tononi, 2000). A well known example of a behavior that
demonstrates the circadian rhythm is the alternation of periods of activity with
periods of inactivity (e.g. sleep). This wake and sleep cycle is synchronized with
the light and dark cycle. Although this circadian rhythm, but also circadian
rhythms in general, seems to rely on external cues (Tokura & Aschoff, 1983),
experiments have shown that circadian rhythms are also produced when these
cues are absent (Toh, 2008; Schaffer et al., 1998).
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It has been argued that the circadian rhythm of sleep serves not only a
psychological function (Kavanau, 2002), but also confers a survival advantage
(Pittendrigh & Minis, 1972; Berger & Phillips, 1995; Ouyang, Andersson, Kondo,
Golden, & Johnson, 1998). As Pinel (2006) notes, sleep may conserve the energy
resources and reduce the risk of mishap. When the chances of finding food are
very low or the risks of searching for food are very high, it is probably better to
conserve energy resources for better times. This can also be seen in the hiber-
nation behavior of some animals. During winter these animals sleep to escape
the cold weather and food shortage (Carey, Andrews, & Martin, 2003).

Given the fact that sleep-waking cycles are often synchronized with the day-
night cycles of the environment and the fact that so many species show this
sleep-waking rhythm, it is interesting to look at the theory of embodied em-
bedded cognition (EEC). The theory of embodied embedded cognition proposes
that cognition and behavior emerge out of the interaction between body and
world. The brain is just one of the equally important parts of the body that
interacts with the environment. The brain can be envisioned as a traffic reg-
ulator, assisting in the selection of appropriate behavior based on cues from
the body and environment (Haselager, Van Dijk, & Van Rooij, 2008; Van Dijk,
Kerkhofs, Van Rooij, & Haselager, 2008). One of the simplest forms of a traf-
fic regulator would be an inhibitory brain, inhibiting behavioral responses in
certain circumstances depending on the state of the body and the environment.

In this paper one of the hypotheses of the theory of EEC, the brain as a traffic
regulator, will be tested by using a computer simulation of an environment in
which different types of agents have to survive. The environment shows a day
and night rhythm and the agents are supposed to survive as long as possible
in this environment. The first type of agent to be tested is a reactive agent
(Brooks, 1986; Murphy, 2000). This agent responds directly to stimuli from the
environment and has no higher control structures. The second type of agent is
also a reactive agent, but with the difference that this agent does have a higher
control structure. This structure, much like the prefrontal cortex in humans,
can influence the different behavioral responses by means of cancellation.

By using the environment and agents described above, the following ques-
tions will be addressed:

1. Will reactive agents with an inhibitory control system be more effective
than purely reactive agents in an environment displaying a day and night
rhythm?

2. If so, is this effectiveness due to the development of an interaction between
the control system agents and environments?

3. To what extent do these results support EEC?

The first two questions will be addressed by experiments; the third question is
more philosophical in nature and will be discussed after the experiments.

The remainder of this paper is structured as follows. First the simulation
environment will be discussed, followed by the parameters used in the simula-
tion. Next the results of the simulations will be discussed together with their
implications. This paper will end with the conclusion and ideas for future re-
search.
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2 Method

Different types of agents have to survive as long as possible in a given en-
vironment. The time the agents survive averaged over a number of different
environments is the measure by which the agents are compared. Agents are
able to survive in the environment by eating food and avoiding obstacles when
searching for food. The aspects of the environment and the types of agents will
be discussed in more detail below.

2.1 Environment

The world of the agents is rather simple. It consists of a two-dimensional grid.
There is also a day and night rhythm in this world. A number of cells of the
grid are randomly filled with food and obstacles. Cells can only be occupied
by one object at a time, which means that each cell can be classified as food,
obstacle or ground. An example of an environments can be seen in Figure 1.
Obstacles are like quicksand: low to the ground and, with a lot of effort, one can
go through these obstacles. The feeding places and obstacles reflect their own
unique pattern of light, while ground reflects no light at all. Agents are able
to classify each cell by looking at the reflections. At daylight this reflection is
perfectly clear and so an agent does not make mistakes in classifying. However,
at night the reflections become fuzzy and agents will not be able to classify each
of the cells correctly. One other characteristic of the reflection is that obstacles
have a weaker reflection than food has. This means that agents are able to
detect food two cells away, using Manhattan distance, and obstacles one cell
away from the current position. Since obstacles are low to the ground, these
differences in reflection imply that food can be detected behind obstacles. The
comparison with scent might be intuitive; one is able to smell a good meal being
prepared, even when standing behind a closed door.

At the start of each simulation one agent is placed at a ground cell in the
environment. Agents are able to move to one of the adjacent cells of their
current position. They are allowed to move through the four boundaries of the
environment and to reappear at the opposite side of the environment. Time
passes in discrete steps and agents may act at each of these time steps.

Agents need food in order to survive. When the agent hits a feeding place,
it will consume the food at that location. At this point, the food is no longer
available at the current cell and the simulation will create a new food source
at a random location in the environment. This will keep agents from staying
at one food source. The obstacles are a bit different. When an agent hits an
obstacle, some of its energy will be lost. In contrast to food, obstacles do not
move and remain static during one run of the simulation.

