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Abstract

Humans are able to reflect on the quality of their own decisions. With
each of our decisions, we associate a certain degree of confidence. More-
over, recent work suggests that human observers use internal estimates
of sensory uncertainty when making decisions. This raises the question
whether confidence is a readout of such estimates, and if so, how and where
confidence is computed from uncertainty. Earlier research has suggested
a variety of brain areas potentially involved in the computation of confi-
dence. However, in those studies, stimulus properties were modulated to
induce variability in confidence, thereby providing subjects with cues re-
garding stimulus difficulty and thus expected performance. Here, subjects
performed a visual decision task in which stimulus properties were held
constant across trials, such that confidence reports could only be based on
internal measures. Our data show that even without variability in stim-
ulus difficulty, humans are able to reflect on their own performance, sug-
gesting that confidence is at least partially based on internal estimates of
sensory uncertainty. We used fMRI to identify brain regions encoding con-
fidence during this task, and mainly found confidence-related activation in
the striatum, particularly in the head of the caudate nucleus and the nu-
cleus accumbens. Our results suggest that this region plays a key role in
the computation of confidence from internal estimates of uncertainty. This
work provides leads for future research on the neural mechanisms under-
lying the computation of decision confidence and the role of uncertainty in
neural computations in general.
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1 Introduction

1.1 Sensory uncertainty

Every day, we are forced to make many — smaller or larger — decisions.
Think, for example, of when you are riding a bike and the traffic light you
are approaching switches from green to orange. Now you need to decide
whether or not to brake. There will be several factors influencing this de-
cision, such as prior knowledge (i.e. knowledge of traffic rules, previous
experiences), your current goals (i.e. being in a hurry or not), but also per-
ceptual information about the current state of your environment, such as
your distance to the traffic light and to other traffic. Information about our
surroundings is generally indirect. Based on sensory input, the brain con-
structs an internal model of the external world. This reconstruction is not
always equally accurate. In the traffic light example, the accuracy of esti-
mating the distance to the intersection might depend on light and weather
conditions, but also on your general arousal stater. On top of that, neuronal
signal processing by itself is noisy, meaning that some random variability is
always introduced into the signal. Hence, all perceptual decisions are sub-
ject to uncertainty due to external (stimulus-related, i.e. luminance) as well
as internal (neuronal) noise.

How we make decisions given this inherent ambiguity of sensory sig-
nals and neuronal computations, is one of the most fundamental, yet unan-
swered, questions in (computational) neuroscience. Much of the recent
work in this field has its foundations in Bayesian probability theory. Bayesian
inference refers to a process in which the most likely state of the world is
inferred from various sources of knowledge and the degree of uncertainty
in that knowledge (Vilares & Kording, 2011; Knill & Pouget, 2004; Vilares
& Kording, 2011; Pouget, Beck, Ma, & Latham, 2013). Taking into account
the degree of uncertainty associated with individual pieces of information
is the common feature across Bayesian theories. The following example il-
lustrates why it is worthwhile taking into account this uncertainty: again,
you are riding your bike and approaching a traffic light. Now, assume that
the traffic light has already turned red, but you are in a rush, since you are
running late for an important meeting. However, skipping the light could
get you involved in a traffic accident. Thus, you have to estimate the most
probable outcome given that you stop or do not stop for the traffic light.
To estimate the risk of an accident, you might rely on different sources of
information, such as visual information (do I see any cars coming?), audi-
tory information (do I hear any cars coming?), and prior knowledge (do I
know this intersection to be a busy one?). Normally, we will rely more on
the up-to-date empirical information than on prior knowledge, and visual
information tends to be more accurate than auditory information when it
comes to localizing objects, as human vision is more spatially accurate than
human hearing. Thus, assuming you have a good view on the intersec-
tion, then even if you know the road you are about to cross can be busy,
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and you hear the sound of engines, as long as you do not see any traf-
fic nearby, you will probably decide to cross. However, if it happens to
be foggy or dark, or there are some trees obstructing your view of the in-
tersection, then visual input becomes less informative and thus auditory
information and prior knowledge are relatively more reliable. Given the
same prior knowledge and auditory input, you might now decide to stop.
Hence, when combining different pieces of information in order to make a
decision, it is useful to take into account the amount of uncertainty associ-
ated with each piece of information and to weigh them accordingly. This is
exactly what Bayesian theories argue for. In mathematical terms, Bayesian
theories represent knowledge and information as probability distributions,
where the mean represents the estimated value of the variable of interest,
and the width of the distribution is taken as a metric on uncertainty. Us-
ing these probability distributions, Bayesian theories provide a description
of how to optimally make decisions. When talking about a Bayesian ob-
server, we think of an ideal observer, who takes into account all available
information as efficiently as possible.

Human behavior often resembles Bayes optimal behavior, as has been
shown in various studies on, for example, cue combination (e.g. Ernst and
Banks, 2002 and sensorimotor learning (e.g. Kording and Wolpert, 2004).
Thus, the brain appears to perform Bayesian inference and take into ac-
count uncertainty at intermediate steps in processes leading to perceptual
decision-making and/or motor actions. How exactly probability distribu-
tions are represented at the neural level, remains an open question, but the
prevalent idea is that sensory uncertainty can be read out from population
activity patterns (Ma, Beck, Latham, & Pouget, 2006; Pouget et al., 2013).
Neurophysiological data supporting the idea that uncertainty is encoded
in the activity of neuronal populations have been presented for lateral in-
traparietal cortex (Beck et al., 2008), dorsal medial superior temporal cortex
(Fetsch, Pouget, DeAngelis, & Angelaki, 2012), and primary visual cortex
(Orbén, Berkes, Fiser, & Lengyel, 2016). Our lab has recently developed
a novel method to decode probability distributions from the early visual
cortex in humans, using fMRI (van Bergen, Ma, Pratte, & Jehee, 2015). De-
coded uncertainty and behavioral errors were found to be correlated on a
single-trial basis, which suggests that it is possible to extract information
about uncertainty in sensory representations from BOLD activity using this
method. Moreover, a comparison between decoded uncertainty and be-
havioral data implies that subjects adapt their behavior as a consequence
of the degree of (decoded) uncertainty in their internal sensory representa-
tions. Important to note is that stimulus properties were held constant, i.e.
no noise was added to the stimuli themselves, such as by image blurring
or contrast modulation. Any variation in stimulus uncertainty as well as
behavioral performance may thus be attributed to internal noise (also see
section 1.4). Thus, it appears that both humans and animals make use of
estimates of uncertainty in decision-making, and this information may be
encoded in the activity patterns of neuronal populations.
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1.2 Uncertainty and subjective confidence

