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Abstract 
 

A dataset containing a large number of variables (4898) from 

Forensic Psychiatry is explored for this project. This dataset is 

provided by the forMINDs project by the Pompestichting. The 

method for exploration is generating a Bayesian network. The 

dataset has been strongly modified for this purpose. Variables have 

been discarded (1394 remaining), continuous variables are 

discretized and the large number of missing variables (30%) are 

imputed using distribution based imputation. For structure 

generation the PC-algorithm is used, with the   -statistic for 

conditional independence testing. Computation time restrictions 

have resulted in a further reduction of the number of variables.  The 

resulting network of 132 variables contained cycles, indicating the 

existence of hidden or selection variables and making the network 

unusable for parameter learning and inference. Secondly the 

network has an average of 19 neighbors per node, making it too 

complex for interpretation.   
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Chapter 1 Introduction 
  

The field of artificial intelligence (AI) has many definitions (Russell & Norvig, 2003), which vary along 

two dimensions. The first dimension consists of thought processes and reasoning versus behavior, 

and the second dimension consists of human performance versus the ideal concept of intelligence or 

rationality. Either way the field is concerned with the design of intelligent agents or systems. For this 

purpose numerous techniques have been developed for knowledge and reasoning, problem-solving, 

planning and learning. These techniques can be used for typical artificial intelligence purposes such 

as robotics or the generation of behavior in non-player characters in games, however these 

techniques can also be used in other scientific fields as illustrated by the following examples. 

Cognitive science for instance is an interdisciplinary field which combines computer models from AI 

and experimental techniques from psychology to try to construct precise and testable theories of the 

workings of the human mind (Russell & Norvig, 2003). In biorobotics robots provide tools for 

biologists studying animal behavior and testbeds for the study and evaluation of biological algorithms 

for potential engineering applications (Consi & Webb, 2001). In medicine there is also a wide range of 

possibilities for the application of AI techniques, hence the existence of the journal Artificial 

Intelligence in Medicine. A final example of a field using AI techniques is molecular biology. In (Levin, 

1995) a genetic algorithm, which is an AI technique is used to discover the sequence of amino-acids 

of proteins.  

As one can imagine after these examples, the possibilities are infinite. This thesis will make such a 

journey of applying an AI technique to a different field: the field of forensic neuropsychology. A 

Bayesian network technique will be used to try to give insight into a dataset containing variables 

related to forensic neuropsychology. 

This section will first provide information on the field of forensic neuropsychology in general and the 

forMINDS project of the Pompestichting Forensic Psychiatric Institute in Nijmegen in particular. Then 

the motivation for using a Bayesian network technique is given, and the basis of Bayesian networks, 

Bayes rule, is explained. This is followed by an explanation of Bayesian networks and the last topic of 

this section consists of the research question(s) of this thesis.  

 

1.1 Forensic neuropsychology 

Forensic neuropsychology is a rather new and rapidly evolving field (Guilmette, Faust, Hart, & Arkes, 

1990).  In (Borries & Verkes) the field is described as following:  

 

“Forensic Neuropsychology … is mainly concerned with providing information  

based on scientifically validated neuropsychological principles and clinical  

methodology relevant to the forensic question at hand. An important aspect  

of the field of forensic neuropsychology is the assessment of cognitive functions  

and informing the relation between brain and behavior. This should be  

grounded on scientific methods for several reasons: Ideas and hypotheses  

about cognitive functions in forensic populations can be systematically studied, 

 findings can be replicated and validated leading to an ever more evidenced  

based theory, with the goal of finding a common standard. This process is  

therefore ongoing, leading to an accumulation of validated and scientifically  

accepted information over time. “ 
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Neuropsychological principles can be used in the assessment and diagnostics of forensic patients. 

Even though this usage is growing, there is no gold standard at this moment. Currently most forensic 

psychiatric clinics do not include a standard neuropsychological/ cognitive assessment procedure. 

The absence of both a gold standard and the presence of standard cognitive assessment can be 

concluded reading the care programs, “zorgprogramma’s”  in Dutch, which are guidelines for forensic 

psychiatry and can be found on (Expertisecentrum Forensische Psychiatrie).  A disadvantage of using 

standardized tests in forensic cases is that most of the tests have been normed in a quite different 

(non-forensic) population.  For example, the forensic population tends to be represented by those 

who are poor, less educated and come from minority groups (Emmerik, 2001).  The traditional tests 

are therefore in need of new normative data to interpret these tests taking into account the different 

characteristics in forensic patients.  

Based on the treatment programs for forensic psychiatric patients in the Netherlands, there are two 

characteristics which are commonly used to divide forensic patients into more homogeneous groups 

to which norms could be applied. First they can be (roughly) characterized by their disorders; 

personality disorders, psychotic disorders and substance use disorders, although most patients suffer 

from multiple mental diseases (Emmerik, 2001). Secondly they can be divided into two groups by the 

characteristics of their offence; violent offences and sexual offences.  

In the last 20 years more and more studies have aimed at characterizing the mentioned subgroups of 

forensic patients based on cognitive functioning.  For each subgroup a number of examples of such 

studies will be provided below. These examples and more examples for each subgroup and the 

related brain areas (not mentioned here) can be found in (Borries & Verkes). 

 

 Personality disorders  

Forensic neuropsychological has focused mainly on antisocial personality disorder (ASPD) 

and psychopathy (PP), knowledge about neuropsychological deficits in other personality 

disorders have not been investigated in forensic context. A finding when comparing ASPD 

and PP to schizophrenia is that intellectual capacities are intact (Miller, 1987). Several 

executive function and attention related deficits have been implicated in psychopaths (Pham, 

Vanderstukken, Philippot, & Vanderlinden, 2003). Individuals with antisocial behavior have 

been found to be impaired in emotional face recognition (Blair & Marsh, 2008).  

 Psychotic disorders 

Patients with schizophrenia show a wide range of cognitive deficits and overall performance 

can be around two standard deviations below healthy controls. Cognitive deficits found are 

often related to higher cognitive functions requiring controlled information processing, such 

as (sustained) attention, executive functions, working memory tasks, and different forms of 

learning (Anatova & Sharma, 2003) (Goldberg & Gold, 1995) (Antonova, T. Sharma, & V., 

2004). Also inhibition problems (Perlstein, Carter, Barch, & Baird, 1998) and problems in 

strategy formation and planning (Morris, Rushe, Woodruffe, & Murray, 1995) have been 

found. 

 Substance use disorders 

In general it has been found that successful recoverers do show intact functioning on 

cognitive measures. Relapsers perform poorly on tests of language, abstract reasoning, 

planning and cognitive flexibility. When under influence of cannabis performance measure of 

memory, executive functioning and psychomotor speed goes down (Bolla, Brown, Eldreth, 



3 
 

Tate, & Cadet, 2002).  In chronic users the non acute affect is found that the ability to learn 

and remember new information goes down  (Grant, Gonzalez, Carey, Natarajan, & Wolfson, 

2003). 

 Sex related offences 

Commonly assessed cognitive dysfunctions have been examined in pedophiles and other 

sexual offenders but most research has focused on interpersonal functioning such as 

empathic behavior. In (Kirsch & Becker, 2007) it is hypothesized that deficits in emotion 

recognition and emotional experience in sexual sadists may lead to deficits in empathic 

behavior. Sexual offenders in general show a profile of lower order executive functions (e.g. 

sustained attention and inhibition) and verbal deficits with intact or good capacities for 

higher order executive functioning (e.g. reasoning and cognitive flexibility) (Joval, Black, & 

Dassylva, 2007).  

 Violent offences 

A number of cognitive deficits have been found in violent offenders, such as attentional 

shifting deficits by (Bergvall, Wessely, Fosman, & Hansen, 2001). (Hoaken, Allaby, & Earle, 

2007) suggest abnormal executive functioning in violent and non-violent offenders, and 

difficulties in facial affect recognition in violent offenders. 

 

However, these results concern the comparison of groups, while in clinical practice the goal is to 

characterize individual behavior, explain it and possibly predict future behavior based on cognitive 

abilities. Few studies have related cognitive functioning to risk assessment, treatment effectiveness 

and relapse prevention. It  is necessary to understand these links in order to use cognitive 

assessment on an individual level. For this reason a large neurocognitive project called forMINDS has 

been set up in a forensic psychiatric institute.  

 

1.2 The forMINDS project 

Within the research department of the Pompestichting Forensic Psychiatric Institute in Nijmegen the 

forMINDS project is carried out by  B.H. Bulten (coordinating investigator/project leader), A.K.L. von 

Borries (Principal investigator) and R.J. Verkes (Principal investigator). The dataset on which an AI 

technique is applied in this thesis, is provided by the forMINDS project and contains variables related 

to forensic neuropsychology. 

 

1.2.1 The Pompestichting 

The Pompestichting is a TBS-clinic in Nijmegen. In (Brazil, Bruijn, & Bulten, 2009) TBS is described as  

“a disposal to be treated, on behalf of the state, for people who have committed serious criminal 

offenses in connection with having a mental disorder. TBS is not a punishment but an entrustment 

act for mentally disordered offenders  (diminished responsibility). These court orders are an 

alternative to either long-term imprisonment or confinement in a psychiatric hospital, with the goal 

to strike a balance between security, treatment,  and protection.”  
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1.2.2 Objectives of the forMINDs project 

The forMINDS project is concerned with automated cognitive assessment in forensic context. The 

objectives of this project are described in (Borries & Verkes) as: 

“ 

1) By implementing a cognitive test battery in a large population of forensic psychiatric 

patients, a prison population and healthy controls, we will be able to further develop and 

adjust the battery based on results and patterns found with the help of these cognitive tests. 

This will ultimately lead to a standard instrument. 

2) By collecting a large body of data in forensic psychiatric patients and prison inmates, we will 

be able to 

a) develop normative data relevant for the interpretation of test results in these populations. 

Normative data from healthy controls is collected for the same reason. 

b) collect data for research into the neurocognitive differences between certain subgroups 

(type of offence, type of diagnosis, etc.) and healthy subjects. This will allow us to develop 

and test working models of cognitive dysfunction in subgroups of forensic psychiatric 

populations. 

c) collection of data necessary for the assessment procedure implemented in the 

Pompekliniek, which is also used for decisions around treatments options. This also includes 

the possibility of retesting at a later point in time, to evaluate the treatment.  

“ 

The relevance of these objectives for forensic issues is explained in (Borries & Verkes) with several 

reasons. A short overview of these reasons is provided below.  

 As mentioned in the section concerning forensic neuropsychology, most cognitive tests are 

normed in a population other then the population relevant to forensic psychiatry. By 

collecting data over time it is possible to develop normative data for the forensic population. 

Furthermore there are no norms available on how certain dysfunctions are related to 

criminal behavior such as aggression. These norms might also be developed using the 

collected data from the forMINDS project. 

 The data collected using the test battery can be used to develop and test working models of 

cognitive dysfunctions for subgroups of the forensic population. Such a constructed model of 

cognitive dysfunction can be tested against the growing body of collected data and can 

thereby be refined and validated.  

  Information on cognitive abilities of patients can be used in treatment, as well in decisions 

regarding treatment plans, as in interaction between clinical staff and patients. If for example 

a patient learns better based on reward compared to based on punishment, this might be 

useful information for treatment of and interaction with the patient. 

 In practice assessment procedures often result in a list of systems which can be used to 

classify problems in terms of psychiatric disorders. It is stated in (Borries & Verkes) that: 

“assessment in terms of cognitive functions enables us to see the deficits of a certain patient 

in context of the relation between patient and environment without losing reliability and by 

adding validity. It can assist in reaching higher diagnostic differentiation within one disorder. 

Treatment decision should therefore not only be based on psychopathological issues, but 

also on cognitive capacities and the functionality of the underlying neural circuits.”   

 Personality disorders are less stable than previously assumed in the list of criteria for 

personality disorders (Shea, et al., 2002). The symptoms can change over time, opposed to 
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abstract personality dimensions (e.g. perfectionism) which are more stable. Treatment 

interventions are mainly aiming at influencing specific behavior. Therefore it is important to 

find instruments which assess specific behavior instead of symptoms. 