2.2 Agents

Agents are supposed to survive as long as possible in the environment. Each
agent has a certain amount of energy available which is used to perform actions
in the environment. The agent dies when all of its energy is depleted and the
agent therefore needs to eat the food found in the environment. However, to
move around in the environment, the agent also uses some of its energy. And
even worse, when the agent hits an obstacle a lot of its energy is taken away
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Figure 1: A typical environment. The squares with the letter ‘F’ indicate food,
dark colored squares are obstacles. The agent is indicated with the gray circle.

at once. To make life not too hard, the agent is equipped with a light sensor
that can be turned up to 360 degrees so it can detect obstacles and food in the
surrounding. It also has a motor system with which the agent can turn up to
360 degrees and move forward.

Four different agents are tested in the environment and these agents can be
divided into two categories: reactive agents and control system agents. The
two categories of agents are a lot alike. The main difference between the two is
that control system agents have a higher control structure, like the prefrontal
cortex in humans. This higher control structure, however, also uses some energy.
Therefore an additional cost is calculated. This extra energy usage is not totally
artificial. In humans, for example, the brain also uses a rather larger portion of
the energy available (Shulman, Rothman, Behar, & Fahmeed, 2004; Oz et al.,
2007).

The four agents that will be used in the simulation are:

• Reactive. A reactive agent with no higher control structures.

• Reactive-DN. A reactive agent with a built-in day and night rhythm. DN
stands for Day and Night.

• Control. An agent with a higher control structure. The control structure
may inhibit behavioral responses of the agent. The cost of having this
control structure is some extra energy usage.

• Control-2. An agent with a higher control structure. The Control-2 agent
is the same as a Control agent with the only difference being the extra
energy consumption of the control structure. The Control-2 agent will
base its additional energy usage on the number of behavioral responses
inhibited by the control structure.

A more in-depth description of these agents is given below. Table 1 summarizes
the parameter settings used in the experiments.

2.2.1 Reactive

The first type of agent is the reactive agent. This agent is designed according
to the reactive paradigm (see Murphy, 2000 for a detailed description of this
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Parameter Value
Agent Types Reactive, Reactive-DN, Control,

Control-2
Costs of Sleeping Reactive: 1; Reactive-DN: 2; Control:

2; Control-2: 1+extra costs
Costs of Moving Reactive: 2; Reactive-DN: 3; Control:

3; Control-2: 2+extra costs
Initial Energy Level 250
Hunger Threshold 240
Extreme Hunger Threshold 20
Environment Size 10x10 cells
Energy Increment by Food 10
Energy Decrement by Obstacle 15
Number of Feeding Places 6
Number of Obstacles 30
Maximum number of time steps 750
One full day cycle 30 time steps
Number of steps in day light 15 time steps

Table 1: Parameter settings used in experiments

paradigm). The design of the behavioral layers (Brooks, 1986) are displayed in
Figure 2. The layers will be discussed in more detail.

• The first layer (from bottom to top) is the Wander layer. It takes no
inputs from the body or environment. Its output is the motor system.
The wander behavior turns the agent to a random direction and then
moves the agent in that direction. Note that having the agent remain at
its position is also an output of this layer. Also, the result of the wander
layer is likely to be overwritten by output from higher layers.

• The Food Direction layer takes the readings from the light sensor as its
input. Based on these readings it finds food in the surrounding of the
agent. The output of this layer is an excitatory link to the first layer: the
direction of movement can be changed towards the food. If no food is
found, there will be no output.

• Evaluate Hunger is the third layer and takes as input the energy level of
the agent. Based on this energy level, the agent decides whether or not
it will look for food. If the agent is not hungry, the inhibitory link to the
second layer, Food Direction, will be activated.

• The fourth layer is the Obstacle Avoidance layer. This is a rather impor-
tant layer. It takes input from the light sensor again which is then used
to detect if there are any obstacles in the surrounding. It then makes sure
that the agent does not walk into an obstacle by having a direction not
occupied by obstacles as output.

• The final layer is the Evaluate Extreme Hunger layer which takes the
energy level of the agent as input. If the energy level is very low (i.e. the
agent is starving to death), the obstacle avoidance layer will be deactivated
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Figure 2: Behavioral layers of the Reactive Agent

by an inhibitory link to that layer. The agent may then still have a chance
of finding food, although it has to move over an obstacle to reach it.

These layers together should produce rather complex behavior in the agent.
At daylight the agent will function normally and search for food when needed.
However, when night falls, the sensor readings from the light sensor become
unreliable and the agent may begin to make mistakes.

2.2.2 Reactive-DN

The second type of agent is the reactive day-night agent. As the name implies,
this agent is also a reactive agent and it has a day and night rhythm. The
reactive part is a copy of the one used in the Reactive agent. Having a day and
night rhythm, means that the agent knows when to go to sleep and when to
wake up again. The agent therefore provides a good measure to compare the
control system agents to. Since it is of interest whether or not these control
system agents develop a day and night rhythm the results of Reactive-DN are
very useful. It is expected that if control system agents develop day and night
rhythms, their results should be closer to the results obtained from the Reactive-
DN agents than to the results of the Reactive agents. Also, to make the results
comparable, the costs of performing actions and going to sleep for this type of
agent are equal to those of the control system agents.

When the agent goes to sleep, it will remain at its current position until it
wakes up again. Energy consumption is reduced to a minimum in this state.