If the brain indeed accounts for estimated uncertainty in its computations,
and sensory uncertainty affects our behavior, then that raises the question
whether we have conscious access to measures of uncertainty. Generally,
we are able to reflect on the quality or reliability of our own decisions,
and associate a certain degree of confidence with each decision we make
(Grimaldi, Lau, & Basso, 2015). Before continuing, it is important to point
out some differences between confidence and (un)certainty. First of all, con-
fidence only exists in the context of a decision, whereas uncertainty is a
property of any probability distribution, irrespective of whether a decision
is made (Pouget, Drugowitsch, & Kepecs, 2016). Thus, uncertainty exists at
all intermediate stages of probabilistic inference whereas confidence only
refers to the probability of correctness of the final choice. Secondly, un-
certainty is a property of a distribution and multiple uncertainties may be
relevant simultaneously (i.e. for multiple sensory domains or sources of
information), whereas confidence is merely a single scalar value associated
with the current choice (Pouget et al., 2016). This type of confidence has
therefore also been referred to as summary confidence as opposed to distri-
butional confidence (uncertainty) (Meyniel, Sigman, & Mainen, 2015). Here,
we also refer to it as subjective confidence, to emphasize the distinction be-
tween the actual uncertainty or noise affecting our decisions from our sub-
jective experience of confidence. The question remains how, where, and
when confidence is read out, and how exactly it relates to uncertainty, both
behaviorally and neurally.

1.3 Functional anatomy of confidence

A wide network of brain structures has been associated with decision-making.
Some of these structures are only involved in decisions involving certain
sensory modalities or motor components, while others play more a more
general role (Gold & Shadlen, 2007). Given that Bayesian brain theories
suppose that uncertainty should be taken into account at every computa-
tional step in the decision process, we would expect uncertainty to be rep-
resented in all of these structures. However, that still leaves the question
where and how the degree of confidence about the final decision is com-
puted.

Brain areas typically associated with perceptual confidence are mostly
located in the prefrontal cortex (PFC). In one of the first studies focusing
explicitly on decision confidence, rats were trained on an odor mixture cat-
egorization task (Kepecs, Uchida, Zariwala, & Mainen, 2008). Firing rates
of neurons in the orbitofrontal cortex (OFC) were found to correlate with
stimulus uncertainty, and given the same amount of uncertainty, their aver-
age firing rates were higher on correct trials than on incorrect ones. More-
over, the rat’s willingness to wait for a delayed reward was reverse cor-
related with stimulus uncertainty, indicating that with lower uncertainty,
decision confidence increased. Also, pharmacological inactivation of OFC
has been found to impair willingness to wait (decision confidence), but not
choice accuracy (Lak et al., 2014). Altogether, these observations suggest
that in rats, OFC activity represents a measure of confidence. In humans,
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PFC has also been associated with uncertainty and confidence in decision-
making (De Martino, Fleming, Garrett, & Dolan, 2013). In a value-based
decision-making task, subjects were asked to choose between food items
to consume later, and to report confidence for each decision. Both ventro-
medial and rostrolateral PFC showed confidence-related activity, and the
authors conclude that ventromedial PFC appears to be responsible for the
qualitative evaluation of decisions, feeding into rostrolateral PFC, which
reads out confidence from this activity. This fits well with the rat studies,
since in humans, ventromedial PFC includes the OFC, and moreover hu-
man ventromedial PFC has been suggested as the functional analogue to
rat OFC. This is not the only study suggesting a role for the PFC in confi-
dence evaluation. Individual differences in metacognitive ability —i.e. the
correspondence between objective accuracy and subjective confidence on a
simple task — were found to correlate with gray matter density and white
matter microstructure in anterior PFC (Fleming, Weil, Nagy, Dolan, & Rees,
2010). Moreover, patients with lesions in anterior PFC, when compared to
healthy controls, showed impaired metacognitive ability on a visual task,
but normal objective accuracy (Fleming, Ryu, Golfinos, & Blackmon, 2014).
Thus, in humans as well as animals, several areas within the PFC have been
functionally associated with metacognitive evaluation and confidence.

However, prefrontal cortex is not the only area that has been suggested
to encode confidence. Using electrophysiological techniques in monkeys,
confidence-related activity has been shown in several other areas. For ex-
ample, lateral intraparietal cortex (LIP) has been associated with confidence
in a visual decision task (Kiani & Shadlen, 2009). In this task, monkeys
made decisions about the motion direction of moving dot stimuli and were
rewarded for correct decisions. Confidence was measured behaviorally by
offering an ‘opt-out’ option on some trials: the animal was then offered to
either make a motion direction decision, or to receive a smaller but certain
reward. Opting out was interpreted as a sign of low decision confidence.
LIP spiking activity correlated with both the direction of decision and con-
fidence. In a very similar task, neurons in the pulvinar nucleus of the tha-
lamus also responded to confidence, but not to the decision direction (Ko-
mura, Nikkuni, Hirashima, Uetake, & Miyamoto, 2013). Accordingly, phar-
macological inactivation of the pulvinar affected confidence judgments but
not decision accuracy. Another area that has been found to encode confi-
dence in its spiking activity is the supplementary eye field (Middlebrooks
& Sommer, 2012). In this case, confidence was measured by having the an-
imals bet on the correctness of each decision. Potential neural correlates of
confidence are thus not restricted to the PFC.

Note, however, that all of these studies modulate stimulus difficulty in
order to trigger variation in confidence. This introduces possible confounds
which I will elaborate on in the next section. Only recently, a study has been
published in which cortical representations of confidence have been inves-
tigated while maintaining constant stimulus difficulty across trials (Hebart,
Schriever, Donner, & Haynes, 2016). BOLD correlates of subjective confi-
dence in a dot motion decision task were observed in the ventral striatum
around the nucleus accumbens, an area classically associated with reward-
related processing. The authors speculate that this activity might be related
to the rewarding feelings we experience when we are being confident, but
this relationship requires further investigation. From the above review of
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previous work on confidence and its neural representation, we may con-
clude that a wide variety of areas appears to play some role in the compu-
tation of perceptual confidence. The prefrontal cortex and OFC in particu-
lar, have perhaps received most attention in this respect, but correlates of
confidence have been seen in areas such LIP, supplementary eye field, the
pulvinar, and the striatum, as well.