 

1.2.3 The forMINDS test battery and resulting data 

As mentioned the project forMINDS has been running for a couple of years now and an extensive 

dataset has been collected. The dataset consists of three types of variables. The first part of the 

dataset is anamnestic information, which includes demographic information such as age,  education 

and clinical information such as type of offence and diagnostics. Secondly tasks are included that 

intend to measure performance of cognitive functions. Finally questionnaires are used which 

measure for instance empathy. For a complete overview of the  test battery see appendix A. The 

tasks and questionnaires cover four cognitive fields: The test battery has resulted in a dataset that 

contains 4898 variables and 243 subject. The variables that result from the cognitive tasks are mainly 

reaction times and error quantifications. The subjects consist, as mentioned previously, of detainees, 

TBS-patients and healthy controls.  

 

1.3 Qualitative research 

 The dataset from the forMINDS project consists of structured data, i.e. it consists of distinct  

variables which are measured for each subject. Therefore the dataset would be suitable to use for 

quantitative research; testing hypotheses using statistics. Another possible research approach is 

qualitative research. The approach on the forMINDS dataset is a more qualitative research, although 

on structured data. 

Qualitative methods for research are traditionally regarded as methods that investigate the why and 

how of a topic rather than what, where and when. Typically this type of research is used in for 

example social sciences and history.  In (Guba & Lincoln, 1994) John Stuart Mill is said to be the first 

to urge social scientists to equal the so called ‘harder’ sciences, thus use more quantitative methods 

in research.  It is also stated that: “There is a widespread conviction that only quantitative methods 

and quantitative data are ultimately valid, or of high quality.”   This is an ongoing debate about which 

can be read more in (Guba & Lincoln, 1994) and (Sechrest, 1992) for interested readers.  

One way of using qualitative research is to regard it as a source of inspiration for quantitative 

research. According to (Guba & Lincoln, 1994)this has a number of advantages over purely 

quantitative methods. First of all there is no need for context stripping, which happens in purely 

quantitative methods through for example randomization. Also it is mentioned that the emphasis on 

verification of a priori hypotheses  overlooks the origin of those hypotheses. Qualitative research can 

contribute to forming grounded a priori hypotheses for empirical research. These are just two of the 

mentioned arguments, since these are most applicable here. 

As mentioned above a qualitative approach will be taken on the forMINDS dataset . It is meant to be 

an inspiration for possible quantitative research and give a more general insight or overview of the 

relations between the variables in the forMINDS dataset. When statistics are regarded as the only 

way to make truly valid conclusions (hence the debate above), the results of this thesis are not truly 

valid. 
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1.4 AI technique for exploring the forMINDS dataset 

Within the field of AI there are a number of techniques which can be used to give a general overview 

or insight into the structure of relationships between variables in a dataset. Examples of this kind of 

techniques are decision trees, Byesian networks and neural networks (Russell & Norvig, 2003). It is 

interesting to see if applying such a technique on the forMINDS dataset has additional value for the 

researchers that are part of the project. This additional value might consist of inspiration for 

qualitative value or insight in the global structure of the relationships between variables.  

The technique that will be used for exploring the forMINDS dataset is a Bayesian Network. For a 

while now Bayesian networks have been popular throughout science. The reason for this, and the 

reason why it is appealing for this thesis, is described well by (Bishop, 2006): “Graphical models are a 

marriage between probability theory and graph theory. They provide a natural tool for dealing with 

two problems that occur throughout applied mathematics and engineering  - uncertainty and 

complexity - and in particular they are playing an increasingly important role in the design and 

analysis of machine learning algorithms. Fundamental to the idea of a graphical model is the notion 

of modularity, a complex system is built by combining simpler parts. Probability theory provides the 

glue whereby the parts are combined, ensuring that the system as a whole is consistent, and 

providing ways to interface models to data. The graph theoretic side of graphical models provides 

both an intuitively appealing interface by which humans can model highly-interacting sets of 

variables as well as a data structure that lends itself naturally to the design of efficient general-

purpose algorithms. “ 

One advantage of a Bayesian network is the fact that the structure of a Bayesian network can be 

studied on itself to look at conditional (in)dependences. The nature of these conditional dependence 

relationships can also be studied because of the conditional probability tables. This as opposed to for 

example a neural network, which captures relationships implicitly. Neural networks are therefore 

‘black boxes’ when compared to Bayesian networks. Since this thesis is supposed to be a possible 

source of inspiration for quantitative research the explicit capturing of relations within the network is 

an advantage. 

 

1.5 Bayes’ theorem 

Bayes Theorem is the basis of Bayesian networks (Heckerman, A tutorial on learning with Bayesian 

networks, 1998). Since Bayesian Networks is the technique used to explore the forMINDS dataset, 

Bayes’ theorem will be explained in this section. The theorem is a formula that is used for calculating 

conditional probabilities, see equation 1.1.  It captures the relationship between the prior 

probabilities and the conditional probabilities of two random events.  A prior probability is the 

probability of an event without having any further information and a conditional probability is the 

probability of an event in presence of other information. 

  

Equation (1.1)             
          

    
 

 

To explain Bayes’ theorem the example from  (Kennedie, 2009) will be used which uses a Venn 

diagram, see figure 1.1.   



7 
 

 
Figure 1.1. Venn diagram from (Ruskey & Waston, 1997)  

for the Pen box  example. 

 

Suppose there is a box containing 100 pens, this is represented by   in the diagram. Theses pens are 

either a ballpoint or a fine liner and the used ink is either red or blue.  All pens in   are ballpoints and 

all pens in   have blue ink. The shaded area then represents all ballpoints with blue ink. As can be 

seen in the diagram the box contains 25 ballpoints and 15 pens with blue ink from which 5 are 

ballpoints. The probability that a pen is a ballpoint, denoted by     , is 
   

   
  

  

   
     , where 

   means the number of elements with property  . In other words, the a priori probability of a pen 

being a ballpoint is 0.25. The probability that a pen is a ballpoint with blue ink, denoted by        , 

is 
      

   
  

 

   
     , where       means the number of elements with both property   and  . 

Again, this is a prior probability. Now suppose we randomly grab a ballpoint. The probability this 

ballpoint contains blue ink can be calculated with equation 1.2, this is a conditional probability. The 

resulting probability is 
    

    
     .   

           

Equation (1.2)            
     

   
  

      

    
 

 

When we grab a pen with blue ink, the probability this is a ballpoint can be calculated with equation 

1.3. This probability is 
    

    
     . 

 

Equation (1.3)            
      

    
 

 

The number of ballpoints with blue ink is the same as the number of pens with blue ink that are 

ballpoints. This means the probability of grabbing a ballpoint with blue ink is also the same as the 

probability of grabbing a pen with blue ink that is a ballpoint. This symmetry property is shown in 

equation 1.4. 

 

Equation (1.4)                  

 

If the symmetry property is applied to equation1.3. This results in equation 1.5. 

 

Equation (1.5)            
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When equation 1.5 is multiplied on both sides with     , it is transformed into the product rule of 

probability. 

 

Equation (1.6)                       

 

By dividing both sides by      we get equation 1.7. 

 

Equation (1.7)    
          

    
  

      

    
 

 

Which, using equation 2.1, can be rewritten to equation 1.8. 

 

Equation (1.8)    
          

    
        

 

When both sides of the equal sign are switched we have Bayes’ theorem, which is repeated in 

equation 1.9.  

 

Equation (1.9)            
          

    
 

 

 

1.6 Bayesian Network 

The definition of a Bayesian network according to (Heckerman, A tutorial on learning with Bayesian 

networks, 1998) is: 

 

Definition (1.1) “A Bayesian network is a graphical model for probabilistic relationships 

among a set of variables”.  

 

In line with this definition a Bayesian network consists of a network which provides the structure of 

the relationships among the variables and conditional probability tables, which quantify these 

relationships. These components and their semantics will be explained in the first three subsections. 

The final subsection will explain inference, which means using the network to infer any (conditional) 

probability of interest. More information about Bayesian networks in general can be found in 

(Heckerman, A tutorial on learning with Bayesian networks, 1998), (Bishop, 2006) or (Russell & 

Norvig, 2003). 

 

 

1.6.1 Topology of a network 

The “graphical model” phrase in the definition 1.1 refers to the fact that a network consists of nodes 

(or vertices) and edges between nodes. An example of such a model can be seen in figure 1.2. In the 

basic version of a Bayesian network each node in the network represents one variable in the domain 

of interest. The edges of the network are directed, making them arrows from one node to another.  

A few terms from graph theory are necessary to speak about Bayesian networks, here or in future 

sections. These terms will be explained now.       
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 A path is a sequence of nodes such that from each of its nodes there is an edge to the next sequence 

in the sequence. In figure 1.2 Burglary – Alarm – Dog barks is an example of a path. 

Parents of a particular node, e.g. node A, are those nodes from which an arrow goes to node A. 

around   For example, in figure 1.2 the parents of node Alarm are Burglary and Alarm code. 

The descendants of a node, e.g. node A, are those nodes for which there is a directed path between 

node A and that node. In figure 1.2 the descendants of node Burglary are Neighbor calls, Alarm and 

Dog barks.  

 
Figure 1.2. Example of the structure of a Bayesian network 

 

These relationships can also be defined in the opposite direction. The children of a node (node A) are 

those nodes to which an edge goes from node A. And the predecessors of node A are all nodes from 

which there is a directed path to node A.    

The fact that it is not allowed within a Bayesian network to have a path from a node to itself makes 

such a network a Directed Acyclic Graph (DAG). 

 

1.6.2 Conditional probability tables 

 As mentioned in definition 1.1, Bayesian networks encode probabilistic relations among variables. 

Along with each node in the network there is a conditional probability table. This table encodes the 

probability distribution for the values of the variable encoded by this node. Table 1.1 shows such a 

table for variable Alarm from figure 1.2.  

 

 

 

Burglary Yes   No   

Alarm 
code Correct Incorrect Correct Incorrect 

Yes 0.9 0.56 0.01 0.09 

No 0.1 0.44 0.99 0.91 
 

Table 1.1 Conditional probability table for variable Alarm in 

figure 1.2. 
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As can be seen in this table there is a probability distribution for each combination of values of the 

parents of this node. Recall that an a prior probability is the probability that a node has a certain 

value, without any further knowledge of the value of other nodes. Using the conditional probabilities 

the a priori probability distribution of any node can be calculated using Bayes rule. In equation 1.10 

the formula for calculating such a distribution is shown. 

 

Equation (1.10)                        
 
    

 

Where   is the node of interest,    is an assignment of values to the parent nodes of  , and   is the 

number of possible assignments to  . 

Suppose the variable Alarm code has the probability distribution           for respectively the  alarm 

going off or not, and the variable Burglary has the probability distribution             for 

respectively a burglary taking place or not. The probability of the variable Alarm having the value yes 

can now be calculated: 

 

              

                                                                                  

                                                                                

                                                                              

                                                                            

 

Which results in a probability of 0.08.  

 

1.6.3 Semantics 

The two preceding sections have explained the two key elements of a Bayesian network, its structure 

or topology and the probabilistic relation between a node and its parents. But what does a 

configuration of nodes and edges mean? The topological semantics can be explained in two ways, 

which are equivalent. These explanations come from (Russell & Norvig, 2003). 

 

1. A node is conditionally independent of its non-descendents given its parents. In figure 2a the 

node is red, its parents are green and the non-descendents it is conditionally independent 

from are orange. However, it does still depend on its descendents which are blue. 

2. A node is conditionally independent of all other nodes given its parents, children and 

children’s parents. This is called the Markov blanket. In figure 2a the node is red and the 

Markov blanket is purple. 