2.2.3 Control

The Control System Agent is the third type of agents. The agent is the same as
the reactive agent, but now with a control system on top. This control system
provides inhibitory links to all of the behavioral layers. With this brain, the
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Figure 3: Behavioral layers and control structure of the Control System Agent.
The control structure provides inhibitory links to the behavioral layers of the
agent. The inputs of the control structure are two light sensors (one reading for
the surrounding and one for the current location) and the energy level of the
agent.

agent can shut down behavioral layers based on the inputs it gets. The inputs
are the same two inputs used by the layers: the energy level and the light sensor.
Figure 3 illustrates the brain in combination with the behavioral layers.

The brain is a feed forward multilayer perceptron. The topology of the net-
work is displayed in Figure 4. The different layers are represented by rectangles
and the circles in these rectangles are the nodes. The arrows between layers
indicate full connectivity between these layers. As can be seen in Figure 3, this
network takes three inputs: the energy level of the agent, and two readings from
the light sensor. The first reading of the light sensor is from the surrounding
and the second reading is from the current position of the agent. The difference
between the two readings is that it is assumed that an agent is able to correctly
identify on what type of ground it stands (the current position), even when it is
dark. The weights of this network are optimized by the evolutionary algorithm
described in Section 2.3.

The network takes real-valued inputs. Three different activation functions
are used: the input layer uses the identity function, the hidden layer uses the
hyperbolic tangent (tanh) and the output layer makes use of the logistic sigmoid
function (Bishop, 2006). The logistic sigmoid is defined by

σ(a) =
1

1 + exp(−a)

The logistic sigmoid has, as the name implies, an S-shaped curve and maps the
whole real axis to the interval [0, 1]. This property is then used to interpret the
outputs as probabilities. The higher the output is, the higher the probability
of activating the output link and the higher the probability of deactivating the
behavioral layer to which the output link is connected.
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Figure 4: Topology of the multilayer perceptron. Three units take inputs (left
layer) and propagate it to a hidden layer (middle layer, 6 units) which propagates
it to the output layer (right layer, 5 units). The layers are fully connected.

2.2.4 Control-2

The fourth and last type of agent to be discussed is the Control-2 agent. This
type of agent is basically the same as the control system agent. The difference is
that the additional cost of the higher control structure is not a fixed value, but
is dependent on the output of the brain. Each active output link, or deactivated
layer, adds some small value to the cost of having a higher control structure.
If no links are active, there is also no extra cost involved. Each active output
link adds an amount of 0.20 (one divided by the total number of output links)
to the energy consumption. When all behavioral layers are inhibited and thus
all output links are active, the extra energy consumption is one. Compared to
the Control agent, the Control-2 agent will only use the same amount of energy
when all behavioral layers are inhibited. In all other cases, the Control-2 agent
will use less energy.

2.3 Evolution

An Evolutionary Algorithm is used to optimize the weights of the neural net-
work of the control system agents. The representation used here is inspired
by Van Dartel, Sprinkhuizen-Kuyper, Postma, & Van Den Herik, 2005. In the
evolutionary algorithm a genome represents the neural network by having all
the weights of the network at specific positions in a vector. A population of 125
individuals is created in which each individual has 48 genes (3 inputs, 6 hidden
nodes and 5 output nodes 1). Since using real valued numbers would result in
a large search space, even when the values are restricted to a given interval,
the genes are initialized with random integer values in the interval [−300, 300].
Weights for the neural network are then calculated by dividing each gene by
100. Weights of the network thus lie in and are constrained to the interval
[−3, 3]. Fitness is calculated as follows. The genome is first converted to a
neural network which is then given to an agent. Next this agent goes through
one simulation in a random environment. The number of time steps the agent
survived in this environment is taken as the fitness. Since there is a constraint

1The three input nodes are fully connected to the 6 hidden nodes, resulting in 3 ∗ 6 = 18
links. The 6 hidden nodes are also fully connected to the 5 output nodes: 6 ∗ 5 = 30. This
results in 18 + 30 = 48 links for which weights have to be set. The weights are represented
in each individual with 48 genes. No bias nodes are used in the network. Tests showed no
change in performance when bias nodes were used.
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on the number of time steps the agent may live, 750 time steps, the fitness value
is also bounded: [0, 750].

Based on the fitness values, parents are selected to create new offspring by
means of mutation and recombination (Eiben & Smith, 2007). The Evolutionary
Algorithm is implemented with the use of JGAP (Rotstan, 2009). The default
configuration for mutation rate and selection method provided by this package
was used. Details can be found in Appendix A.

After 400 generations the evolutionary algorithm is terminated and the best
individual is selected as the one that will be used in the final simulation.

2.4 Simulation

Performance of agents was tested by running a number of simulations. In these
simulations, the agents were placed in randomly created environments. The en-
vironments are of size 10 by 10. In other words: the agent has 100 cells on which
it can stand. Due to randomness some of the environments are particularly nice
for the agents, while others are very bad to live in. Therefore, each agent runs
in 5000 environments and the results are then averaged. The agent receives an
energy level of 250 at the start of each simulation. The maximum number of
time steps each agent may live is set to 750. An agent able of reaching this limit
is rewarded with the highest fitness available. Each full cycle of day and night
consists of 30 time steps: 15 for the day and 15 for the night.

Several variables are tested for their effects on the performance of the agent.
Two of these variables are used to answer the research questions. First, the
number of food and obstacles is varied. It is likely that this variable will have a
large effect on the performance. The second variable is the cost associated with
doing nothing and moving around in the environment. The results can be found
in Section 3. Other variables were also tested and the results can be found in
Appendix B. These results are used to fix the parameters to reasonable values
and to verify that agents show the expected behavior.