1.4 Challenges in confidence research

Despite a substantial amount of work having been done, as of yet, there is
no real consensus with respect to where in the brain or how decision con-
fidence is read out. A significant limitation of most of the earlier work, as
mentioned before, is that stimulus difficulty was usually varied across tri-
als in order to trigger variability in uncertainty and confidence. Although
it is obvious that we need across-trial variation in subjective confidence in
order to be able to investigate its neural representation, varying stimulus
difficulty introduces behavioral confounds. Namely, if one or more phys-
ical properties of the stimulus — such as contrast, blur, motion direction
coherence, or stimulus duration — are modulated, then subjects might use
this as an external cue for the reliability of the sensory information and
thus as an indicator of their performance. In other words, perhaps sub-
jects simply learn that high levels of blur typically result in poor behavioral
performance, and will therefore report lower confidence for more blurred
stimuli. In this scenario, they need not have an explicit representation of
perceptual uncertainty — after all, it was the blur that led them to change
their decisions. Confidence estimation then reduces to monitoring of ex-
ternal cues, rather than reading out internal uncertainty (Barthelmé & Ma-
massian, 2010). A paradigm where stimulus difficulty is varied, is thus
not suitable if we want to dissociate between the representation of the es-
timated reliability of the perceptual information (internal uncertainty), and
the representation of stimulus properties that subjects associate with their
performance on the task (external uncertainty). Therefore, in order to in-
vestigate the former, stimulus properties ought to remain constant across
trials.

Another issue with many confidence studies is that in most designs —
including the work by Hebart et al. (2016) — confidence judgments are only
made after the decision itself. Intuitively, this might seem to be the most
straight-forward procedure: making a decision and then reflecting upon it.
However, if we are interested in the perceptual confidence associated with
the actual choice , this approach is somewhat problematic. The reason is
that evidence accumulation seems to continue post-decisionally (Pleskac
& Busemeyer, 2010), confidence keeps changing over time (Yu, Pleskac,
& Zeigenfuse, 2015), and error-monitoring processes may affect postdeci-
sional confidence assessment (Yeung & Summerfield, 2012) and even de-
pend at least partially on the same neural mechanisms (Boldt & Yeung,
2015). Although the the postdecisional development of confidence and the
relationship between confidence and error monitoring are interesting topics
of research, when we are interested in studying the perceptual confidence
at the time of decison-making, we do not want such processes to interfere
with our behavioral measures. Hence, postdecisional confidence ratings are
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a suboptimal measure of perceptual confidence, and we argue for a design
in which confidence reports and decision-making occur simultaneously.

1.5 Project goals

The main goal of the current project was to find BOLD correlates of percep-
tual confidence as a readout of internal uncertainty. Maintaining constant
stimulus difficulty across trials allows us to assume that participants base
their confidence judgments on some internal measure of perceptual uncer-
tainty rather than on physical properties of the external stimulus. More-
over, we asked subjects to make a decision and report confidence at the
same time, in order to have the confidence judgment linked to the percep-
tual decision as closely as possible, and prevent postdecisional stimulus
processing and error monitoring from interfering with confidence judg-
ments. Compared to previous work, our design is thus more suitable for
answering the question where in the brain subjective confidence as a read-
out of internal sensory uncertainty is encoded.



2 Methods

2.1 Data collection

2.1.1 Participants

23 healthy volunteers (aged 20-30, 11 female) participated in this study and
completed the experiment. All participants had normal or corrected-to-
normal vision, and provided informed written consent. Seven additional
subjects participated but did not complete the experiment: four were ex-
cluded after the initial behavioral session due to poor metacognition' (3),
poor task performance” (1) or participation in a TMS experiment just prior
to the scan session (1), two started but did not complete the scan sessions
due to scanning discomfort (1) or no-show (1).

2.1.2 Task design and stimuli

Participants performed two tasks: a method-of-adjustment (MoA) task and
a two-alternative forced choice (2AFC) confidence task. The MoA task is not
relevant for any of the questions addressed in this thesis and is therefore not
further discussed. For a description of the MoA task, the reader is referred
to an earlier publication by our lab (van Bergen et al., 2015).

The design of the 2AFC confidence task is visualized in fig. 2.1. Each
task run contained 20 trials (16.5 s each) and two fixation periods at the
start (30 s) and the end of the run (60 s). Every trial started with the pre-
sentation of the stimulus, a sinusoidal grating (1.5 s), followed by a fix-
ation period of 6 s, after which a reference line was shown for 4.5 s and
participants were asked to judge whether the stimulus was rotated clock-
wise (CW) or counter-clockwise (CCW) with respect to the reference. At
the end of each trial, there was another 4.5 s fixation period before the next
trial would start. Participants responded using two MR-compatible but-
ton boxes, one for the left hand (CCW) and one for the right hand (CW),
and were instructed to rest their fingers on the buttons throughout the ex-
periment. Responses were given on a graded scale (1-4) to indicate the
level of confidence about the decision: the inner buttons (index fingers)
corresponded to low confidence (confidence level 1), while the outer but-
tons corresponded to high confidence. The stimulus and reference line were
identical to the ones used in the preceding study by van Bergen et al. (2015).
However, only oblique orientations (45° and 135°) were used here. The rea-
son to exclusively use these orientations, is the fact that orientation percep-
tion is known to be more accurate for cardinal than for oblique orientations

1Poor metacognition was quantified as a an area under the curve (accuracy versus confi-
dence) < 0.6 in the 2AFC confidence task (see section 2.1.2 for a task description).

2Poor task performance was quantified as a standard deviation > 10 degrees on the error
distribution of the MoA task (see section 2.1.2 for a task description).
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(oblique effect; Appelle, 1972). Thus, in order to maintain constant diffi-
culty across trials, we used the oblique orientations only. Gaussian jitter
was added to the stimulus orientations to ensure that the subjects could
not use some internal representation of the oblique orientations instead of
the actual stimulus. The absolute angular displacement of the reference bar
with respect to the grating stimulus was exactly the same in each trial, only
varying in terms of direction: CW or CCW. The exact difference between the
two was determined on a subject-by-subject basis, as the orientation offset
at 75% accuracy in a separate behavioral session. By using only oblique
orientations and fixing the angular displacement between the stimulus and
the reference, we were able to maintain equal difficulty across trials, such
that subjects could not match their confidence judgments to the objective
(external) difficulty of the trial. This distinguishes our design from previ-
ous studies on confidence and uncertainty and allows us to investigate the
influence of internal rather than external uncertainty on confidence.

Stimuli were generated on a Macbook Pro computer using MATLAB and
The Psychophysics Toolbox (Brainard, 1997; Pelli, 1997; Kleiner, Brainard,
& Pelli, 2007). During the scan sessions, they were displayed on a rear-
projection screen, by a luminance-calibrated EIKI projector (screen resolu-
tion: 1024 x 768 pixels, refresh rate: 60 Hz), which was viewed by the
subjects through a mirror mounted on the head coil.