 

Both explanations come from a more general criterion called d-separation, which can decide whether 

a set   is independent of a set   given a third set  . The above explanations are more clear in this 

context and therefore d-separation is not explained here. For interested readers more details can be 

found in (Pearl, Reasoning in Intelligent Systems, 1988). 
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a) 

 

 
 

b) 

 

Figure 1.3. In a) the red node is independent of its non-descendants (orange)   

      given its parents (green). In b) the red node is independent of all other nodes  

      given its Markov blanket (purple). 

 

 

1.6.4 Inference 

Finally it is possible to use a network to infer any probability or probability distribution one would like 

to know. It might be interesting to know what the probability distribution of a node is, given the 

values of other nodes (regardless of them being in the Markov Blanket or not).  These given values of 

other nodes are called evidence. Such a query with query variable   and evidence   can be written 

as       .  In general such a probability can be calculated using equation 1.11. 

 

Equation (1.11)     
             

 

With   being all possible combinations of values of the unobserved variables. The terms that have to 

be summed can be written as products of the conditional probabilities in the tables from the 

network.  
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1.7 Research question 

 

The objective of this thesis is to investigate whether using a Bayesian network approach on the 

forMINDS dataset has additional value for the forMINDS project. This results in the following 

research question:  

 

“Does a Bayesian network form an inspiration for possible quantitative research and does it give a 

more general insight of the relations between the variables in the forMINDS dataset?”  

 

This research question is divided into two sub questions: 

 

1. Are there unexpected configurations in the structure of the network? 

2. Does the network form an inspiration for quantitative research using inference? 
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Chapter 2 Methods 
 

This chapter provides information about the used methods in this thesis.  The first four sections will 

discuss the contents of and operations on the dataset. The remaining sections discuss the software 

and the Bayesian techniques used for structure generation, parameter learning and inference. 

 

2.1 The dataset 

The dataset consists of tasks, questionnaires, the anamnesis and risk analysis. When each task and 

questionnaire and so on are regarded as a category of variables there are 25 categories. As 

mentioned in the introduction the tasks and questionnaires cover four cognitive fields; impulsivity 

and attention, moral and social behavior, emotional processing and learning. To give an idea of the 

contents of the dataset the categories are shown in table 2.1, together with the cognitive field it 

belongs to. For more detailed information about the tasks and questionnaires itself see appendix A. 

Multiple operations are performed on the dataset which will be discussed in the following sections. 

An overview of these operations can be seen in figure 2.1. 

 

      Table 2.1.  The categories of variables, their corresponding field and the number of   

      variables associated with it after removal of variables as discussed in section  2.2 and 2.3 .  

Field Category # variables 
total per 
field 

- Anamnesis 149   

- Risk Analysis 48   

- SDAS 26 223 

impulsivity and  BisBas questionnaire 6   

attention Continuous Performance Task  16   

  Perceptual Defence Task 5   

  Signal Detection Task  52   

  STOP signal task 46   

  Stroop 23   

  Trail making test 19 167 

Emotional Affective Go/No go Task  93   

 Processing Emotional Stroop Task  92   

  Faces task 90   

  Graded Facial Emotion Recognition task  221   

  Interpersonal Reactivity Inventory 5   

  state trait anger expression inventory  2   

  State trait anxiety inventory 2 505 

Implicit  Psychopathic Personality Inventory 14   

cognition Casino task 235   

Learning ID/ED task 214   

  Kirby questionnaire 3   

  SPRQ questionnaire 2 468 

Social and moral  Moral Judgement Sorting Task  8   

 Behavior Prisoners Dilemma Game  10   

  social value test 3 21 
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2.2 Used variables 

The raw version of the forMINDS dataset contains 4898 variables. Even though Bayesian Network 

techniques are designed to use a lot of variables compared to regular statistics, the time needed to 

generate a network increases strongly when using more variables. The actual complexity varies 

depending on which method is used. These are discussed in section 2.6 Because this strong increase 

the first step in using this dataset has been to see if all variables should be used, based on their 

content.  After this review 1384 variables remain. The reasons for removing variables are: 

  

 The variables concerning the cognitive consist for a large part of reaction times which 

summarize the performance of that task. For most tasks the reaction times are summarized 

as a total as well as using the average. It seems redundant to use both measurements. Since 

not all trials are included in every reaction time variable the average is more interesting in 

terms of comparison. Therefore all summed variables are excluded if averaged variables are 

available. 

 The number of variables summarizing reaction times are doubled by the fact that they are 

calculated both including and excluding trials that have extremely short or long reaction 

times.  These extreme trials are regarded as mistrials. The variables that include such trials 

are excluded for this purpose, and the number of such trials for tasks are included.   

 The errors made in tasks are often represented both by a variable containing the number of 

errors and the percentage of errors over trials. Both contain the information about errors 

which makes one of them rather redundant. The relative amount of trials seems more 

interesting since this already captures the information about the total numbers of trials as 

well. The variables containing the absolute number of errors are discarded. 

 For all questionnaires the item scores are included as well as the summarizing variables used 

for these questionnaires. Within this research the focus lies with the relations between all 

tasks, questionnaires and other variable categories. The focus does not lie with whether or 

not the used questionnaires are of high quality. Therefore the item scores here can be 

assumed irrelevant, since the value of the summarizing variables is assumed to be high. All 

item scores have been discarded.   

 A number of variables, for example the DSM-codes for the disorders or the number assigned 

to each subject, are (almost) unique for each subject and therefore not useful. Those 

variables that do carry useful information are summarized in different variables. Also there 

are variables that contain information which only has an administrative value, such as 

whether or not certain reports are available at the clinic. All these variables are excluded. 

 A number of variables in the set contained dates. These dates are more probable to be 

interesting when considered relative. An example of this are the dates indicating when the 

tasks are performed. This is less probable to be interesting by itself compared to the time 

relative to the start of treatment. These variables have been replaced by relative variables. 

 

2.3 Missing Values 

The forMINDS dataset contains many missing values. After eliminating variables as described in the 

previous section, 30% of all values are missing. The implementation of the algorithm for structure 

generation (see section 2.6.2) in the software that is used in this thesis (see section 2.5) is unable to 

handle missing values. There are a number of ways to cope with missing values, which will be 

discussed later in this section. 
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 In order to make a good decision regarding the used method, the missing values need to be 

investigated regarding their type. Why are the values missing? Are the missing values randomly 

distributed? If the distribution is not random, is there a pattern? Might there be values missing by 

design? These are all relevant questions when dealing with missing values as is argued in (Cohen, 

Cohen, West, & Aiken, 2002), (Newman, 2003) and (Royston, 2005). The observations regarding the 

missing values of the forMINDS dataset are: 

 

 The missing values are not randomly distributed over the variables. 25% of all missing values 

are found in only 9 % of the variables. The complete distribution of missing values over the 

variables can be seen in figure 2.1b. 

 The missing values are also not randomly distributed over subjects. Here 27% of all missing 

values are found in 15% of the subjects. The complete distribution of missing values over the 

subjects can be seen in figure 2.1a. 

 Part of the missing values are missing by design, due to the fact that they are not applicable 

given the value of another variable. For instance, if the subject has never used cocaine 

according to one variable, the values for the variables ‘age at first time usage’ and ‘age at last 

time usage’ are missing. 

 The values that are not missing by design are mostly missing due to the fact that a subject 

did not perform one or more of the tasks, causing a chunk of values to be missing rather than 

a couple of values per category. In the anamnestic part of the variables however there can be 

single variables missing per subject.   

 

There are a number of techniques for handling missing values. There applicability depends on the 

characteristics of the missing values. The techniques considered for the forMINDS dataset are: 

 Dropping variables.  

One way of handling missing data is to drop those variables that include missing values 

(Allison, 2002). In this particular case, dropping all variables with missing values would mean 

dropping over 99% of all variables. Using this technique on all variables is not appealing, 

however the number of missing values can be greatly reduced by removing those variables 

with a very high percentage of missing values (recall the uneven distribution of missing 

values over the variables). Their effect on other variables will then not be taken into account, 

however so are all other possible variables that could have been included but were not. 

Those variables that  have more than 175 missing values are eliminated from the dataset. 

This cutoff point has been chosen based on the balance between missing values reduction 

versus the elimination of variables, see figure 2.1b, resulting in the removal of 128 variables. 

 Dropping subjects. 

Another way to handle missing data is to drop the subjects that include missing values, i.e. 

listwise deletion of missing data (Allison, 2002). This might have an effect on how 

representative the sample is for the population of interest. In this specific case removing all 

subjects that have missing values would result in a sample size of 0 subjects. A better option 

seems to be to remove those subjects that account for a large percentage of the missing 

data. Again the cutoff point has been chosen based on the balance between missing values 

reduction and the elimination of subjects, see figure 2.1a.  This results in the removal of 36 

subjects. 
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Figure 2.1 These graphs show the relation between the number of subjects (a) or variables (b) 

that are included versus the number of missing values.  

 

 Add a category for categorical variables. 

For categorical variables it is an option to add another category that represents a missing 

value. According to (Allison, 2002) this is not a good technique because it causes biased 

results in regular statistics. In the case of a Bayesian network it does not seem to be a useful 

technique either. When generating a structure nodes might end up being connected based 

on the dependency of missing values. This is not desirable and therefore this technique will 

not be used.  
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 Imputation. 

Another technique for handling missing data is to substitute the missing values, which is 

called imputation (Cohen, Cohen, West, & Aiken, 2002), (Allison, 2002) and (Newman, 2003). 

Using this technique means that missing values are replaced with a plausible guess or 

imputation. This is a common strategy when deletion of variables and/or subjects to handle 

missing values is insufficient, because there would be no dataset left if only these techniques 

would be applied . The remaining question when using this technique is what to substitute 

the missing value for. Common choices are the overall mean, the mean of a subgroup or  a 

regression estimate (Allison, 2002) and (Newman, 2003). In regular statistics mean 

comparison is a central theme. Substituting missing values with the mean and therefore not 

changing the mean of a variable (overall or of a subgroup) seems plausible, although 

standard deviations are altered. A Bayesian Network however does not depend on the mean 

of a variable.  When using the mean the probability of this value would increase and 

therefore results in the network would become biased. This substitution therefore seems not 

applicable. Using regression to impute missing values seems more interesting since this 

would impute the missing value with a more likely estimate based on other variables. The 

problem lies in the ‘other variables’–part of this technique. With nearly 1400 variables this is 

hardly applicable. First of all this would mean that a regression should be made for each 

variable that has even one missing value. Secondly there are missing values in all other 

variables as well. How should the regression be derived from those? And if one would chose 

a subset of variables, what would make a suitable subset? There might be an answer to this 

last question. In this thesis the quality of the tasks and questionnaires is assumed to be 

sufficient. This would mean that patterns within tasks and questionnaires should remain the 

same given their dependence on other variables. Regression based on other variables within 

the same task or questionnaire might therefore be a valid way to impute the missing values. 

Unfortunately most of the time all values from a questionnaire or task are missing for a 

particular subject, making this approach unusable. Then what would make the most suitable 

substitution for missing values? The equivalence of a mean for regular statistics is the 

probability distribution of the variables in Bayesian networks. This type of imputation is 

called distribution imputation. For more information see (Little & Rubin, 1987) and (Royston, 

2005).  From the available values of a variable the distribution is computed using 15 equally 

sized bins. Each imputation is now a draw from the set of bin-values belonging to that 

specific variable according to the accompanying distribution. For a more formal description 

of the used method see appendix C for pseudo-code. 

 Multiple imputation. 

A way to improve single imputation is a technique called multiple imputation (Royston, 

Multiple Imputation of Missing Values: Update, 2005) and (Newman, 2003). This means that 

the data is imputed multiple times to produce a set of differently imputed complete 

datasets. When using a regression approach for instance, different regressions due to 

different parameters can be used to generated the different datasets. The resulting datasets 

are then combined somehow (e.g. taking the average) to give an overall estimate of the 

parameters. When this would be applied to the use of probability distributions in single 

imputation, for instance by taking the average, the imputed values would migrate towards 

the most common value in the variable. This would undermine the idea of the usage of the 
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probability distribution, since this distribution would become distorted through these 

operations afterwards. 