3 Results

The first part of the research question is: will reactive agents with an inhibitory
control system be more effective than purely reactive agents in an environment
displaying a day and night rhythm? To answer this question, agents are tested in
a number of environments with different numbers of food and obstacles. Varying
costs of performing actions are also tested. The results should give an indication
of the effectiveness of a control system.

The second part of the question – is this effectiveness due to the development
of a circadian rhythm within the control system agents? – can only be answered
when the results to the first part of the question are positive. If the results
show positive, and indeed they do, an analysis of the simulation will provide the
answer. The analyses consist of a visual inspection and a data analysis.

The third question – to what extend do these results support EEC – will
be discussed last. The answer to this question depends on the results from the
first two questions.
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(a) Reactive Agent (b) Reactive-DN Agent

(c) Control Agent (d) Control-2 Agent

(e) All Agents

Figure 5: Visualization of the fitness (vertical axis) of different types of agents
with a varying number of obstacles (the horizontal axis). The number of feeding
places is held constant at the value of 10.
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(a) Reactive and Reactive-DN (b) Reactive and Control

(c) Reactive and Control-2 (d) Reactive-DN and Control

(e) Reactive-DN and Control-2 (f) Control and Control-2

Figure 6: Visualization of the fitness (vertical axis) of different types of agents
compared to each other with a varying number of obstacles (the horizontal axis).
The number of feeding places is held constant at the value of 10.
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(a) Reactive Agent (b) Reactive-DN Agent

(c) Reactive and Reactive-DN (d) Reactive-DN and Control

(e) Reactive-DN and Control-2 (f) Control and Control-2

Figure 7: Visualization of the fitness (vertical axis) of different types of agents
with a varying number of obstacles (the horizontal axis). The number of feeding
places is held constant at the value of 0. The results indicate that control system
agents use different behavioral strategies than the reactive agents.
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3.1 Effectiveness of Control Systems

3.1.1 Environments

Figures 5 and 6 show the results of the different types of agents. Agents are
placed in environments with a fixed amount of 10 feeding places. The number of
obstacles are varied (the horizontal axis) and the fitness of agents is measured
in different environments (the vertical axis). The reason for using fixing the
number of feeding places to 10 is that it will give the most interesting results.
Environments with more feeding places tend to be too friendly; agents may
constantly eat. Environments with very few feeding places are very hard to
survive in. The number of obstacles shows this effect too, although in reverse
order, as can be seen in Figure 5. Environments with no obstacles are very
friendly, while environments with a lot of obstacles are very hard to survive
in. A point of interest is that the graphs in Figure 5, with exception of the
Reactive agent, show a large peak at the end when the environment is filled
with obstacles (right hand side of the graphs. Figure 5e makes it even more
clear). This is rather strange since this environment should be very hard to
survive in. However, by filling the whole environment with obstacles and food,
the agents will stay at their current position most of the time and will not use
any energy for moving around. In case the agents do start looking for food,
when they have found a feeding place, it is likely (i.e. 50%) that this feeding
place becomes a feeding place again, since only two squares are available to put
the new feeding place in2. The reason that the Reactive agent does not have
this peak in performance is because of the fact that this agent will continue to
search for food at night. The reflections of obstacles and food become fuzzy
and the agent will most likely mistake an obstacle for food and lose much of its
energy as a results.

One other point of interest is that in environments with no obstacles sleeping
behavior is suboptimal. Figure 5e shows that both Reactive-DN and Control
perform worse than Reactive and Control-2. The results of Reactive-DN and
Reactive are more or less intuitive: why would you go to sleep when there is
no risk of running into obstacles? It is more effective to just keep on searching
for food. The Control-2 agent acts like the Reactive agent. Since the control
structure of this agent is not inhibiting any behavioral layers, the costs of having
this control structure are zero (see Section 2.2.4 for the calculation of extra
costs). This makes the Control-2 agent the same as a Reactive agent and hence
the same performance is achieved. The Control agent performs worse than the
Reactive and Control-2 agents, but the same as Reactive-DN agent. The reason
for this is the cost associated with having a control structure. In contrast to the
Control-2 agent, the Control agent will always use one extra energy unit even
if the higher control structure is not used (Table 1).

2Cells in the grid of the environment can be occupied by one type of object at a time:
food or obstacles. Cells can also be empty in which case they considered as ground. When
the agent eats food and a new feeding place is added to the environment, the location of this
new feeding place will be a random location in the empty cells. This also means that a new
feeding place may be dropped on the agents current location. In this case the agent is lucky
and may have its free lunch.
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3.1.2 Food and Obstacles

Varying the number of food and obstacles provides a measure to indicate whether
or not the control system works in different environments. Figures 5 and 6 show
some interesting results which require a bit more explanation. The raw data
used in the graphs can be found in Appendix B.1.