CCw Cw

Stimulus . Fixation . Reference ,  Fixation (ITl)
1500 ms 6000ms ' 4500ms 4500 ms

FIGURE 2.1: Overview of a trial in the 2AFC task. Each trial

starts with the presentation of a stimulus (sinusoidal grating), fol-

lowed by the presentation of a reference line. Subjects are asked

to judge whether the stimulus was rotated clockwise (CW) or

counter-clockwise (CCW) with respect to the reference, while in-
dicating their confidence on a 1-4 scale.
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2.1.3 Experimental procedures

The study consisted of one behavioral and two scan sessions for each par-
ticipant. During all sessions, subjects performed both the MoA task and the
2AFC confidence task. The two tasks were alternated in blocks consisting
of 20 trials of either one or the other task. Across the two scan sessions, sub-
jects completed a total of 9-12 runs of each task (180240 trials). Eye move-
ments were tracked and monitored online throughout the scan sessions.
The behavioral session, which lasted about 60 minutes, was used to train
the participant on the tasks and as an assessment of individual task perfor-
mance for purposes of establishing individual task difficulty and to verify
that subjects” matched our inclusion criteria as described in section 2.1.1.

2.14 MRI protocols

MRI data were collected using a Siemens 3T Magnetom Trio scanner with
an eight-channel occipital coil, at the Donders Center for Cognitive Neu-
roimaging (Nijmegen, the Netherlands). At the start of each session, an
anatomical image was acquired using a high-resolution MPRAGE protocol
(FOV 256 x 256 mm, 1-mm isotropic voxels). Functional imaging data con-
sisted of 68 transversal slices covering the whole brain, acquired using a
T2*-weighted gradient-echo echoplanar imaging protocol (TR 1500 ms, TE
38.60 ms, FOV 210 x 210 mm, 2-mm isotropic voxels).

2.2 Data analysis

2.2.1 Preprocessing of fMRI data

The raw functional imaging data were motion-corrected with respect to
the middle volume of the middle run of the session, using FSL's MCFLIRT
(Jenkinson, Bannister, Brady, & Smith, 2002). Slow drifts in the BOLD sig-
nal were removed using a high-pass temporal filter with a cut-off period
of 50 s. Images were spatially smoothed with a 6-mm FWHM Gaussian
kernel.

Registration from functional to standard space was done in four steps.
Functional data were (1) unwarped using B0 fieldmaps to account for mag-
netic field inhomogeneities and (2) linearly registered to an anatomical im-
age acquired during the same session. Subsequently, (3) this anatomical
image was linearly registered to a subject-specific anatomical template cre-
ated by aligning and averaging the anatomical images from the two sepa-
rate sessions per subject. Lastly, (4) the subject-specific anatomical template
was non-linearly registered to MNI152 standard space. These four transfor-
mations were combined to compute the mapping of the functional data to
MNI space. FSL's FLIRT was used for the linear registrations (6 degrees of
freedom), and FNIRT was used for the non-linear registration (linear pre-
alignment with 12 degrees of freedom, warp resolution: 10 mm) (FLIRT:
Jenkinson and Smith, 2001; Jenkinson et al., 2002; Greve and Fischl, 2009,
ENIRT: Andersson, Jenkinson, and Smith, 2007).
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2.2.2 GLM analyses

The functional data were analyzed with a general linear model (GLM), using
FSL’s FEAT. A GLM is a linear model of the form

Y = XB+e€ = Poxo+ Pi1x1 + Paxo+ ... + Buxn +€

Where Y refers to the actual time course of the BOLD response of a sin-
gle voxel, X is the design matrix containing predictor time courses as col-
umn vectors: each column represents a single regressor (independent vari-
able) such as stimulus type or confidence level as it changes over time, § is
a vector of the weights associated with each of the regressors, and € is the
residual error at each time point: the part of the response (Y) which is not
explained by the model (XB). The aim is to find the best possible model
fit, i.e. a set of B estimates which leaves the smallest possible residual vari-
ance € given the data and the design matrix. These Bs are then our best
estimate of the true model parameters. A large 8, (weight) indicates that
the BOLD time course of the voxel under investigation is strongly corre-
lated with the state of the n'" regressor. For example, if the model includes
a regressor indicating all time-points at which a visual stimulus was pre-
sented, the weight of this regressor in the model (its ) will be high for
voxels in the visual cortex.

Run-level analysis

At the first level of analysis, GLMs were fit per run. Stimulus, response and
confidence level where modeled using six regressors — further detailed in
table 2.1. Each of the regressors of interest was convolved with a canonical
hemodynamic response function (HRF), comprised of two gamma func-
tions — a standard, positive one and a small, delayed, and inverted one,
which is used to model the undershoot that follows the initial BOLD in-
crease (Friston et al., 1998). This is a standard approach for modeling the
expected event-related BOLD signal. In addition, the first temporal deriva-
tives of each of the six regressors were added to the model. Hemody-
namic responses are known to vary across subjects and brain areas, and
adding the temporal derivative to the model has been found to partially
account for differences in the shape and timing of the BOLD response and
thereby improve the fit of the regressors of interest (Handwerker, Ollinger,
& D’Esposito, 2004). Lastly, we added an intercept and 24 head motion re-
gressors, together representing the raw displacement parameters as well as
their squares and temporal derivatives.

The regressors of interest modeled the stimulus as well as the response
within each trial, thereby distinguishing between left-hand and right-hand
responses because of the expected differences in their motor components.
Moreover, additional regressors were added to model these events for high-
confidence trials only, allowing us to investigate the differences in BOLD
response between high-confidence and low-confidence trials. The cut-off
value for classifying confidence ratings as high or low, was determined
for each scan session individually. The cut-off was chosen such that both
classes had roughly the same number of trials, i.e. that the difference be-
tween the two categories in terms of the number of trials per category was
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TABLE 2.1: List of regressors of interest. In the final model, each
of these regressors was convolved with a canonical HRF.

Regressor Description

Stimulus_All Represents the time window of grating stimulus presentation, i.e.
the first 1.5 seconds of each trial. This regressor is a box-car func-
tion which equals one whenever a stimulus is shown on the screen,
and zero otherwise.

Stimulus_HighConf Same as above, but only for high-confidence trials. This box-car
function takes the value of one when a stimulus is presented, but
only in those trials where the subject indicated high confidence.

RespLeft_All Represents left-hand responses (counter-clockwise), and is tempo-
rally linked to the response time. The regressor equals one only at
the time-point when the subject presses the response button.

RespLeft_HighConf Same as above, but only for high-confidence trials. This function
takes on the value of one when the subject responds with the left
hand and indicates high confidence.