 

When the proposed operations have been performed on the forMINDS dataset  1384 variables and 

206 subjects remain. The number of variables associated with each category can be seen in table 2.1. 

 

2.4 Discretization 

The dataset contains categorical as well as continuous and discrete variables. It is possible to use a 

hybrid Bayesian network. Such a network needs to be able to handle two extra types of conditional 

distributions. The conditional distribution of a continuous variable given discrete or continuous 

parents and the conditional distribution for a discrete variable given continuous parents. See (Russel 

& Norvig, 2000) and (Murphy K. , 2001; Murphy K. , 2012) for more information. It is possible to 

implement Gaussian nodes with the used software, though it makes structure learning and inference 

more complicated. A second option is to transform continuous variables into discrete variables. This 

means there is a loss of information on one hand and a gain in simplicity on the other hand. Since the 

scope of a bachelor thesis is not infinite simplicity is chosen over a more detailed network in this 

case.  

There are different ways to make discrete variables out of continuous variables. The method used 

here creates uniformly sized bins, with the minimum of the variable as lower boundary of the 

smallest bin and the maximum of the variable as the higher boundary of the largest bin. For a more 

formal description of the used method see appendix C for pseudo-code. An overview of all dataset 

operations can be seen in figure 2.2. 

 

2.5 Software 

A lot of software has been made to apply Bayesian techniques. These vary in a lot of ways. On 

(Murphy K. , 2012)  a large overview can be found of software for this purpose and their 

specifications. The required specifications for this research are that it needs to be able to handle a 

large amount of nodes, it needs to incorporate structure generation techniques (preferably a number 

of algorithms), it needs to be able to learn parameters from data, inference has to be possible 

(preferably multiple methods) and preferably the software is open source. The two candidates from 

(Murphy K. , 2012) that seem suitable are GeNIe & SMILE from (GeNIe & SMILE) and BNT (Murphy K. 

, 2007). Smile turned out not to be suitable because it was unable to handle the amount of nodes 

required in this case. This inability became apparent after experimentation with the software and 

personal communication with the staff from GeNIe & SMILE. The used software for this project is 

therefore BNT, which is an open source toolbox for Matlab which is available on (Murphy K. , 2007). 

In the remaining sections the Bayesian techniques are discussed that are provided by the software 

and applied on the forMINDS dataset. An overview of these techniques can be found in (Murphy K. , 

2001). 
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Figure 2.1 Overview of dataset operations 

 

2.6 Structure learning 

Learning a bayesian network from data is a challenging task. The number of possible DAGs is super-

exponential in the number of variables (Heckerman, 1998). The methods to learn a structure from 

data can be divided in two types; constraint-based and search-and-score. The first type tries to form 

a dag using the constraints explained in section 1.4.3. The second type searches the space of possible 

DAGs using a score for the goodness of the model. In this section the options for structure learning 

given the software will be discussed and the resulting choice will be explained further. 

 

2.6.1 Options for structure learning 

There are a number of structure learning possibilities in BNT. Each will be very shortly discussed 

below. 

 K2 algorithm.  

This is a greedy search algorithm. Initially each node has no parents, then incrementally that 
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parent is added which most increases the score of the resulting structure. For more detailed 

information see (Cooper & Herskovits, 1995). 

 Hill-climbing.  

This algorithm starts at a specific point in the search space. It considers all nearest neighbor 

and moves to the neighbor that most increases the structure score. Neighbors are defined as 

adding, removing or reversing an arc in the network. 

 Markov Chain Monte Carlo (MCMC) method.  

Uses the Metropolis-Hastings algorithm to search the space of all DAGs. For a more detailed 

explanation see (Chib & Graanberg, 1995). 

 Structural EM.  

This method uses the more general expectation-maximization (EM) algorithm. This is an 

iterative method for finding maximum likelihood estimates of parameters. The iteration 

alternates between computing the expectation (E-step) and trying to maximize this 

expectation (M-step). For more details on the application for Bayesian networks see (Bishop, 

2006). 

 The PC-algorithm.  

This method starts with a fully connected network and removes edges based on conditional 

independence constraints. This will later be explained in further detail. 

 The Fast Causal Inference (FCI) algorithm.   

This algorithm extends the PC-algorithm by being able to detect the presence of latent 

variables. More detailed information can be found in (Spirtes, Glymour, & Scheines, 2000). 

 

The K2 algorithm heavily depends on the ordering of the nodes for the resulting network structure 

(Friedman & Koller, 2000). The forMINDS dataset contains so many variables there are so many 

possible orderings that this effect is not acceptable, since it is impossible to use all different 

orderings. This effect can be reduced by searching over the possible orderings using a MCMC 

method, though this increases the complexity of the resulting algorithm (Friedman & Koller, 2000).  

Hill Climbing can get stuck in local maxima. Starting at different points in the search space reduces 

this effect, however with so many variables this would have to be a large number of starting points in 

order to have any confidence that the resulting model is not a (small) local maximum (Russel & 

Norvig, 2000). 

The MCMC method is not usable in this specific case because the implemented version in the 

software is can handle only a maximum of 10 nodes according to the user manual (Murphy K. , 2001). 

The remaining three methods, EM-algorithm, PC-algorithm and FCI-algorithm, could all be applied to 

the forMINDS dataset. One of the aims of this thesis is to be able to inspect the global network 

structure for possibly interesting configurations. The constraint based methods (PC and FCI) have a 

more insightful way of constructing a network; it has a specific meaning when a particular edge is 

missing. This insightfulness is missing in the EM-algorithm which therefore seems less appropriate. 

The downside of these algorithms is the repeated use of conditional independence tests, since this 

decreases its statistical power. The difference between the PC- and the FCI- algorithm is the 

possibility of detecting latent nodes. The forMINDS dataset includes so many variables that detecting 

latent variables might not be interesting at the first attempt to apply such a technique to this 

dataset. This might be interesting for future research. Because of its applicability, insightfulness and 

simplicity, the PC-algorithm seems the best algorithm to perform structure learning on the forMINDS 

dataset. The algorithm itself will be explained in more detail in the following section.  
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Figure 2.2Overview of generating a Bayesian network 

 

2.6.2 The PC-algorithm 

The PC-algorithm starts with a fully connected undirected graph. The algorithm then iterates over the 

edges to check if the nodes that an edge connects are conditionally independent. If so, the edge is 

removed. During the iterations the order of conditional independence is raised by one after each 

iteration, starting from zero. This means that at first all edges are checked for regular independence, 

without any conditional variables. Secondly the remaining edges are checked for conditional 

independence given each of their adjacent nodes. Thirdly the remaining edges are checked for 

conditional independence given each set of two of their adjacent nodes, and so on. For a schematic 

version see figure 2.3a.The output of this first stage is an undirected graph.  
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Figure 2.3Pc algorithm.  In these figures the pseudo code for the 

  structure ordering (a) and rules for directing nodes (b) are shown 

 

1)  

                      
 

2) 

         
  

3)         

                
b) 

  is the set of nodes 

     is the set of adjacent nodes from node   

         is the test for independence of   and   given the set of nodes   

    is the set of nodes that separates   and  , i.e. given this set   and   are independent 

 

1.   Start with a complete undirected graph    

2.         = 0 

3.   Repeat 

4.        For each     

5.             For each        

6.                  Determine if there is a set             with           and          

7.                  If this set exists 

8.                       Make       

9.                       Remove     link from    

10.                  + 1 

11. Until order > maximal order or                  

 

a) 
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In order to have a DAG for the Bayesian network the edges need to be oriented. First the undirected 

graph is searched for       connections where   and   are not adjacent. If variable Z was not in 

the set based on which   and   are concluded to be independent,       is oriented as 

         , which is a head-to-head link.  Next a set of three if-then rules is now iterated over the 

graph to direct edges until no more edges can be directed. The rules can be seen in figure 2.3b and 

more information can be found in (Meek, 1995). The resulting partially oriented graph represents a 

class of DAGs which are essentially equivalent. The remaining arcs are oriented on an arbitrary way, 

keeping the DAG conditions and not creating head-to-head links. For a more detailed description of 

the PC-algorithm see (Spirtes, Glymour, & Scheines, 2000). To see an overview of the different 

phases of the PC-algorithm and their corresponding in- and outputs see figure 2.2. 

 

2.6.3 Independence testing 

As described above the PC-algorithm needs a conditional independence test. The test for discrete 

variables described in (Spirtes, Glymour, & Scheines, 2000) is based on observed and expected 

frequencies. These frequencies can be used to derive conditional independence as follows. 

 

Let   be the number of observations,        be the observed frequency of the value   of variable 

 . Assuming that   and   are independent, the expected frequency of the co occurrence of value   

in   and   in   is: 

 

                                          

 

Estimating        and        by using the observed frequencies yields: 

 

Equatio 2.1.               
      

 
 
      

 
  

             

 
 

 

Now, let                be the conditionally expected frequency of the co occurrence of   

and   under variable  . 

 

Equation 2.2.                                     
              

      
 

 

Again, assuming of   and   are independent we find: 

 

Equation 2.3.                  
                     

      
 

 

Estimating           ,            and        using observed frequencies yields: 

 

Equation 2.4.                  
          

 
   
          

 
      

 

  
                      

      
 

 

It is easy to see that for more than one conditional variable (for example 2), the formula expands to: 
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Equation 2.5.                     
                               

          
 

 

To test independence there are two options: the    test and the    test. Given  ,   and a number of 

conditional variables          we will determine the observed values              

                  (by counting) together with the expected values              

                  (by calculation) for all possible values            .     is than calculated by  

 

Equation2.6.           
      

                   

 

And    is calculated by  

 

Equation 2.7.                  
 

 
                  

 

The    test is in fact an approximation of the log-likelihood ratio on which the    test is based 

(Dunning, 1993). This approximation was developed by Karl Pearson because at the time it was 

unduly laborious to calculate log-likelihood ratios. The authors in (Spirtes, Glymour, & Scheines, 

Causation, Prediction, Search, 2000) have found, through simulations, that using the    statistic 

more often leads to the correct graph than does    when dealing with discrete nodes.  

The appropriate  -value indicates           , where    is the hypotheses that two variables are 

independent.  In case of two dependent variables, this  -value will be very low. To find the 

appropriate  -value for   , the correct number of degrees of freedom,   , is needed. Let        be 

the number of values of  . The following value for    will be used: 

 

Equation 2.8.                                       
 
    

 

In case the distribution has a zero entry, the number of degrees of freedom is decreased by one as 

recommended by (Bihop, Fienberg, & Holland, 1975) and (Spirtes, Glymour, & Scheines, 2000). It is 

also recommended by these authors that the sample size needs to be at least five times larger than 

the number of cells in the independence test. The maximum number of values for a variable is 3 in 

this dataset, recall that this is forced through discretization. This means that, given 206 subjects, the 

maximal order of the independence test is three and therefore the maximum number of conditional 

variables is two.  

The final decision in independence testing is the value of alpha. Alpha is used to decide at what  -

value dependence is concluded; if the  -value is lower than alpha the two variables are concluded to 

be dependend. The alpha-level of the conditional independence test influences how many 

connections between nodes will be removed. As the order of the conditional independence test 

becomes larger, the number of possible combinations for conditioning rises sharply. The number of 

nodes in this network is large, therefore fast reduction of connections is desirable. The value of alpha 

is set to 0,01. The conditional independence test as described above is not implemented in BNT. The 

used implementation is provided in appendix C. 
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2.6.4 Background knowledge 

It is possible in the use of Bayesian networks to supply the structure learning algorithm with 

background knowledge consisting of forbidden and forced arcs. This should result in a better end 

result with regard to network structure. In this case this pos  network techniques are useful for this 

type of forensic psychiatric datasets and what resulting network it delivers without any assumptions. 

This would be interfered by background knowledge. Secondly, selecting these forced and forbidden 

arcs would require selecting them from 
     

 
 ,where   is the number of variables, possible arcs, 

which is beyond the scope of this project. 