The graph of the Reactive-DN agent (Figure 5b) shows the fitness values for
an agent with a day and night rhythm. It is interesting to compare this graph
with the graphs of Control and Control-2 agents to see how similar they are.
When compared with the Control agent (Figures 5c and 6d), it is found that
Reactive-DN performs better than the Control agent in all cases. However, the
performance of both agents is qualitatively similar. The line of the Control agent
follows the same trend as the Reactive-DN agent (Figure 6d). The performance
issue can be attributed to the fact that the Reactive-DN is programmed to show
the most optimal behavior in the given environment. The Reactive-DN agent
results are therefore the best results an agent can achieve. The Control agent
is able to learn the optimal behavior, but will most likely, due to early stopping
of evolution, only approach the optimal behavior. The rather large deviation in
performance around the points of 30 to 50 obstacles might also be due to the fact
that Control agents are given a limited number of evolutions. When comparing
the results of the Reactive and Reactive-DN (Figure 6a) it can be seen that
both types of agents perform about the same with 20 obstacles and that the
Reactive agent performs worse than the Reactive-DN agent from that point on.
It might be that the Control agent averages over both strategies. In order to test
this hypothesis, a larger number of generations and a larger population size in
evolution were tested. Results indicate that when the number of generations is
increased from 400 to 1000 and the population size is doubled to 250 individuals,
performance increases to the expected levels.

The effectiveness of control systems also becomes clear when comparing the
results of the previous environment, with 10 feeding places, to the results of a
new environment with no feeding places at all. The results of different agents
are visualized in Figure 7. The results are a bit counterintuitive, since it would
be expected that all agents perform very badly in these environments because
there is no way to get any food. However, results indicate that only the reactive
agents, Figures 7a and 7b, perform badly, while the control system agents are
able to learn some strategy that makes them perform better than expected as
can be seen in Figures 7d and 7e. Further inspection showed that control agents
learned to sleep constantly, not using any energy for moving around.

When comparing the Reactive-DN agent to the Control-2 agent, see Figure
6e, two surprisingly different graphs are found. The Control-2 agent performs a
lot better compared to the Reactive-DN agent in most of the cases. Apparently
the Control-2 agent has learned a strategy to save energy. The cost in energy
for a Control-2 agent to inhibit one behavioral layer is low. Only when all
layers are inhibited at once, a full energy unit is used and in that particular
case the Control-2 agent would have the same energy usage as Reactive-DN
and Control agents. The results show that the higher control structure has
learned to only inhibit the necessary layers. For example if sleeping would be
the appropriate behavior given the inputs, only the wander, food direction and
obstacle avoidance layers need to be inhibited. The other two layers, evaluate
hunger and evaluate extreme hunger, are inhibited implicitly by inhibiting the
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Costs (sleep/action) Reactive Reactive-DN Control Control-2
1/1 132.2 732.0 720.7 743.8
1/2 89.8 429.2 431.2 414.7
2/3 68.4 159.0 149.6 218.6
3/4 56.3 97.5 82.9 86.4
3/5 47.6 81.6 75.6 70.2

Table 2: The fitness values of agents with varying costs values. Higher values
are better. The parameter settings used in the experiments are in bold. Note
that the Control-2 agent will calculate additional costs based on the amount of
active output links of its control structure. The results are based on simulations
with 6 feeding places and 30 obstacles. The full table with results can be found
in Appendix B.2

other layers (see Figure 3). The strategy is also not a reactive one, because the
results of Reactive and Control-2 agents differ too much (Figure 6c).

3.1.3 Costs

The costs associated with the use of a control system are also of importance
to the question whether or not a Control System agent performs better than
a Reactive agent. When the costs of having a control system are too high, it
may not be beneficial to have such a control system. This is also what is found
in the results from the experiments. Table 2 shows that when costs are very
high, the control system agents will perform more or less equal to or worse than
the reactive agents with low costs (e.g. row 1/2 for reactive agents and row
3/4 for control agents). Also note that the costs of Control-2 agents are higher
in simulations than the costs displayed in the table. Control-2 agents will use
additional energy based on the amount of active output links of the control
structure (at most 1 extra energy unit will be used. See Section 2.2.4 and Table
1 for more details on costs of Control-2 agents). This means that the Control-2
agent in the row of 1/2 in Table 2 uses 1 energy unit plus some additional cost
for using the brain to sleep and 2 energy units plus some additional cost for
using the brain to act.

3.1.4 Conclusion

The results provide a clear answer to the question whether or not agents with
a control system perform better than purely reactive agents. It is found that
the control system agents perform better than purely reactive agents in most
circumstances. The results also indicate the conditions in which this is true. The
additional costs of a control structure may be set to relatively high values, but
values too high will make control structures useless. The number of obstacles
and feeding places can be set to a wide range of values with the restriction
that in order to have a useful day and night rhythm, the number of obstacles
should be relatively high (e.g. 10% or more of the total number of cells in
the environment). This also shows the robustness of the control system agents.
The performance of the control system agents is not dependent on very specific
settings of the environment.
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3.2 Circadian Rhythm

Since the results described above showed that control system agents perform
better in most environments, an analysis can be made of the simulations to
see whether or not this effectiveness is due to the development of a circadian
rhythm. When agents develop a circadian rhythm they should be in a sleeping
state at night, while searching for food at day. The analyses performed on the
simulations are a visual inspection and a data analysis. Both are discussed
below.

3.2.1 Visual Inspection

First, a visual inspection was done of the simulations. The last ten environments
of the simulation of control system agents are visualized and inspected (see
Figure 1 for an example of one step in a visualization). Reactive agents and
Reactive-DN agents are not inspected in detail since their behavior is already
known. It is found that the control system agents develop a day and night
rhythm. At day they are actively searching for food, but at night they remain
mostly in their current position.