RespRight_All Represents right-hand responses (clockwise), and is temporally
linked to the response time. The regressor equals one only at the
time-point when the subject presses the response button.

RespRight_HighConf Same as above, but only for high-confidence trials. This function
takes on the value of one when the subject responds with the right
hand and indicates high confidence.

as small as possible (median split). Despite the attempt to keep the num-
ber of high- and low-confidence trials roughly equal, there were a few sin-
gle runs in which not all four response combinations (Left/Right hand—
High/Low confidence) occurred. When that happened, two regressors would
be perfectly correlated (i.e. when there were no left hand-low confidence re-
sponses, the regressors RespLeft_All and RespLeft_HighConf were identical),
which caused problems in model-fitting. Thus, such runs were excluded
from further analysis. A total number of 7 runs (in 6 sessions) were ex-
cluded for this reason.

Group-level analysis

Contrast maps per run were registered to standard space (MNI) using the
transformations mentioned in section 2.2.1. Group-level t-tests were com-
puted in two steps: individual runs were combined on a subject-by-subject
basis using a fixed-effects model with one regressor for each session, result-
ing in one contrast map per subject for each contrast. These maps were sub-
sequently combined across all subjects using a mixed-effects model (FSL’s
FLAME 1) with a single regressor. The resulting group-level contrast maps
were corrected for multiple comparisons using cluster-size thresholding at
p < 0.05 with a cluster-defining threshold of p < 0.0001 (uncorrected).
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3 Results

3.1 Behavior

3.1.1 Objective accuracy

Our subjects performed a perceptual decision task in which they were first
shown a grating (the stimulus) and were asked to compare this to a subse-
quently presented bar (the reference) and judge whether the stimulus had
been rotated clockwise or counterclockwise with respect to the reference. In
order to maintain approximately equal task difficulty across participants,
we used an adaptive staircase procedure to ensure a performance level of
75% during the behavioral session. Throughout the scan sessions, we then
fixed task difficulty —i.e. the size of offset between the stimulus and the ref-
erence — at this level. Indeed, on average individual subjects were correct
on 75.6% (S.D. 8.32%) of all trials.

One of the key features of our design is that, although the stimuli were
not exactly identical, the objective difficulty of each trial was the same, i.e.
no noise was added to the stimuli to induce variability in performance and
uncertainty. Our data confirm this assumption. Across trials there was no
significant difference in accuracy due to stimulus properties, such as the di-
rection of offset between the stimulus and the reference line (CW/CCW),
t(45) = 0.50, p = 0.67 (fig. 3.1a), or the base orientation of the stimulus
(45/135 degrees), t(45) = —0.43, p = 0.67 (fig. 3.1b). True stimulus
orientations were made up of either of these base orientations plus some
Gaussian jitter, such that the actual orientations were not exactly equal to
45 or 135 degrees. In order to test whether this jitter affected performance,
we binned the trials into three groups based on the absolute angular dis-
placement between the actual stimulus and the base orientation (bin width
equaled one-third of the maximum deviation from the base orientation in
that particular session). Accuracy did not depend on this deviation from
the base, F(2,90) = 1.01, p = 0.369 (fig. 3.1¢). Altogether, our data sup-
port the idea that, as we intended, objective stimulus difficulty was constant
across trials in our task.

3.1.2 Confidence

Since we were interested to see whether people have access to information
regarding the uncertainty associated with their perceptual decisions, and
how this information is represented neurally, we did not only ask subjects
to make decisions, but also to rate their their confidence on a 1-4 scale.
However, the distribution of responses across this scale varied substan-
tially between individuals: some mostly used the extreme values (1 & 4),
whereas others preferred the middle levels, in some cases the distribu-
tion was skewed towards one of the extremes, and a few participants only
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FIGURE 3.1: Accuracy as a function of stimulus properties. In-
dividual stimuli differed from each other in three respects: a) the
offset of the stimulus with respect to the reference line was either
clockwise (CW) or counterclockwise (CCW), b) stimuli were cen-
tered around on or the other the oblique axis (45/135 degrees),
and c) a small amount of Gaussian jitter was added, such that the
actual stimulus orientations slightly deviated from the base orien-
tations. Trials were binned based on the absolute distance between
the true orientation and the base orientation of the stimulus, where
bin width equaled one-third of the maximum distance in the same
session (1 = smallest). Error bars: 95 %-confidence intervals.

used three out of four confidence levels. Thus, in order to correct for inter-
individual differences in confidence distributions due to different use or in-
terpretation of the four-point confidence scale, we divided the sample into
high- and low-confidence trials. The cut-off value for high versus low con-
fidence was determined for each session separately, using a median split
criterion: the cut-off was always chosen such that the within-session differ-
ence in frequency between high- and low-confidence trials was as low as
possible.

Using this criterion, there was indeed no significant difference between
high- and low-confidence trials in terms of frequency, p = 0.36, t(45) =
—0.29. Accuracy was significantly higher on high-confidence (M = 85.6%,
S.D. = 9.4%) than on low-confidence trials (M = 64.9%, S.D. = 10.3%),
t(45) = —14.5, p < 0.001 (fig. 3.2a), suggesting that confidence reports
were actually meaningful, and that subjects’ experienced confidence was
indeed predictive of their objective performance. Another well-established
behavioral hallmark of confidence in perceptual judgments is that the de-
gree of confidence correlates negatively with reaction times (Volkmann,
1934). This effect was replicated in our dataset (low confidence: M = 1.91s,
S.D. = 0.418 s, high confidence: M = 1.55s, S.D. = 0.321 s), t(45) = 9.30,
p < 0.01 (fig. 3.2b). Thus, despite the lack of variability in objective diffi-
culty across trials, subjects appeared to be able to reflect on their own per-
formance quite accurately.

3.2 Neural correlates of confidence

Our main research question was where in the brain perceptual confidence
— as a consequence of internal uncertainty — is read out. Thus we compared
BOLD activity during high-confidence trials versus low-confidence trials.
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FIGURE 3.2: Comparing low- versus high-confidence trials in

terms of accuracy (a) and response time in seconds (b). Both accu-

racy and response times depended on confidence (* = p < 0.01, **
= p < 0.001). Error bars: 95 %-confidence intervals.

To this end, we conducted a GLM analysis (see section 2.2.2 and table 2.1
for further details regarding the model). We looked at stimulus-related and
response-related activity separately. Unless stated otherwise, results are
reported at a cluster-wise threshold of p < 0.05, family-wise, and a cluster-
forming threshold of p < 0.0001, uncorrected.