 

2.6.5 Assumptions of the PC-algorithm 

The PC-algorithm is bound in its success by a number of assumptions (Kalisch, Mächler, Colombo, 

Maathuis, & Bühlmann, 2012). These are: 

 

1. The dataset must be faithful. This means that for each distributions in the dataset it is 

possible to find a DAG, whose list of d-separation relations (see section 1.7.3) perfectly 

matches the list of conditional independencies of the distribution (Kalisch, Mächler, 

Colombo, Maathuis, & Bühlmann, 2012).   

2. No hidden or selection variables. Hidden variables are factors influencing two or more 

measured variables that may not themselves be measured. Selection variables are variables 

of which their values may influence whether a unit is included in the data sample. (Kalisch, 

Mächler, Colombo, Maathuis, & Bühlmann, 2012).  

3. Consistent in high-dimensional settings if the underlying DAG is sparse, the data is 

multivariate Normal and satisfies some regularity conditions on the partial correlations and   

is taken to zero appropriately (Kalisch & Bühlmann, 2007).  

 

For all these assumptions it must be noted that they become apparent after using the PC-algorithm. 

Whether the data is faithful is hard to know on forehand, although it has been shown that the set of 

distributions that are faithful is the overwhelming majority (Meek, 1995). Whether there are hidden 

or selection variables and whether the underlying DAG is sparse is also hard to predict on forehand. 

 

2.6.6 Complexity of the PC-algorithm 

The maximal number of independence tests that have to be performed by the PC-algorithm for a 

graph   is bounded by the largest degree in   and the maximal order of the conditional 

independence tests which is denoted as  . Since the algorithm starts with a fully connected graph, 

given there is no background knowledge, the maximal degree of a vertex equals the number of 

vertices which is denoted as  , This results in the following upper bound (Spirtes, Glymour, & 

Scheines, 2000): 

 

Equation 2.9     
 
 
   

   
 

  
    

 

Which is bounded by: 

 

Equation 2.10  
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This means the computational requirements increase exponentially with  . However, when taking 

into consideration that the maximal order of the conditional independence test is 2 (see previous 

section) the maximal number of tests is bounded by: 

 

Equation 2.11     
 
 
   

   
 

  
    

 

Which is then bounded by: 

 

Equation 2.12          

 

Making the complexity of the algorithm quadratic instead of exponential. This upper bound is the 

worst case, which requires that there are no conditional independencies found with an order less 

than the maximal order. According to (Spirtes, Glymour, & Scheines, 2000) the worst case is 

extremely rare, and the average number of conditional independence tests is much smaller. 

 

2.7 Parameter learning 

When a network structure is defined the conditional probability tables need to be constructed for 

each node. The software provides a method for learning these parameters in the presence of missing 

values. This would be a desirable method to use since the original data could then be used instead of 

the data with imputed variables. However the provided code does not work properly. The remaining 

option for learning parameters is to use the data with the imputed values. In this case the 

parameters are learned by finding a point estimate of the parameters. These are maximum likelihood 

estimates. 

 

2.8 Inference 

Once the Bayesian network is complete, i.e. the structure and conditional probability tables have 

been generated, the next phase is inference. As described in the introduction this means any 

conditional probability can be inferred from the network. This is useful for e.g. hypothesis testing and 

to make predictions. 

The software provides a  number of methods to perform inference which will be discussed below. 

 Global inference. This is the brute force method of calculating the probability distributions 

given evidence as described in the introduction. Since this is exponential in the number of 

variables this is not a useful method. For further reading see (Russel & Norvig, 2000) and 

(Spirtes, Glymour, & Scheines, 2000). 

 Variable Elimination. This method avoids repetition of calculation and therefore increases 

performance. Unfortunately it is still exponential if the network structure is not a singly 

connected network, which means there is only one possible path from each node to every 

other node. This is highly unlikely to be the case in such a large network and therefore this is 

not a useful method. For further reading see (Russel & Norvig, 2000) and (Kschischang, B., & 

Loeliger, 2001). 

  Quickscore. This method is mostly interesting for networks containing noisy or nodes and is 

therefore not suitable in this particular case. More detailled information can be found in 

(Heckerman, A tractable inference algorithm for diagnosing multiple diseases, 1989). 
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 Belief propagation. This is based on Pearl’s belief propagation algorithm (Pearl, 1988), which 

is a technique to approximate parameters. In (Murphy, Weiss, & Jordan, 1999) it is stated 

that when the output of the algorithm converges the results are very good, however it might 

oscillate which causes very poor approximations. Whether or not oscillation will occur is hard 

to predict. A technique is proposed to prevent oscillation. Unfortunately this technique can 

make the algorithm converge to bad approximations. Because of these insecurities this is not 

a suitable option. 

 Sampling. This type of techniques generates samples from the network. In the simplest case 

a large number of samples are generated and the requested query is answered through 

counting, however this is very inefficient. Two more efficient options provided by the 

software are likelihood weighting and Gibbs sampling. Likelihood weighting generates a 

sample through the probability distributions in the network until it reaches an evidence 

node. This variable is assigned the evidence value and the sample is weighted according to 

the probability of the value of the evidence node occurring. This way no redundant samples 

are generated. The Gibbs sampling method uses a MCMC method. It differs from likelihood 

sampling in the fact that the samples are dependent on each other as opposed to 

independence in likelihood sampling. Gibbs sampling is unable to handle networks that 

contain extreme probabilities. These extreme probabilities are very small priors. For more 

information on Gibbs sampling and likelihood sampling see (Geman & Geman, 1984).  Since 

there might be small priors in the network importance sampling seems the best option in this 

case.  
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Chapter 3 Encountered problems and solutions 
 

When generating the network structure as proposed in the method section a number of problems 

have been encountered.  

 

3.1 Computation time of structure generation 

Running all 1384 variables has resulted in a too long lasting calculation for building a network 

structure. The slowness is due to the first part of the PC-algorithm where all edges need to be 

validated using the conditional independence test, especially the second-order phase (independence 

testing conditional to two other variables). Recall that for each edge present in this phase  
 
 
  

independence tests need to be done, where   is the number of neighbors for the two nodes 

connected by that specific edge. Even though the reduction of the number of edges was 93.93% after 

the zero-order independence tests, there still were over a 100.000 edges left. The first-order phase 

reduced the number of edges with another 7,5%, leaving the second-order phase with too many 

edges to compute within anywhere near reasonable computation time. After running for 6 days less 

than 1000 out of 107555 edges had been handled and the calculations were ended. 

 

In order to generate a result, the dataset needed to be reduced to be able to generate a network in a 

reasonable computation time, being in the magnitude of days. The test sizes that have been used 

consist of respectively 286, 178 and 132 variables. Included variables have been chosen in 

consultation with the researchers from the forMINDs project for all sets. The results will be further 

discussed in the next sections.  

 

3.2 Edge reduction 

The computation time heavily depends on the number of edges that are still present during the first-

order and second-order phases of the first part of the PC-algorithm as discussed above. Reducing the 

  of the conditional independence tests therefore seems a way to reduce computation time, since it 

would be expected that less edges remain for each higher order phase. Secondly a resulting test 

network structure of 30 variables from the forMINDS dataset still contained 143 edges for an   value 

of 0.01, an average of 10 neighbors per node,  which makes the network rather complex for 

interpretation. Reducing the number of resulting edges might therefore be desirable. 

 

In (Kalisch & Bühlmann, 2007) the dependence of the PC-algorithm on its single tuning parameter   

is compared for different numbers of observations, different levels of sparseness of the underlying 

DAG and its True Positivity Rate and False Positivity Rate compared to the true underlying DAG. For 

this comparison the authors use simulated data with 30 variables and values are averaged over 50 

runs. The authors conclude that   can be used to find a good compromise between the amount of 

edges and their reliability. It is noted, however, that especially for larger  sample sizes large changes 

in   result in small changes in the number of edges.  

For this specific dataset a number of values for   have been compared for a set of 30 variables and 

the set of 132 variables. The results will be further discussed in the next sections.  

 

It must be noted, however, that there might be another cause for the small reduction of the number 

of edges. Recall from section 2.6.3. that the conditional independence test heavily depends on how 



29 
 

the values for the subjects of the variables involved are distributed over the possibilities of 

combinations of values of those variables. In other words: how well each cell of the frequency table 

for the observed values is filled. For each empty cell the degrees of freedom is lowered by one. In 

case this value becomes lower or equal to zero, i.e. a large number of cells is empty, dependence is 

assumed. If this occurs regularly, a lot of edges appear in the network based on this assumption 

regardless of the level of  . The occurrence of this situation is further discussed in the next sections.  

 

3.3 Cycles in resulting network structure 

The dataset that resulted in the furthest completed network structure was the dataset containing 

132 variables. The network structure generated by the software already contained a cycle in the first 

phase of directing the edges (using the separation sets to make head-to-head orientations). After 

reconsulting the literature it appeared that in case of sampling errors or hidden variables, conflicting 

information about edge directions might arise (Kalisch, Mächler, Colombo, Maathuis, & Bühlmann, 

2012). It might be, for example, that two triples,            and          , should both be 

oriented head-to-head in the first phase of directing edges based on the separation sets. This results 

in a conflict about the edge      , since it should be oriented as        in the first triple and as 

      in the second triple. Some configurations of these ambiguous edges might result in cycles and 

therefore an invalid network structure, others might not.  

 

There are a number of options mentioned in the software proposed in (Kalisch, Mächler, Colombo, 

Maathuis, & Bühlmann, 2012) how to deal with the fact that ambiguous edges due to sampling errors 

or hidden variables occur.  

 The default option is to simply overwrite the ambiguous edges as they occur.  

 The second option is to search for a configuration of the ambiguous edges that results in a 

valid DAG. In the implementation in (Kalisch, Mächler, Colombo, Maathuis, & Bühlmann, 

2012)  a maximum of 100 such configurations are tried.   

 A third option is to discard all information on directing and simply generate a random DAG 

on the skeleton (by which they mean the graph containing only undirected edges).  

 A final option is to implement an intermediate step in the PC-algorithm, making it the 

conservative PC algorithm (Kalisch, Mächler, Colombo, Maathuis, & Bühlmann, 2012), which 

works as followed. After the skeleton is generated, all head-to-head triples are marked as 

either faithful or unfaithful. It is checked if a triplet            is faithful in the following 

way in:   “We test whether variable   and   are conditionally independent given any subset 

of the adjacency set of   or subset of the adjacency set of  . If     is in no such conditioning 

set (and not in the original separation set) or in all such conditioning sets (and in the original 

separation set), the triple is marked as unfaithful”. The faithful triples are then directed in 

the next step as v-structures and the unfaithful ones not. The remaining edges are then 

directed as before.  

 

Overwriting ambiguous edges as they occur is the method used in the BNT software as well, resulting 

in cycles in this specific case. Discarding all independence information on directing and generating a 

random DAG on the skeleton does not seem a good option. Recall from section 1.7.3. that the 

interpretation of a network structure depends on its Markov-blanket, being a nodes parents, children 

and children’s parents, which involves direction. Making a random configuration on the available 

skeleton would therefore result in an uninterpretable network. The conservative PC-algorithm is not 
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implemented in BNT. Due to time-constraints this technique is not used. The resulting option to 

search for a configuration of the ambiguous edges resulting in a valid DAG is used, both for the 

dataset containing 30 and 132 variables.  This is primarily done by locating the cycle in the current 

graph and then turnover the first randomly chosen edge in this cycle that is ambiguous. If this does 

not perform well computation time wise due to the time it costs to locate cycles the method of the 

package for R is used and a fixed number of possible configurations of the ambiguous edges will be 

tried. 
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Chapter 4 Results 
 

This thesis has resulted in an explorational study for the usage of Bayesian networks for this specific 

dataset. Different aspects of this exploration are effect of imputation , computation time, effect of   

and the (partially) generated networks. The results of each of these aspects will be discussed below.  