The Control-2 agents show, next to the day and night rhythm, some other,
unexpected behavior as well. When the energy level of the Control-2 agent is
high (circa100 units or more), the agent behaves as if it is night: it does not move
around in the environment to look for food. Or to put it in a wake and sleep
context: the agent takes a siesta. Only when the energy level is low enough (i.e.
it comes in a range of [100, 150]), the agent starts moving (Figure 8). This is
interesting, because, compared to the Control agent, the Control-2 agent shows
more complex behavior than just a day and night rhythm. There is no difference
in the design of the higher control structure, so the difference in behavior needs
to be attributed to other factors. The defining characteristic of Control-2 agents
is that the additional costs for using the higher control structures is based on
how much this structure is used (i.e. how much of the behavioral layers it
inhibits). It is highly likely that inhibiting the wander layer (see Figure 3), and
thus effectively putting the agent to sleep, is cheaper in energy usage than to
move around in the environment. However, at some point, looking for food will
be necessary in order to survive and the agent wakes up again.

3.2.2 Data Analysis

The number of times agents sleep and move in the two phases of the day-night
cycle are counted and can be found in Table 3 as percentages of the average
fitness of the agents. These results indicate that control system agents are close
to the Reactive-DN agents with respect to their sleeping behavior.

An interesting thing to note is that the unexpected behavior of Control-2
agents – taking a siesta when having lots of energy – can also be seen in the
results. The average time of sleeping during the day is still very small, but,
in comparison to the other types of agents, a lot higher. This suggests that
sleeping at day when having enough energy is not just fluke behavior that only
happens in a few runs, but that it is in fact systematically occurring in the
Control-2 agents.

Another surprising result is that the Control agent also seems to take a
siesta once in a while. The percentage of sleeping at day is much lower than
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Figure 8: The ranges in which the Control-2 agent will take a siesta and wake
up again. From circa 100 energy units and up the agent will take a siesta.
Somewhere In the range of [100, 150] energy units the agent will wake up again
to search for food.

Reactive Reactive-DN Control Control-2
Day Actions 52.8% 52.2% 51.5% 49.9%
Night Actions 47.1% 1.4% 0.7% 0.5%
Day Sleep 0.1% 0.1% 0.6% 1.6%
Night Sleep 0.0% 46.3% 47.2% 48.0%
AVG Fitness 89.4 158.4 149.6 215.2

Table 3: Average number of steps as percentages of the average fitness in dif-
ferent situations.

in Control-2 agents, but higher than in Reactive and Reactive-DN agents. The
reason for this behavior is not as clear as in the Control-2 agent case. Visual
inspection of the simulations with the Control agent shows that agents with very
low energy levels and not located near food sources, tend to sleep more at day.
By doing so, the agent may live a few steps longer, since it is not using energy
for movement. This behavior can be seen as suicide through inertia. Note that
this happens only in a few cases and that no research was done to investigate
this behavior further.

3.2.3 Conclusion

Based on the analyses, it can be concluded that the effectiveness of the control
system agents is due to sleeping behavior. Agents are able to learn when it is
most beneficial to them to go to sleep and when to wake up again. In the case of
the Control agent, this takes the form of the expected sleeping behavior: sleep
at night and eat at day. The Control-2 agents might have even developed more
complex behavior, since it also sleeps at day in some cases. However, this might
need some further investigation.

3.3 Embodied Embedded Cognition

The results described above show that a day and night rhythm is developed by
agents with a control system and that this day and night rhythm is advantageous
to the agents. To what extent do these results support the traffic regulator
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hypothesis of EEC? To answer this question the embodiment and embeddedness
of agents will be discussed first. Next, the relation to traffic regulators will be
explained in more detail.

3.3.1 Embodiment and Embeddedness

The embodied part of EEC is supported by the fact that the control system
agents are able to use their sensors and internal states to act in the environment.
All agents use a light sensor that does not work very well at night. Both control
system agents are able to adapt to this light sensor and use the information
to come up with appropriate behavior. The motor system is used to achieve a
day and night rhythm by not moving at night. With respect to internal states,
the energy level of agents is used to guide the agent in surviving. The agents
learn that their energy level, which is an internal state, needs to have a high
enough value in order to survive. In order to keep the energy level high enough,
the agents will have to consume food. However, at night the risks of hitting
obstacles are too high and the will agents will start to sleep. An even stronger
example of the energy level as internal state is given by the Control-2 agents,
as also explained in Section 3.2.1. These agents do not only sleep at night,
but they also sleep at day when they have enough energy available. Here the
internal state directly influences the higher control structure of the agent.

The results discussed in Section 3.1.2 also clearly show that the agents are
embedded. Different environments result in different behavioral responses from
both the reactive agents and the control system agents. Figure 7 shows the
results for agents in environments with no feeding places at all. The differences
with the results given in Figure 5 are clear. When there is no way of finding
food, control system agents deploy different behavioral strategies than when
food is available. The results of simulations with environments in which no
obstacles were placed (see peaks at left hand side in Figure 5e) show that a
control structure is not always necessary. Reactive agents perform very well in
these environments. The control structure agents deploy the same behavioral
strategies as reactive agents to maximize their fitness by shutting down their
control systems.

3.3.2 Traffic Regulator

The higher control structures in the control structure agents can be seen as
traffic regulators. Behavior of these agents is not generated by the control
structure, but is merely directed in appropriate ways based on cues from the
agent’s body and its environment. The embodiment of the agent provides the
inputs to the control structure. When it is dark, the behavioral responses will be
limited to sleeping. Inputs that otherwise would result in some action are now
ignored (e.g. the food searching and eating). The embeddedness of the agents
provides cues to the control structure on what behavior is appropriate in the
given environment. When no food is available in the environment, for example,
there is no need to move around looking for food. Even when it is daylight and
everything is perfectly visible, a search for food would result in nothing but an
energy loss. The control structure learns, by trial and error, that inputs should
be ignored and sleeping is the best behavior given the environment.
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By combining the information from both the embodiment and embedded-
ness of the agent, the higher control structure learns to inhibit the behavioral
responses in appropriate ways given the agent’s situation.