We were primarily interested in fluctuations in subjective confidence
due to variability in internal noise. However, visual attention is known to
modulate activity in early visual cortex, with an increase in overall BOLD
signal in this area when attention is high (Ress, Backus, & Heeger, 2000).
Moreover, attention-related activity also predicts performance (Ress et al.,
2000). In order to verify that, in our task, between-trial differences in con-
fidence were not merely due to variability in stimulus processing as a con-
sequence of attention, we first compared stimulus-related activity on high-
versus low-confidence trials. There were no significant positive or negative
differences in BOLD responses to the stimulus depending on confidence,
even with a more lenient cluster-forming threshold of p < 0.001. This sug-
gests that the variability in reported confidence cannot simply be reduced
to fluctuations in visual attention.

We assumed that the readout of perceptual confidence would be tem-
porally linked to the behavioral response (button press). Thus, we looked
at the effects of confidence on response-related activity. We did not find
any negative correlations of confidence with BOLD activity, but there were
several areas where the BOLD signal correlated positively with confidence
(table 3.1 and fig. 3.3). First, the striatum showed bilateral activation, pri-
marily around the head of the caudate nucleus and the nucleus accum-
bens, with some extension into the putamen on the left side only (fig. 3.3a).
Furthermore, BOLD signal increased with confidence in the secondary so-
matosensory cortex (S2), bilaterally, and in the left primary somatosen-
sory cortex (S1), as well as primary motor cortex (M1) and premotor cortex
(PMC) (fig. 3.3b). Note that although the activation of S2 was bilateral, the
cluster in the left hemisphere was nearly four times the size of the one on
the right. Confidence-related activity thus seems to be more pronounced
in the left than in the right hemisphere. However, it is worth mention-
ing here that in our dataset, the relative amount of right-hand responses
(as a fraction of the total number of responses), was significantly larger on
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high-confidence (M = 54.5%, S.D. = 12.3%) than on low-confidence trials
(M = 47.5%, S.D. = 9.87%), t(45) = —2.98, p < 0.01. Moreover, with a
lower cluster-forming threshold of p < 0.001, we also found activation of
the right M1, S1, and PMC, suggesting that the activation of these areas is
in fact bilateral, but appears somewhat left-lateralized due to the relatively
higher amount of right-hand responses for high confidence. With this more
lenient cluster-forming threshold (p < 0.001), we also found some clusters
of activation in the supplementary motor area and the insular cortex, but
neither of them survived at p < 0.0001.

TABLE 3.1: List of all brain regions in which BOLD signal
correlated positively with confidence, including standard space
(MNI) coordinates of all foci separated by at least 10 mm and
cluster-wise p-values. Reported are all clusters which survived
thresholding at p < 0.0001 uncorrected (cluster-forming thresh-
old) and subsequent cluster-size based correction p < 0.05 family-

wise.
Peak voxel Cluster
L/R Area X Y Z  Z-val. Size P-val
Left Secondary somatosensory cortex 54 24 20 5.08 192 0.000
Left Secondary somatosensory cortex -56 -24 30 453
Left  Secondary somatosensory cortex -66 -26 26 3.99

Left Caudate nucleus (head)/n.accumbens -8 16 2 493 152 0.000
Left Putamen 24 14 2 429

Right Caudate nucleus (head)/n.accumbens 12 18 0 5.10 92 0.003

Left Primary motor/somatosensory cortex 40 24 58 477 76 0.005
Left Premotor cortex 34 -16 62 424

Right Secondary somatosensory cortex 66 -18 18 4.88 53 0.017
Right Secondary somatosensory cortex 54 -18 18 448
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FIGURE 3.3: Areas showing greater BOLD activity during high-
confidence compared to low-confidence decisions. These regions
can be subdivided into: (a) striatum — (head of the) caudate nu-
cleus, nucleus accumbens, and putamen, and (b, next page) sen-
sorimotor areas — secondary somatosensory cortex (S2), primary
somatosensory cortex (S1), primary motor cortex (M1) premotor
cortex (PMC). All images are thresholded at p < 0.05 (cluster-wise,
family-wise error corrected), with a cluster-forming threshold of
p < 0.0001 (uncorrected).
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4 Discussion

4.1 Measuring confidence as a readout of uncertainty

There is a growing amount of empirical evidence supporting the idea that
in (perceptual) decision-making, the brain’s computations are congruent
with Bayesian inference This means that in combining different pieces of
information, each of those pieces appears to be weighted according to the
amount of uncertainty associated with it. Behavioral studies in humans
(e.g. Ernst and Banks, 2002; Kording and Wolpert, 2004) as well as neuro-
physiological work in monkeys (Beck et al., 2008; Fetsch et al., 2012) suggest
that both behavior and neural activity associated with perceptual decisions
follow the predictions of Bayesian brain theories. On top of this, our lab re-
cently developed a method to decode sensory uncertainty on a single-trial
basis from BOLD activity in early visual cortex in humans, and found that
observers indeed appear to take this uncertainty into account in their deci-
sions (van Bergen et al., 2015). Thus, our brain seems to not only read out
an estimate of the most likely stimulus from the sensory input it receives,
but also the degree of uncertainty associated with this estimate. One of the
questions these findings raise, is whether we have conscious access to the
information about this uncertainty, and if so, how and where uncertainty is
read out.

A large amount of work has been done on the subjective confidence as-
sociated with (perceptual) decisions and its neural representation, but the
evidence remains inconclusive. Various brain regions have been linked to
confidence, including several prefrontal areas (Kepecs et al., 2008; Lak et
al., 2014; De Martino et al., 2013; Fleming et al., 2010; Fleming et al., 2014),
lateral intraparietal cortex (Kiani & Shadlen, 2009), supplementary eye field
(Middlebrooks & Sommer, 2012), the pulvinar thalamic nucleus (Komura et
al., 2013), and the ventral striatum (Hebart et al., 2016). However, the prob-
lem with nearly all of these studies (except for Hebart et al., 2016) is that
stimulus difficulty was varied across trials by manipulating stimulus prop-
erties, in order to trigger variability in perceptual confidence. The problem
with such a design is that, rather than reading out the uncertainty from the
sensory signal, subjects might learn to link properties of the external stim-
ulus to their performance. For example, if on a particular trial the stimulus
has relatively low contrast and the subject is aware of this, then they might
realize that their chance of making a correct decision for this stimulus will
be lower and thus report lower confidence. In this case, it is impossible to
judge whether the measured confidence really is a readout of internal un-
certainty or, instead, simple stimulus monitoring. In order to address the
question whether we are aware of the internal measure of uncertainty, we
should thus keep stimulus properties constant in order to be sure that sub-
jective confidence judgments are not simply based on monitoring of physi-
cal features of the external stimulus. Moreover, confidence has been found
to change over time after the actual decision has been made (Yu et al., 2015;
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Boldt & Yeung, 2015; Yeung & Summerfield, 2012). Therefore, in order to
limit interference of postdecisional confidence processing, we required our
participants to report their decision and the associated level of confidence
simultaneously.