 

4.1 Effect of imputation 

In order to try and estimate the effect of imputation using two different imputation methods a 

simulation has been performed. A dataset has been generated consisting of 3 variables. The first two 

variables are random numbers between 1 and 100 and the thirds variable contains the sum of the 

first two variables, where any number larger than 100 is set to 100. Applying the PC-algorithm on this 

dataset results in a v-structure of the form:         , where   is the first variable, 2 the second 

and   the third. At the start of the simulation 10% is made missing and this is increased by 10 % at 

each step of the simulation. These missing values are equally distributed over the entire dataset. 

Each dataset is imputed two times, one time with the average of the value and one time with a draw 

from the distribution of the values of that value as described in section 2.3. After imputation the 

values are discretized as described in section 2.4 and the PC-algorithm is applied on each dataset to 

see if the v-structure is still intact. In this simulation the v-structure was no longer present if 90% of 

the data had been imputed with the average and in the case of distribution based imputation the v-

structure was no longer present when 50% of the data had been imputed.   Let   be the set of 

variables and   the set of subjects, than the error of the imputation method can be calculated using 

 

 Equation 4.1.                                           

 

For imputing with the average in a dataset with 30% missing values this yields an error of 676.088 

and for distribution based imputation an error of 1.224.072. 

 

4.2 Computation time for sets of variables of different sizes 

For three sets of variables of respectively 286, 178 and 132 variables the computation time of a 

network is compared for an   of 0.05. Only for the set of 132 variables the computations have been 

completed. Therefore only the phases of the PC-algorithm using zero-order and first-order 

conditional independence tests are compared. The results can be seen in figure 3.1. For the set of 

132 variables the computation time for structure generation was 93 hours, i.e. 3 days and 21 hours.  

 

4.3 Remaining edges for different levels of   

For two sets of variables of respectively 30 and 132 variables the number of edges remaining after 

independence testing are compared for different levels of  . The set of 132 variables is the smallest 

set of carefully chosen variables. The set of 30 variables is a test set that simply contains the first 30 

variables of the set of 132 variables. The included variables are listed in appendix X. The set of 30 

variables starts out with 435 connections, and the set of 132 variables with 8646. The results are 

visualized in figure 3.2 for each order of the independence tests done in the first part of the PC-

algorithm. As described in the previous chapter these results might be influenced by the occurrence 

of too low values for the degrees of freedom in the conditional independence test. More information 

on these occurrences will be discussed in the next section.   
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Figure 4.1 Comparison on computation time for datasets of different sizes to complete the first two  

        phases (zero-order and first-order conditional independence tests)  of  computing the network structure 

 
 

 
Figure 4.2. Number of variables remaining after each phase of independence testing for different values of          

alpha. In phase 0 the zero-order indepence tests are performed and in phase 1 the first-order independence  

tests. The second order independence tests are not included, since this phase has never finished completely. 
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4.4 Resulting networks 

For the smallest network (132 variables) still containing carefully chosen variables a finished network 

has not been generated. The results on network structure discussed below will therefore refer to 

different networks in different stages of completion. 

4.4.1 Network skeleton  

The network skeleton is the undirected graph that is the output of the first part of the PC-algorithm. 

For the dataset of 132 variables the skeleton has not been completed. The results following will refer 

to the output at the end of the phase with first-order independence tests. At the moment of aborting 

the computation in the phase with second-order independence tests, no more edges had been 

removed and 36 of the 1231 edges had been tested.   

The resulting network skeleton contains 1231 edges. Averagely each node has 19 neighbors.  How 

these neighbors are distributed over all nodes can be seen in figure 3.2.   

 
Figure 3.2. Distribution of neighbors for the network with 132 variables and   = 0.001. The 

   network generation of this network is not complete for the second-order independence tests. 

 

 

This network results in a too complex picture to display here. The network is digitally available on 

request. To give an idea of the complexness of such a network a network with 30 variables and an 

average of 10 neighbors per node can be found in figure 3.3. 
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Figure 3.3 Network structure with 30 variables and   = 0.01 
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As discussed in the previous chapter a number of edges in this network skeleton might not result 

from statistical significance. Instead there are too many combination of the values of variables 

involved, hereafter referred to as cells, for which there are no observations to conclude 

independence and therefore the edges are not discarded. Within this network consisting of 123 

variables there are 770 such  edges encountered in the zero-order phase of constructing the network 

structure, which is 57% of all remaining edges. In this specific phase only one independence test per 

edge is performed. In the first-order phase 78.073 independence tests are unable to make a 

conclusion due to  too many cells without observations. Part of these tests are on those same edges 

that did not have enough observations per cell in the zero-order phase to begin with. Recall that the 

number of independence tests that needs to be performed in these higher order phases depends on 

the amount of neighbors of the nodes connected by that particular edge. 

 

4.4.2 Directing edges 

After generating the skeleton the edges are directed.  Recall that the first step in directing those 

edges is based on the separation sets generated in the previous phase and that ambiguous edges 

whose direction was uncertain cause cycles when the way to handle those ambiguous edges is to 

simply overwrite them as they occur.  As described in the previous chapter two strategies have been  

tried to search for a configuration of those ambiguous edges. The first strategy, to only turnover 

ambiguous edges within a cycle, resulted, for a test-set of 30 variables, in a valid DAG. Unfortunately 

this strategy was not feasible for the set of 132 variables (only zero- and first-order independence 

tests) since the search for a cycle was in the network was too time consuming relative to the number 

of random configurations that could be tried in that time.  Therefore the second strategy, to try a 

fixed number of possible configurations, has been applied to this network. However, after 10.000 

random turnovers of edges (100 times the number of configurations tried in the R-package (Kalisch, 

Mächler, Colombo, Maathuis, & Bühlmann, 2012)) still no valid DAG had been found. 

 

4.4.3 Most significant dependences 

For the dataset with 132 variables there are, in the zero-order phase alone, 485 edges with a  -value 

which is smaller than            . Since any value equal or smaller than this value is registered as 0, 

it is not possible to sort the remaining edges based on their significance. Even though 485 edges are 

too much to display here, these are digitally available on request, as well as the significance of all 

other independence tests performed.   

 

4.4.4 Conditional probability tables and inference 

For the network containing 132 variables no valid DAG has been found and therefore it has been 

impossible to construct the conditional probability tables or conduct inference. For a test-network of 

30 variables it has been possible to find a valid DAG. The number of edges in this network was too 

large, however, to construct the conditional probability tables due to memory failure when using 

BNT.  
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Chapter 5 Discussion  
 

In the simulation regarding the comparison between imputing with the average and distribution 

based imputation, average imputation yields better results on the used dataset. However, this does 

not mean this is the case on all datasets. In this specific dataset the variables were uniformly 

distributed. This means that the average is always maximally half the reach of the variable besides 

the original value, while distribution based imputation might be further off. This explains the larger 

error for distribution based imputation. In case the values of a variable are normally distributed little 

difference between the two methods is expected, since the average has the highest probability of 

being imputed with distribution based imputation. However, if the values are distributed 

asymmetrically and the average is not the most probable value such as in the examples of figure 5.1, 

it is easy to imagine that distribution based imputation might yield better results when compared to 

imputation of the average. 

 

 
           a)       b) 

Figure 5.1 Examples of asymmetric distributions. The red arrows indicate the average of the distribution. 

Having discussed imputation it must be noted that however clever the method for dealing with 

missing values is, the best way to decrease the effect of missing values is to minimize their 

occurrence. Designing data collection in such a way that the number of missing values is minimal can 

be difficult, but will in the end result in more reliable results in any research. 

 

 Because of the dependence on the distribution of the values of the different variables it is hard to 

say how much the forMINDs dataset is affected by the imputation of the missing variables. However, 

it is not likely that this effect is small, because of the large amount of missing data in the dataset.  

A different method for imputation that has not been considered for this thesis, but might yield the 

best result of all, is using a Bayesian network . In this case the values are imputed using a simple 

method such as the average or distribution. A Bayesian network is generated based on this imputed 

data, than the missing values are imputed again with the most likely value indicated by the Bayesian 

network using the values of all present values of variables for that subject as evidence. This method 

would not have been applicable for this data, since generating a network using the imputed values 

resulted in cycles. 

 

The results of how computation time increases with the number of variables are in accordance with 

the worst case quadratic complexity (section 2.6.4), it increases less then quadratic with the number 

of variables. Even though this is considered to be computationally feasible, the larger datasets still 

had a computation time beyond reasonable. The computation time can be partly explained by the 

high number of neighbors per node that are still available in the higher-order phases, which are in 

turn partly caused by the number of edges which are considered dependend based on too many cells 

without observations. Another possible cause of long computation times is the independence test 
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used. A lot of operations are needed to calculate all observed and expected values. Maybe using a 

different, less time consuming method to decide (in)dependence might reduce computation time 

greatly.  This method could be either a different statistic or maybe even a heuristic. 

 

The number of resulting edges in the network is too high to result in a network that is sufficiently 

elementary to be able to interpret a network based only on structure. This is partly due to the 

number of edges which are considered dependent based on too many cells without observations.  

A cause for the frequent appearance of zero-entries in the frequency cells might be found in the 

method for discretization. The boundaries of the bins for discretization are determined by using the 

difference between minimum and maximum of a variable and then create equally sized bins. This 

method is rather sensitive to extreme values, which might result in bins without any observations.  

However, this explanation cannot account for all variables, since there are plenty of variables which 

contain categorical values in the first place, or for which extreme values have already been removed 

(e.g. reaction times, see section 2.2). Another case in which this method of discretization has a 

negative effect on the number of zero-entries would be with variables with a distribution as can be 

seen in figure 2.3a.  There are alternatives such as using equally sized bins, but instead of using the 

minimum and maximum of variable as a measure to determine the boundaries of the bins, use those 

values for which a large percentage (e.g. 80%) of the values lie in between these values. Another 

option is to use the ranking of values to determine the boundaries of each bin. In this case the values 

of a variable are ordered, and bin boundaries are chosen such that each bin contains an equal 

amount of values which can be easily done by counting. Which is the most suitable way of 

discretization depends on the nature of the variable. The best method of discretization for a dataset 

is probably customized discretization for each of its variables. 
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Chapter 6 Conclusion  
 

The research question of this thesis as stated in the Introduction was as follows: 

 

“Does a Bayesian network form an inspiration for possible quantitative research and does it give a 

more general insight of the relations between the variables in the forMINDS dataset?”  

 

The answer to this question is: not up until now. It has appeared that, in the limited time for a 

bachelor thesis and with the data at hand it has not been possible to generate a valid network at all. 

And even if a valid network would have been generated, its reliability would be questionable. If one 

adds up the amount of missing data (30% of all data), leaving out 90% of the variables (132 as 

opposed to 1394), a large number of questionable edges because of statistic indecisiveness due to 

lack of observations or discretization (at least 57% of remaining edges for 132 variables) and finally 

the occurrence of hidden or selection variables resulting in ambiguous edges and cycles, a resulting 

Bayesian network would not be a reasonably reliable source to base ones inspiration for future 

research on. 

 

Even though there is no resulting network suitable for use by the researchers of the forMINDs 

project, there is still a gain for the forMINDs project. The nature and distribution of the missing 

values in the dataset have been researched. The presence of hidden or selection variables with 

regard to the 132 variables in that set are discovered. The dataset has been converted to something 

more suitable to be in a program.  An overview of the most significant dependences is constructed. 

And last but not least, researchers of a field other than Artificial Intelligence have gained knowledge 

of the possible use of this type of techniques. 
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Chapter 7 Future research 
 

For this specific dataset it is still possible to improve performance of the Bayesian network technique. 

A number of such options for possible improvement are: 

 

 Using a different imputation technique. For instance the technique using a Bayesian Network 

such as mentiond in section 5, or use a customary technique per variable depending on the 

specifications of that variable. 

 Using a different method for discretization. Again there might be a lot to gain if the method 

for discretization is chosen per variable, depending on the specifications of that specific 

variable. This might reduce problems with the occurrence of zero-entries.  