4 Conclusion and Future Research

As discussed in Section 1, in EEC the brain can be envisioned as a traffic
regulator. It assists in the selection of appropriate behavior based on cues from
the body and environment. In this paper the hypothesis of the brain as a traffic
regulator was tested by placing agents in environments with a day and night
rhythm. The agents then had to survive as long as possible by eating food and
avoiding obstacles in their search for food. This goal was easy to achieve at
day, but at night the agents were not able to clearly perceive the environment
due to the darkness. Two types of agents were tested: the reactive agents and
the control system agents (Figures 2 and 3). The control system of the control
system agents consisted of a neural network with inhibitory output links to the
behavioral responses of the agent. The inputs of the network are bodily states
and environmental perception. Results showed that these control system agents
were able to effectively adapt to the day and night rhythm by developing a
day and night rhythm in which agents rested at night and searched for food
at day. Control system agents performed, in almost all environments, better
than reactive agents. Compared to the idea of traffic regulators, the inhibitory
control structures can be said to do exactly this. The control system helps in the
selection of appropriate behavior based on cues from the body and environment.
The results are thus in favor of the traffic regulator hypothesis.

An interesting finding was the unexpected behavior of Control-2 agents.
The Control-2 agents are, as their name implies, control structure agents. It
was found that these agents were also sleeping at day when they had enough
energy left. The behavior seemed to result from the costs involved with having
and using a higher control structure. This complex behavior resulting from the
embodiment of the agent is an even stronger argument for EEC.

The control system agents use extra energy for having or using the control
system. The Control agents always use one extra energy unit and the extra
energy consumption of Control-2 agents is dependent on the number of active
output links. While the extra cost for the control system is neurophysiological
plausible, the plausibility of the amount of extra energy consumption as used
in the experiments described in this paper might be low. Measures of energy
usage based on research in human brain metabolism (e.g. Oz et al., 2007) might
be an interesting topic for future research.

Future research might also focus on a comparison of different, more complex
higher control structures. The control structure described in this paper is a
very simple one and it might be interesting to see how other types of control
structures perform. The data showed that control system agents are able to learn
to survive in the given environments, but these environments are rather simple.
More complex environments could, for example, consist of moving objects. The
control system might need some form of memory or planning. This is also in line
with the proposal for more complex control structures. It would be interesting to
see to what extent EEC holds in such complex environments with such complex
higher control structures.
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Appendices

A JGAP Settings

JGAP is an open-source project which provides a robust Java framework for
Genetic Algorithms (Rotstan, 2009). The default configuration provided by
this package was used to run the evolutionary algorithm. The specific values
and methods used in the algorithm are displayed in Table 4.

The evolutionary algorithm is used to find weight settings for the control
structure of agents that makes these agents perform well in the given environ-
ments. The weights used in the control structure are values in the interval
[−3, 3]. To reduce the search space in the evolutionary algorithm, an integer
vector with values in the interval [−300, 300] is used. The results of the evolu-
tionary algorithm are divided by 100 before they are inserted into the weight
settings for the control structure.

Population size 125
Representation Integer Vector
Mutation Addition of value in interval [−100, 100]
Mutation probability 1

12

Recombination One-point crossover
Recombination probability 0.5
Parent selection Roulette Wheel
Survivor selection Generational
Termination condition 400 generations

Table 4: Values and methods used in the evolutionary algorithm.

B Results

The following section will give more a detailed overview of the results obtained
from the experiments. In all experiments the fitness value of the agents was
measured. The fitness value an agent could obtain was 750. Results close or
equal to this number indicate very fit agents.

B.1 Number of Obstacles and Feeding Places

Different values for the number of feeding places and obstacles were tested. The
results can be found in Table 5.

In further experiments the number of obstacles was fixed to 30 and the
number of feeding places to 6.

B.2 Costs of Actions

The costs of performing actions and staying in place (resting) were varied. These
costs can also be thought of as additional energy consumption for having a higher
control structure. The results of different values for the costs can be found in
Table 6
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The results indicate that cost values of 1/2 (1 for resting and 2 for action)
for reactive agents and 2/3 for control system agents produce reasonable results.
Higher costs for the control system agents (e.g. 2/4) are closer to the values of
the reactive agents with 1/2 costs, but using these costs would most likely take
away the advantage of having a brain, because the costs are too high.

B.3 Extreme Hunger Threshold

The threshold value for extreme hunger is also of influence to the behavior of
agents. Different values may thus produce different results. Table 7 shows the
results for different values for extreme hunger.

The results indicate that control system agents do not take the extreme
hunger threshold into account, or assign very little priority to it. Only when
using very high thresholds, there is some effect, but the magnitude of this effect
is very low.

B.4 Energy Updates

Using different values for the update in energy when running into obstacles and
eating food influences the average fitness of the agents. Different values for
both parameters were tested. The results can be found in Table 8. Based on
the results it can be concluded that reactive agents are in the advantage when
the absolute values of energy updating by obstacles and food is larger for food
than for obstacles. Otherwise, it is more advantageous to be a control system
agent.