Our behavioral data show that performance did not depend on stimu-
lus properties in our design and that, as we intended, (objective) stimulus
difficulty was constant across trials. Still, participants reported higher con-
fidence on some trials than on others and indeed, the accuracy across high-
confidence trials was higher than across low-confidence trials. The latter
suggests that they were able to evaluate their own performance and were
aware of their own performance. If the external uncertainty in the stimuli is
constant across trials but the subjects still experience a feeling of confidence
which is predictive of their performance, then that suggests this confidence
to be a readout of internal uncertainty.

4.2 Neural correlates of confidence

To investigate the neural systems involved in reading out confidence, we
compared BOLD activation during high-confidence versus low-confidence
responses. A number of brain areas exhibited larger BOLD responses with
high-confidence than low-confidence decisions. First, the striatum was bi-
laterally activated, or more specifically, the head of the caudate nucleus
and the adjacent nucleus accumbens, as well as a small portion of the left
putamen. Second, some somatosensory and motor areas showed activa-
tion, namely the bilateral secondary somatosensory cortex (S2) and the left
primary motor (M1), primary somatosensory (S1), and premotor (PMC)
cortices. Below, I will discuss the possible roles of those areas in decision-
making and perceptual confidence in more detail.

421 Striatum

We observed a robust bilateral activation around the head of the caudate
nucleus and the nucleus accumbens, extending into the putamen in the left
hemisphere only. The complex of caudate nucleus, nucleus accumbens, and
putamen (together with the olfactory tubercle) is called the striatum. Func-
tionally, the striatum as a whole is best known for its role in the planning of
voluntary movements. The nucleus accumbens specifically, has often been
referred to as the brain’s reward center. More recently, it has become clear
that the striatum plays a broader role in cognitive processes, specifically in
goal-directed behavior and action selection (for reviews, see Grahn, Parkin-
son, and Owen, 2008 (caudate) and Floresco, 2015 (n. accumbens)).

The striatum is thus not typically thought to encode perceptual confi-
dence and has not received much attention in the confidence literature so
far. However, the nucleus accumbens and caudate nucleus have been as-
sociated with some other aspects of decision-making (Ding & Gold, 2010,
2013), and reward-related processes in particular. This area has been found
to encode a prediction error on reward, i.e. the difference between expected
and actual rewards (O'Doherty et al., 2004), as well as the amount of un-
certainty associated with an upcoming reward (Preuschoff, Bossaerts, &
Quartz, 2006). However, it appears that such responses are not driven by
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reward per se or the anticipation thereof, but specifically occur when the
(expected) reward is the outcome of an action performed by the subject (Tri-
comi, Delgado, & Fiez, 2004; Zink, Pagnoni, Martin-Skurski, Chappelow,
& Berns, 2004). Moreover, the reward does not need to be explicit; perfor-
mance feedback on its own may be sufficient to elicit a reward-like response
in the striatum, at least as long as participants are intrinsically motivated to
improve their performance on the task (Tricomi, Delgado, McCandliss, Mc-
Clelland, & Fiez, 2006). Thus, rather than responding to reward per se, the
striatum seems to play a key role in learning action-outcome contingencies,
where the outcome may be either an extrinsic or an intrinsic reward.

In our study, the same areas — nucleus accumbens, caudate — were found
to respond to subjective confidence, even though participants did not re-
ceive any rewards, nor feedback on their performance. This finding is in
agreement with two earlier studies in which stimulus properties were held
constant (Hebart et al., 2016), or variability was controlled for in the anal-
ysis (Daniel & Pollmann, 2012). How should this similarity between the
neural representations of confidence and reward be interpreted? One ex-
planation could be that — provided that subjects are intrinsically motivated
to perform well on the task — the feeling of being confident by itself is re-
warding, especially in the absence of a stronger signal such as an external
reward or feedback. The other way around, we can also argue that if a sub-
ject is required to make a decision which determines whether or not they
will receive a reward, then their expectations of getting rewarded will de-
pend on how confident they are that they have made the right choice. Thus,
both subjective confidence and reward expectation are based on an evalua-
tion of the quality of our own decisions and may, on a cognitive as well as
a neural level, be more similar than they appear at first sight.

As for the role of the putamen in decision-making, it is more closely
linked to the motor system than other areas within the striatum. In particu-
lar, the putamen is thought to be responsible for the execution of relatively
automatic or habitual motor sequences and learning associations between
stimuli and actions (Balleine, Delgado, & Hikosaka, 2007). Within the con-
text of decision-making, it may thus be involved in the conversion of de-
cisions into motor actions. This might also explain why we find activation
of the left but not the right putamen here, as we found the proportion of
right-hand responses to be significantly larger on high-confidence than on
low-confidence trials. Whenever the subjects reported high confidence, the
response was more frequently performed with the right hand than with the
left, and therefore, averaged across all high-confidence trials, the left motor
system was more active than the right.

We thus suggest that in the striatum — head of the caudate and nucleus
accumbens in particular — the general quality of our perceptual decisions
is evaluated, whether coupled to a reward or not. The putamen may be
responsible for converting the confidence signal into an action. We hypoth-
esize that the evaluation of the decision and computation of confidence is
at least partially based on information about the amount of uncertainty in
the internal representation of the stimulus at hand, although there may be
other inputs, too.
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4.2.2 Sensorimotor areas

Outside the striatum, we also observed some confidence-related activity in
a number of somatosensory- and motor-related areas, namely bilateral S2
and left M1, S1, and PMC. The lateralization of sensorimotor activity to the
left hemisphere might seem surprising at first sight, but can again be ex-
plained by the fact that we observed a correlation between the degree of
confidence and the hand used to respond, with a bias towards right-hand
responses for high-confidence trials and vice versa. Given the contralat-
eral organization of both sensory and motor cortex (Fritsch & Hitzig, 1870;
Penfield & Boldrey, 1937), it is then not surprising that confidence-related
sensorimotor activity is more pronounced in the left hemisphere. Note that
with a lower cluster-forming threshold (p < 0.001 instead of p < 0.0001)
the same pattern of BOLD activity was found in the right hemisphere.