 Making the statistical testing more efficient somehow might reduce computation time. On 

itself this does not gain improvement in performance quality wise, however it might be 

possible to include more variables. With more included variables the resulting structure 

might not contain cycles since the hidden variables could be included.  

 Using a different method for structure generation. Maybe the used technique is not the most 

suitable for this dataset and a different technique will yield better results if applied.  
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Appendix A 
 

There are 25 categories of variables, which will each be discussed below. The variables resulting from 

the questionnaires are item scores and sum scores. The variables resulting from the different tasks 

are reaction times and variables related to the number of errors made by the subject. It has been 

mentioned in the introduction that the tasks cover five cognitive fields; emotional processing, 

learning, impulsivity and attention, moral and social behavior and implicit cognition. For each task 

the corresponding cognitive field will be mentioned below. All information about tasks and 

questionnaires comes from (Borries & Verkes). The abbreviations that are mentioned are the 

abbreviations referred to in the variable names. 

 

A.1 Anamnesis and risk 

 

Anamnesis (ANAM) 

This category contains a few types of variables. The first type is personal information such as age, 

native country and education level. The second type of variables regard the diagnosis of disorders 

and symptoms. The next type of variables contains offence related information. Finally there are 

variables indicating substance abuse by the subject. 

 

Risk (RISK) 

The variables in this category are related to the risk analysis. These risks include for example how 

likely it is that a patient will have incidents or risks related to relapse.   

 

A.2 Tasks 

 

Affective Go/No go Task (AFFGO) 

Information processing biases for positive and negative stimuli are assessed in this task. Positive, 

negative and neutral words are used to represent the different categories of stimuli. The participant 

is given a target category and has to press a button when a word from this category is presented. In 

(Walter, Cooper, McCallum, & Winter, 1964) and (Howard & Lumsden, 1996) the forensic relevance 

of this task is shown. 

 

 

Continuous Performance Task (CPT) 

The participant has to spot a specific combination of letters, ‘AX’ in this case, in a sequence of letters 

that is presented. This task measures sustained attention and concentration. The results of this task 

have been shown to be relevant to forensic psychiatry by (Harmon-Jones, Barratt, & Wigg, 1977) and 

(Raine, Buchsbaum, & LaCasse, 1997).  

 

Graded Facial Emotion Recognition task (GERT) 

A series  of pictures of faces is shown representing the six basic emotions (happiness, fear, surprise, 

disgust, anger and sadness). In order to find more subtle differences in the ability to recognize facial 

emotion different intensities of each emotion are shown. The participant has to indicate which 

emotion they see as quick as possible. Facial Emotion recognition deficits have been found in 
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multiple syndroms relevant to forensic psychiatry; (Marsh & Blair, 2008) and (Lynch, Rosenthal, 

Kosson, Cheavens, Lejuez, & Blair, 2006). 

 

Emotional Stroop Task (EMOS) 

Words with an emotional load and neutral words are presented in color. The participants have to 

indicate the color of the words. When the emotional theme is relevant to the participant and 

captures attention an interaction effect is expected in reaction time between color and the load of 

the word. This task measures attentional bias with resprec to a certain emotional theme or problem. 

Relevance to forensic psychiatry is shown in (Smith & Waterman, 2003) and (Smith & Waterman, 

2004). 

 

Faces Task (FACES) 

During the task a number of drawings of faces are very shortly shown at the same time in each trial. 

Each face has a emotion; neutral, happy or angry. In one trial either all faces have the same emotion, 

or the emotion of one face deviates. The participant has to respond whether or not there was a 

deviating face in the trial. This task measures perceptual sensitivity and response bias, especially for 

the distinction in perception of angry and happy faces. 

 

Prisoners Dilemma Game (PDG) 

The participant is has to play multiple rounds of the Prisoners Dilemma Game as described in 

(Axelrod, 1984) against a computer using different strategies in different conditions. Because of the 

repetition punishment plays a role in this task. Balanced cooperation becomes the most benefitting 

strategy. Deficits in cooperations have been found in (Rilling, Glenn, Jairam, Goldsmith, Elfenbein, & 

Lilienfels, 2007) and (Rada, Taracena, & Rodriguez, 2003). 

  

Perceptual Defence Task (PDT) 

During this task pairs of pictures are shown shortly to the participant while they are looking at a 

central point on the screen. Each pair consists of a stressful picture and a  neutral picture. The 

participant has to pick the most eye catching or the most threatening picture depending on the 

condition. 

 

Stroop color word test (SCWT) 

The classical stroop test consists of three tasks; indentification of colornames, identification of the 

color of the word and indentification of the physical color instead of the semantic color names. This 

test measures the capability to keep the attention on the color of the word itself instead of the 

semantic meaning of the colored word. The relevance of the test can be found in (Pham, 

Vanderstukken, Philippot, & Vanderlinden, 2003), (Hiatt & Newman, 2008) and (Enticott, Ogloff, 

Bradshaw, & Fitzgerald, 2008). 

 

Signal Detection Task (SDT) 

During each trial an array of stimuli is presented shortly and the subject has to decide as fast as 

possible whether there is an odd stimuli present. The task assesses aspects of basic decision making 

and can inform about perceptual sensitivities underlying higher order decision making processes. 
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Social value test (SWT) 

The subject divides hypothetical money between a fictive other and oneself. The outcome indicates 

the extend to which one is lead by individualism or cooperation. 

 

Trail making task TMT 

During this task the subject has to connect numbers, letters or both in numerical/alphabetical order. 

This measures cognitive flexibility, i.e. the ability to shift concepts. The relevance is shown in 

(Mortimer, JJoyce, Balasubramaniam, Choudhary, & Saleem, 2007) and (Smith, Arnett, & Newman, 

1992).  

 

Moral Judgement Sorting Task (MJST) 

During this task the participant is presented with a moral dilemma. Next the participant is presented 

with nine different statements which he or she has to order with regard to how sensible they are. 

There are three such dilemmas. Relevance of this task is shown in (Blair R. , 2007) and (Ashkar & 

Kenny, 2007). 

 

Intradimensional/extradimensional set shifting task (IDED) 

During this task the subject is confronted with a rule in each block that has to be learned through 

trial and error. Stimuli can be simple (one dimension, e.g. color) or complex  (multiple dimensions). 

The shift of learning rule are initially intra-dimensional (e.g. color remains the relevant dimension), 

then later extra-dimensional (the relevant dimension changes). This task indexes response reversal 

performance. Relevance is shown in (Jazbec, Pantelis, Robbins, Weickert, Weinberger, & Goldberg, 

2007) and (Blair R. , 2001). 

 

Casino (CASINO) 

During this task the participant needs to predict whether or not the player of a card game will win or 

lose. The strategy of the dealer is deducible but is reversed once the participant has learned the 

previous strategy. This task researches stimulus outcome learning, as opposed to most learning tasks 

which focus on stimulus-response learning. This task measures inhibition of an prepotent response 

(impulsivity). 

 

Stop Signal Task (STOP) 

During this task the subject needs to respond to the direction of the arrow stimuli presented on a 

screen. If direction of the arrow determines the desired response. However, if around the moment 

the stimulus is presented a sound is heard, no response should be given to the stimulus.     

 

A.3 Questionnaires 

 

Psychopathic personality inventory (PPI) 

This is a self report assessment of psychopathy. 

 

Behavioral inhibition system/ behavioral activation system scale (BB) 

It is argued that two general motivational systems underlie behavior. One system is believed to 

regulate appetitive motives; behavioral activation system. The goal of this system is to move to 

something desired. The other system regulates aversive motives; behavioral inhibition system. This 
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system regulates the avoidance of something unpleasant. This scale assesses individual differences in 

the sensitivity of these systems. 

 

Interpersonal Reactivity Inventory (IRI) 

This questionnaire is used to measure empathy. It measures both cognitive and emotional empathy. 

 

Kirby questionnaire (Kirby) 

This questionnaire measures the preference for either smaller immediate rewards or a larger delayed 

reward. 

 

Sensitivity to punishment and sensitivity to reward questionnaire (SPSRQ) 

This questionnaire measures the subjects sensitivity to punishment and the sensitivity to reward. 

 

State trait anger expression inventory (ZAV) 

This questionnaire is designed to measure anger in a self–report questionnaire. It measures both 

state anger, the emotional state of anger, and trait anger, which is anger as a stable personality 

quality. 

 

State trait anxiety inventory (ZBV) 

This questionnaire is designed to measure anxiety in a self–report questionnaire. It measures both 

state anxiety, the emotional state of anxiety, and trait anxiety, which is anxiety as a stable personality 

quality. 

 

Social Dysfunction and Aggression Scale (SDAS) 

An observer scale for measuring aggressive cognitions and behavior. It consists of nine items: 

irritability, dysphoric mood, social disturbances, non-directed verbal aggressiveness, negativism, 

directed verbal aggressiveness, physical violence towards staff, physical violence towards things and 

physical violence towards persons other than staff.  
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Appendix B 
 

This appendix contains an overview of which variables are included in the datasets of 30 variables 

(table 1) and 132 variables (table 2). 

 

   Table 1. Variables included in the variable set of 30 variables. The original index refers to the variable  

index in the original dataset of 1384 variables and the current index to the variable index in this set. 

 

Original 
index 

Current 
index Variable Name 

1 1 ANAM_Groep 

30 2 ANAM_DSM_huidig_AS1_groep1 

31 3 ANAM_DSM_huidig_AS1_groep2 

32 4 ANAM_DSM_huidig_AS1_groep3 

33 5 ANAM_DSM_huidig_AS1_groep4 

34 6 ANAM_DSM_huidig_AS1_groep5 

35 7 ANAM_DSM_huidig_AS1_groep6 

36 8 ANAM_DSM_huidig_AS2_groep1 

37 9 ANAM_DSM_huidig_AS2_groep2 

38 10 ANAM_DSM_huidig_AS2_groep3 

39 11 ANAM_DSM_huidig_AS2_groep4 

40 12 ANAM_Huidig_NAO_trekken_clusterA 

41 13 ANAM_Huidig_NAO_trekken_clusterB 

42 14 ANAM_Huidig_NAO_trekken_clusterC 

43 15 ANAM_Huidig_NAO_trekken_overig 

44 16 ANAM_Huidig_Group_clusterB1 

45 17 ANAM_Huidig_Group_clusterB2 

46 18 ANAM_Huidig_Group_clusterB3 

49 19 ANAM_PCL_totaal 

59 20 ANAM_Groep_indexdelict 

74 21 ANAM_Geweldcomponent 

75 22 ANAM_Seksuele_component 

76 23 ANAM_Vermogenscomponent 

78 24 ANAM_Group_eerdere_delicten 

160 25 PPI_total 

161 26 PPI_F1_benning2003 

162 27 PPI_F2_benning2003 

243 28 AFFGO_PERC_number_RT_falsenegative 

244 29 AFFGO_PERC_number_RT_falsepositive 

249 30 AFFGO_PERC_number_RT_NegPos_falsenegative 
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    Table 2. Variables included in the variable set of 132 variables.The original index refers to the variable  

    index in the original dataset of 1384 variables and the current index to the variable index in this set. 