B.5 Day Night Rhythm

The fitness of agents may also be influenced by the length of the day-night
rhythm in the environment. Table 9 shows the results of experiments in which
the parameters of the day-night rhythm are changed. The first parameter is
Duration, which indicates how many time steps one full cycle takes. The second
parameter is the ratio of day and night. The values in that column indicate the
proportion of the full cycle in which it is night.

From these results is follows that different durations of the day-night cycle
do not have much influence on the fitness of agents. Differences in the ratio of
day and night in one cycle does change the fitness of the agents.
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Obstacles Food Reactive Reactive-DN Control Control-2
99 0 23.0 28.8 122.2 63.7
90 0 28.0 66.9 120.0 102.1

9 39.1 567.4 517.0 515.4
80 0 34.1 88.0 124.3 123.8

10 42.1 112.2 95.4 135.8
19 66.4 735.9 703.0 462.7

50 0 51.6 95.4 124.8 159.0
10 68.6 183.3 138.3 323.6
20 98.9 553.3 527.8 547.7
40 347.9 743.5 711.0 657.5
49 700.9 750.0 718.2 693.4

40 0 56.8 95.8 124.7 162.4
10 86.0 227.9 181.2 480.1
20 155.5 707.8 676.2 730.5
40 614.4 748.5 734.6 731.7
59 746.1 750.0 731.9 732.1

30 0 64.7 96.4 124.2 155.9
10 117.9 282.9 207.3 562.4
20 334.3 743.2 697.9 640.1
40 737.3 750.0 601.7 642.1
60 749.0 750.0 734.9 733.0
69 749.8 750.0 748.5 748.3

10 0 94.6 97.9 124.7 160.6
10 490.8 448.6 417.8 695.8
20 749.7 750.0 688.9 743.1
40 750.0 750.0 716.3 749.7
60 750.0 750.0 745.8 749.0

0 0 125.5 99.0 124.9 165.4
10 749.9 552.6 551.8 747.2
20 750.0 750.0 749.8 745.8
40 750.0 750.0 750.0 750.0
60 750.0 750.0 750.0 750.0
80 750.0 750.0 750.0 749.9
99 750.0 750.0 750.0 750.0

Table 5: The fitness values of different agents in a variety of environment with
respect to the number of obstacles and feeding places.
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Costs (rest/action) Reactive Reactive-DN Control Control-2
1/1 132.2 732.0 720.7 743.8
1/2 89.8 429.2 431.2 414.7
1/3 68.7 231.1 174.8 117.4
2/1 130.8 424.8 423.1 429.6
2/2 89.8 230.8 178.0 217.2
2/3 68.4 159.0 149.6 218.6
2/4 56.1 119.6 95.3 86.1
3/1 130.2 230.4 125.8 148.8
3/2 89.1 159.2 135.4 181.4
3/3 68.3 121.9 113.2 91.7
3/4 56.3 97.5 82.9 86.4
3/5 47.6 81.6 75.6 70.2

Table 6: The fitness values of agents with varying costs values. The number of
obstacles is fixed to 30 and the number of feeding places is fixed to 6.

Threshold Reactive Reactive-DN Control Control-2
0 91.1 163.2 146.7 215.9
10 90.9 163.7 147.6 213.6
20 89.6 158.4 147.7 239.6
50 86.5 144.7 142.0 220.9
100 86.5 144.9 148.1 210.2
150 74.5 96.9 152.6 179.5
200 68.9 73.1 139.5 203.8
250 60.9 49.7 129.2 182.6

Table 7: The fitness values of agents with varying thresholds for extreme hunger.
The number of obstacles is fixed to 30 and the number of feeding places is fixed
to 6.
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Obstacles Food Reactive Reactive-DN Control Control-2
-0 0 125.3 99.0 125.0 166.7

5 184.8 123.5 127.9 183.8
10 342.6 164.8 179.0 364.3
15 657.1 233.7 349.2 688.9

-5 0 93.4 97.5 124.6 164.7
5 122.4 121.1 112.3 157.3
10 170.7 160.6 123.7 196.5
15 286.6 226.8 181.2 476.1

-10 0 76.4 96.8 124.9 156.2
5 93.4 120.5 116.6 157.6
10 116.0 158.3 143.0 212.9
15 156.3 227.8 172.2 488.6

-15 0 64.8 96.5 124.5 149.0
5 76.0 120.1 107.9 145.4
10 89.6 158.5 154.2 185.7
15 109.4 225.1 142.7 408.5

Table 8: The fitness values of agents with varying values for the energy updates
when hitting obstacles and eating food. The number of obstacles is fixed to 30
and the number of feeding places is fixed to 6.

Duration Proportion Reactive Reactive-DN Control Control-2
20 1/3 149.1 180.6 161.9 415.8

1/2 89.8 158.1 144.8 169.7
2/3 69.5 145.3 114.2 182.4

30 1/3 132.8 176.7 177.1 385.3
1/2 89.7 159.0 151.8 198.2
2/3 67.5 143.6 118.5 199.7

40 1/3 134.3 176.7 171.0 302.1
1/2 90.1 158.0 155.4 186.2
2/3 70.6 144.6 127.8 178.4

Table 9: The fitness values of agents with varying values for the duration of
the day and the proportion of the night. A proportion of 1/3 means that 1

3 of
the full day-night cycle is night. The number of obstacles is fixed to 30 and the
number of feeding places is fixed to 6.
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