The question remains how confidence-related activity in sensorimotor
areas should be interpreted. We believe this to be an artifact caused by
differences in response finger and timing, which are — in the current de-
sign — correlated with the degree of the confidence. Given that in our
task each confidence level (1-4) was paired with a different response but-
ton and therefore a different finger, and this mapping of confidence to fin-
gers was the same across all sessions and all subjects, the average motor
response and therefore also the corresponding somatosensory stimulation
were slightly different for high- versus low-confidence judgments (Mald-
jian, Gottschalk, Patel, Detre, & Alsop, 1999; Olman, Pickett, Schallmo, &
Kimberley, 2012). Besides the difference between high- and low-confidence
trials with respect to the finger movement itself, the way in which the hand
as a whole is stabilized during the button press also depends on which fin-
ger is used (Ivan Toni, personal communication). Moreover, we observed
shorter response times for high confidence than for low confidence. Al-
though response timing was corrected for in the GLM analysis, shorter
response times suggest shorter motor preparation times, and thus poten-
tially a more sudden increase of BOLD activity in motor areas. In a simi-
lar way, the somatosensory response could be affected, as faster motor re-
sponses might cause more sudden changes in somatosensory stimulation.
Although the exact effects of variability in response and decision times on
the motor and somatosensory signals have not yet been investigated prop-
erly, we interpret the observed activity in somatosensory and motor areas
as a consequence of the variability in motor responses. First, response tim-
ing was correlated with the degree of confidence, and second, high- ver-
sus low-confidence judgments were coupled to different fingers, which re-
quired control over different sets of muscles for controlling the actual finger
movement as well as stabilizing the hand as a whole.

4.2.3 Comparison to earlier confidence studies

In contrast to much of the earlier work on perceptual confidence (see sec-
tion 4.1) we did not find confidence-related activity in parietal or (pre)frontal
areas. What distinguishes these studies from ours, is that stimulus proper-
ties (e.g. contrast or motion coherence) were varied across trials. The prob-
lem with that, is that it enables subjects to use this variability as a predictor
of their performance, with the risk that they might base their confidence
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judgments on this external cue rather than on the amount of internal un-
certainty. Therefore, we believe that these prefrontal areas may actually
be involved in the monitoring of external stimulus properties rather than
confidence assessment per se.

However, if indeed prefrontal areas are involved in monitoring the ex-
ternal noise (variability) in the stimulus, that does not necessarily mean
that they do not contribute to some overall confidence variable computed
in the striatum. Interestingly, the nucleus accumbens and (ventral) caudate
nucleus appear to be functionally connected to prefrontal cortex and its or-
bitofrontal parts in particular (Di Martino et al., 2008). A possible explana-
tion would thus be that the prefrontal cortex monitors properties of the ex-
ternal stimulus and sends output to the striatum which combines this with
information from other sources to compute a joint confidence measure. In
the absence of external noise or variability, the confidence measure would
then be computed from other inputs to the striatum. Further research is re-
quired to investigate the functional interactions between these areas in the
process of confidence estimation.

4.3 Future directions

This study provides new insights into the neural substrates of the compu-
tation of perceptual confidence in the absence of external noise, and sug-
gests a key role for the striatum in reading out confidence from internal
noise. However, further research is needed in order to confirm this hypoth-
esis and to investigate whether this striatal representation of confidence is
a universal one, i.e. whether activity in this area is predictive of confidence
for other types of decisions or tasks as well. If so, then the question re-
mains how exactly this confidence is computed. Given that most decisions
are subject to multiple sources of noise, confidence is generally viewed as
a summary variable. How the amount of uncertainty is estimated for each
individual piece of information and how these uncertainties are integrated,
both in terms of neural computations and areas involved, are topics for fu-
ture research.

As for the specific paradigm used here, we suggest that confidence judg-
ments were primarily based on a readout of the amount of noise in the cor-
tical representation of the stimulus, as stimulus properties were kept con-
stant across trials. It would thus be interesting to use the decoding methods
recently developed in our lab to measure uncertainty in the stimulus repre-
sentation in early visual cortex (van Bergen et al., 2015), and see how this
uncertainty measure is propagated through the brain and how it relates to
subjective confidence and to BOLD activity in the striatum.

Moreover, in this study, we found activity in several motor-related and
somatosensory areas. We argue that this is mainly due to differences be-
tween high- and low-confidence responses with respect to the nature and
timing of the motor response itself. However, we cannot entirely exclude
the possibility that it is more than that, as it has previously been suggested
that motor cortex may in fact be more than just an output stage and that
(spontaneous) fluctuations in its activity may affect decision-making (Pape
& Siegel, 2016). In our current design, we can hardly distinguish between
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the sensory/cognitive and motor planning components of the decision pro-
cess due to the correlations between motor response and confidence level.
In follow-up studies we will thus aim to minimize such correlations by e.g.
introducing a delay period before the response window in order to mini-
mize reaction time differences between confidence levels, and counterbal-
ancing finger-confidence level mapping across trials.
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5 Conclusion

All sensory processing is subject to uncertainty: incoming sensory signals
are inherently ambiguous due to noise in the external signal, and internal
processing itself is affected by neuronal noise. This raises the question how
we can infer from these noisy sensations the stimuli that caused them, and
how we are able to make decisions based on those uncertain inputs. Cur-
rent theories on human decision-making assume that our brains can esti-
mate the amount of uncertainty associated with individual pieces of infor-
mation and that, when making decisions, we weigh each piece of evidence
according to its (estimated) degree of uncertainty. This idea is supported by
experimental work.

If indeed the brain takes into account estimates of uncertainty while
computing decision variables, then do we also have conscious access to
this type of information? Humans are able to evaluate their own deci-
sions in terms of confidence, but how and where in the brain subjective
confidence measures are computed is not known. Here, we investigated
correlations between BOLD activity and confidence reports in a visual ori-
entation decision task. Note that stimulus properties were held constant
across trials in this study. This was done to prevent that participants could
generate expectations about their own performance based purely on fea-
tures of the external stimulus. we show that humans experience different
levels of decision confidence even in the absence of across-trial variability
of stimulus properties. Moreover, confidence judgments were predictive
of performance, suggesting that they were indeed based on some measure
of internal uncertainty. As the fMRI data demonstrate, the primary locus of
confidence-related BOLD activity in this task was the striatum, more specif-
ically, the head of the caudate nucleus and the adjacent nucleus accumbens.
Although previously, these areas have been associated with reward expec-
tation more than confidence, we argue that these two concepts may be quite
closely linked on a cognitive level since they both rely on an internal eval-
uation of the quality of our decisions. Thus, the striatum appears to play
a key role in the computation or representation of perceptual confidence
based on estimates of internal rather than external noise.
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