Original 
index 

Current 
index Variable name 

1 1 ANAM_Groep 

30 2 ANAM_DSM_huidig_AS1_groep1 

31 3 ANAM_DSM_huidig_AS1_groep2 

32 4 ANAM_DSM_huidig_AS1_groep3 

33 5 ANAM_DSM_huidig_AS1_groep4 

34 6 ANAM_DSM_huidig_AS1_groep5 

35 7 ANAM_DSM_huidig_AS1_groep6 

36 8 ANAM_DSM_huidig_AS2_groep1 

37 9 ANAM_DSM_huidig_AS2_groep2 

38 10 ANAM_DSM_huidig_AS2_groep3 

39 11 ANAM_DSM_huidig_AS2_groep4 

40 12 ANAM_Huidig_NAO_trekken_clusterA 

41 13 ANAM_Huidig_NAO_trekken_clusterB 

42 14 ANAM_Huidig_NAO_trekken_clusterC 

43 15 ANAM_Huidig_NAO_trekken_overig 

44 16 ANAM_Huidig_Group_clusterB1 

45 17 ANAM_Huidig_Group_clusterB2 

46 18 ANAM_Huidig_Group_clusterB3 

49 19 ANAM_PCL_totaal 

59 20 ANAM_Groep_indexdelict 

74 21 ANAM_Geweldcomponent 

75 22 ANAM_Seksuele_component 

76 23 ANAM_Vermogenscomponent 

78 24 ANAM_Group_eerdere_delicten 

160 25 PPI_total 

161 26 PPI_F1_benning2003 

162 27 PPI_F2_benning2003 

243 28 AFFGO_PERC_number_RT_falsenegative 

244 29 AFFGO_PERC_number_RT_falsepositive 

249 30 AFFGO_PERC_number_RT_NegPos_falsenegative 

250 31 AFFGO_PERC_number_RT_NegPos_falsepositive 

255 32 AFFGO_PERC_number_RT_NeuPos_falsenegative 

256 33 AFFGO_PERC_number_RT_NeuPos_falsepositive 

261 34 AFFGO_PERC_number_RT_PosNeg_falsenegative 

262 35 AFFGO_PERC_number_RT_PosNeg_falsepositive 

267 36 AFFGO_PERC_number_RT_PosNeu_falsenegative 

268 37 AFFGO_PERC_number_RT_PosNeu_falsepositive 

273 38 AFFGO_PERC_number_RT_NeuNeg_falsenegative 

274 39 AFFGO_PERC_number_RT_NeuNeg_falsepositive 

279 40 AFFGO_PERC_number_RT_NegNeu_falsenegative 
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Original 
index 

Current 
index Variable name 

280 41 AFFGO_PERC_number_RT_NegNeu_falsepositive 

284 42 BB_BIS 

288 43 BB_BAS 

290 44 CPT_gemiddelde_RT_totaal 

294 45 CPT_PERC_number_GO_incorrect 

375 46 FACES_hit_rate_totaal 

376 47 FACES_false_alarm_rate_totaal 

377 48 FACES_dprime_totaal 

378 49 FACES_beta_ratio_totaal 

380 50 FACES_false_alarm_rate_BlijNeu 

384 51 FACES_false_alarm_rate_BoosNeu 

388 52 FACES_false_alarm_rate_NeuBoos 

392 53 FACES_false_alarm_rate_NeuBlij 

405 54 EMOS_agressie_2bl_gemiddelde_RT_totaal 

410 55 EMOS_agressie_2bl_PERC_number_incorrect 

414 56 EMOS_agressie_2bl_STROOPeffect_correct 

415 57 EMOS_agressie_2bl_STROOPeffect 

451 58 EMOS_angst_2bl_gemiddelde_RT_totaal 

456 59 EMOS_angst_2bl_PERC_number_incorrect 

460 60 EMOS_angst_2bl_STROOPeffect_correct 

461 61 EMOS_angst_2bl_STROOPeffect 

487 62 GERT_RT_totaal 

507 63 GERT_perc_incorrect_angstig70 

527 64 GERT_perc_incorrect_bedroefd70 

547 65 GERT_perc_incorrect_boos70 

562 66 GERT_perc_incorrect_i70 

607 67 GERT_perc_incorrect_neutraal 

627 68 GERT_perc_incorrect_verrast70 

647 69 GERT_perc_incorrect_vrolijk70 

707 70 GERT_perc_incorrect_walging70 

708 71 IRI_Total_Fantasy 

709 72 IRI_Total_Perspective_taking 

710 73 IRI_Total_Empathic_concern 

711 74 IRI_Total_Personal_distress 

712 75 IRI_Total 

713 76 Kirby_maximum_k_LARGE 

714 77 Kirby_maximum_k_MEDIUM 

715 78 Kirby_maximum_k_SMALL 

724 79 PDG_Cooperatiepunten 

725 80 PDG_Competitiepunten 
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Original 
index 

Current 
index Variable name 

726 81 PDT_RT_stress 

727 82 PDT_RT_neutraal 

728 83 PDT_RT_totaal 

729 84 PDT_PD 

730 85 PDT_RL 

733 86 SCWT_RT_totaal_gemiddeld 

746 87 SCWT_PERC_number_incorrect 

753 88 SCWT_STROOP_effect 

755 89 SDT_RT_totaal_gemiddeld 

780 90 SDT_PERC_number_false_alarm 

781 91 SDT_PERC_number_miss 

794 92 SDT_hit_rate_totaal 

795 93 SDT_false_alarm_rate_totaal 

796 94 SDT_dprime_totaal 

797 95 SDT_beta_ratio_totaal 

806 96 SPSRQ_Total_punishment 

807 97 SPSRQ_Total_reward 

829 98 STOP_RT_total 

832 99 STOP_PERC_number_Blok14_RT_falsenegative 

833 100 STOP_PERC_number_Blok14_RT_falsepositive 

838 101 STOP_PERC_number_Blok23_RT_falsenegative 

839 102 STOP_PERC_number_Blok23_RT_falsepositive 

854 103 SWT_winstZelf 

855 104 SWT_winstAnder 

856 105 SWT_gemiddelde_RT 

860 106 TMT_totaal_aantal_fouten 

874 107 TMT_Inferentiescore_correct_gemiddeld 

875 108 TMT_Inferentiescore_incorrect_gemiddeld 

876 109 ZAV_total_state 

877 110 ZAV_total_trait 

878 111 ZBV_total_state 

879 112 ZBV_total_trait 

909 113 MJST_MEAN_RT 

913 114 MJST_MEAN_CORR_D123 

918 115 IDED_RT_SD_totaal_zonder_eerste 

932 116 IDED_aantal_SD_incorrect_tot_correct 

952 117 IDED_aantal_SR_incorrect_tot_correct 

972 118 IDED_aantal_CD_incorrect_tot_correct 

992 119 IDED_aantal_CDS_incorrect_tot_correct 

1011 120 IDED_aantal_CR_incorrect_tot_correct 
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Original 
index 

Current 
index Variable name 

1031 121 IDED_aantal_IDS_incorrect_tot_correct 

1051 122 IDED_aantal_IDR_incorrect_tot_correct 

1073 123 IDED_aantal_EDS_incorrect_tot_correct 

1094 124 IDED_aantal_EDR_incorrect_tot_correct 

1151 125 CASINO_RT_totaal__totaal 

1154 126 CASINO_RT_reward__totaal 

1157 127 CASINO_RT_punishment__totaal 

1270 128 CASINO_PERC_number_totaal__incorrect 

1272 129 CASINO_PERC_number_reward__incorrect 

1281 130 CASINO_PERC_number_nsp__incorrect 

1289 131 CASINO_PERC_number_SWI__incorrect 

1298 132 CASINO_PERC_number_REV__incorrect 
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Appendix C 
 

This appendix contains the pseudocode for imputation and discretization for clarity of the exact 

procedure. For the conditional independence test the actual MATLAB code is provided. 

 

C.1 Discretization 

 

      is the dataset with   the collection of numerical variables and   the collection of subjects, such 

that     is the value of variable    and subject   .  

[         ] is the new dataset with    
    as the new discrete value of variable    and subject   .  

 

  is the number of bins. 

  is the set of     boundaries where    is the lower boundary of bin  , and      the upper 

boundary. 

  is the set of categorical values with a value for each bin, where    corresponds to the     bin. 

 

For each      

   Determine minimum,      , and maximum,      , of    

              =            

                          

      =    

   For each                 

         =                     

   End 

        =   

   For each            

      Determine for which bin               and fill    
    with    

   End 

end  
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C.2 Imputation 

 

      is the dataset with   the collection of numerical variables and   the collection of subjects, such 

that     is the value of variable    and subject   .  

   is the number of subjects. 

 

  is the number of bins 

  is the set of     boundaries where    is the lower boundary of bin  , and      the upper 

boundary. 

  is the set of values with a value for each bin, where    corresponds to the     bin. 

 

  is the set of frequencies with the frequency of each bin, where    corresponds to the     bin. 

  is the distribution for the bins of the variable and    is the cumulative probability of value   . 

 

For each      

   Determine   as described in Discretization 

   For each     C 

         is the average of    and     , except for    and    which are respectively    

                         and                 

   End 

   For each            

      Determine for which bin               and raise    by one 

   End 

      =   

   For each                 

         =       +    /    

   End 

        =   

   For each            which is missing 

      Draw a random probability   between 0 and 1 

      Determine for which bin  ,              and insert   in     

   End 

end  

 

This is the implementation for numerical variables. For categorical variables the imputation is done 

the same way except for the fact that it is not necessary to discretise and use the average value of 

each bin for the distribution, instead the distribution for the original categorical values is determined 

and used. 
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C.3 Conditional independence test 

 
function [ independent ] = ConditionalIndependenceTest 

( x, y, Z, alpha, data ) 
% x & y are variables you wish to test for independence 
% Z conditional variables 

% Data contains the data with subjects in rows and variables in columns 
% Returns boolean for conditional independence 

  
independent = false; 
varx = data(:,x); 
vary = data(:,y); 
varZ = data(:,Z); 
total = [varx,vary,varZ]; 

  
%Maximum of variable is the number of values for  
%that variable (forced when discretized) 
maximaX = max(varx); 
maximaY = max(vary); 
maximaZ = max(varZ); 
%initialize tables for observed and expected values 
observed = zeros([maximaX, maximaY, maximaZ]); 
expected = zeros([maximaX, maximaY, maximaZ]); 

  
%Fill table with observed value frequencies 
for sub = 1:size(total,1) 
    observed(calcLinearIndex(size(observed),total(sub,:))) = 

observed(calcLinearIndex(size(observed),total(sub,:)))+1; 
end 

  
%Fill table with expected frequenties 
nrCells = numel(observed); 
nrEmptyEntries = 0; 
%For each cell 
for linIndex = 1:nrCells 
    %If the cell has a zero entry 
    if observed(linIndex) == 0 
        nrEmptyEntries = nrEmptyEntries+1; 
    end 
    %Calculate rowtotal, column total and table total 
    subscripts = calcSubscripts(size(observed), linIndex);   
    rowTotal = calcTableTotal(observed, linIndex, subscripts, 1, maximaX); 
    columnTotal = calcTableTotal(observed, linIndex, subscripts, 2, 

maximaY); 
    generalTotal = calcTableTotal(observed, linIndex, subscripts, 3, 

[maximaX,maximaY]); 
    %Calculate expected value 
    expected(calcLinearIndex(size(expected), subscripts)) = 

(rowTotal*columnTotal)/generalTotal;    
end 

  
%Calculate G2 value 
G2mid = 0; 
%For each cell 
for linIndex = 1:nrCells 
    %If the cell is not a zero entry 
    if observed(linIndex)~=0 
        %Add G2 value for cell to total 
        G2mid = G2mid + observed(linIndex) * 

log(observed(linIndex)/expected(linIndex)); 
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    end 
end 
G2 = G2mid*2; 
%Calculate degrees of freedom 
df = calcDegreesFreedom(maximaX,maximaY,maximaZ, nrEmptyEntries); 
%If the degrees of freedom <= 0 
if df <= 0  
    %X and Y are dependent 
    independent = false; 
else 
    %calculate p-value with function from BNT 
    %This function returns P(<=G2|df) 
    p = chisquared_prob(G2, df); 
    %If P(>G2|df) > alpha 
    if (1-p)>alpha 
        %X and Y are independent 
        independent = true;       
    end    
end 

  

 
function [ df ] = calcDegreesFreedom 

(nrValuesX,nrValuesY,nrValuesZ,nrEmptyEntries ) 
%Function calculates the degrees of freedom based on the number of 
%values for X, Y and conditional variables and the number of empty entries 

if size(nrValuesZ,2)~=0 
    df = (nrValuesX - 1) * (nrValuesY-1) * prod(nrValuesZ) - 

nrEmptyEntries; 
else  
    df = (nrValuesX - 1) * (nrValuesY-1) - nrEmptyEntries; 

  
end 

 

 


