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Abstract

Micro Aerial Vehicles (MAVs) are versatile platforms: their applications range from surveil-
lance to search and rescue operations. However, MAVs have limited processing power
due to their small size and cannot fall back on standard localization techniques in the
indoor environment. To address this issue, an efficient on-board localization technique
using machine learning was developed in the scope of this thesis.

The vision-based approach estimates x, y-coordinates within a known and modifiable
indoor environment. Its computational power is scalable to different platforms, trading off
speed and accuracy. Histograms of textons—small characteristic image patches—are used
as features in a k-Nearest Neighbors (k-NN) algorithm. Several possible x, y-coordinates
that are outputted by this regression technique are forwarded to a particle filter to neatly
aggregate the estimates and solve positional ambiguities. To predict the performance of
the algorithm in different environments an evaluation technique is developed. It compares
actual texton histogram similarities to ideal histogram similarities based on the distance
between the underlying x, y-positions. The technique assigns a loss value to a given set
of images, enabling comparisons between environments and the identification of critical
positions within an environment. To compare maps before modifying an environment, a
software tool was created that generates synthetic images to simulate those taken during
an actual flight.

We conducted flight tests to evaluate the performance of the approach. A comparison of the
localization technique with the ground truth showed promising results: the algorithm has
a localization accuracy of approximately 0.6 m on a 5 m× 5 m area at a runtime of 32 ms on
board of an MAV. In a triggered landing experiment, the MAV correctly landed in or close
to specified areas. The map evaluation technique was applied to various high-resolution
images to identify suitable maps.

The presented approach is based on three pillars: (i) a shift of processing power to a pre-
flight phase to pre-compute computationally complex steps, (ii) lightweight and adaptable
algorithms to ensure real-time performance and portability to different platforms, (iii)
modifiable environments that can be tailored to the presented algorithm. These pillars
build a foundation for efficient localization in various GPS-denied environments.
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1Introduction

In the world of automation, micro aerial vehicles (MAVs) provide unprecedented per-
spectives for domestic and industrial applications. They can serve as mobile surveillance
cameras, flexible transport platforms, or even as waiters in restaurants. However, indoor
employment of these vehicles is still hindered by the lack of real-time position estimates.
The focus of this thesis is, thus, the development of efficient indoor localization for MAVs
combining computer vision and machine learning techniques.

While unmanned aerial vehicles (UAVs) for outdoor usage can rely on the global positioning
system (GPS), this is usually not available in confined spaces and would not provide
sufficiently accurate estimates in cluttered environments. If enough computational and
physical power is available, a common approach to estimate a UAV’s position is via
active laser rangefinders [25, 5]. Although this approach is used in some simultaneous
localization and mapping (SLAM) frameworks, it is usually not feasible for MAVs because
they can carry only small payloads. A viable alternative are passive computer vision
techniques. Relying on visual information scales down the physical payload since cameras
are often significantly lighter than laser rangefinders [7, 4, 2]. However, this reduced
physical payload must be traded off against the higher computational payload for the
on-board CPU: vision-based position estimation is usually a time-consuming and memory-
intense procedure. One way to overcome this problem is to process the data on a powerful
external processor by establishing a wireless connection between the MAV and a ground
station. Such off-board localization techniques often lack the versatility, though, due to
factors—such as the bandwidth, delay, or noise of the wireless connection—interfering
with the system’s reliability.

The developed framework uses a computationally efficient machine learning approach to
estimate x, y-positions, which circumvents the requirement to store a map in the MAV’s
“mind.” To assign x, y-coordinates to images in a training set, keypoints in the current
image and a map image are detected in a pre-flight phase. This is then followed by finding
a homography—a perspective transformation—between them to locate the current image
in the map. As an alternative images can be aligned with high-precision position estimates
from a motion tracking system.

In the next step, the complexity of these images is reduced by determining their histogram
of textons—small characteristic image patches [46]. New images can then also be encoded
as texton histograms and matched to images with known x, y-positions using the k-Nearest
Neighbors (k-NN) algorithm. The k-NN estimates are passed to a particle filter to neatly
aggregate the estimates and resolve positional ambiguities. The computational effort of
the approach can be adjusted by modifying the amount of extracted patches and used
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Fig. 1.1: The figure illustrates the developed system from a high-level perspective. A feature
vector—the texton histogram—is extracted from the current camera image of the MAV.
The feature vector is forwarded to a machine learning model that uses a k-Nearest
Neighbors algorithm to output x, y-position estimates. These estimates are passed to
a particle filter, which filters position estimates over time and outputs a final position
estimate (red point). The expected loss shows regions in the map where a lower
localization accuracy is expected. The average expected loss can be used as “fitness value”
of a given map.

particles, resulting in a trade-off between accuracy and execution frequency. Figure 1.1
summarizes the algorithm.

In the presented approach, computational power is shifted to an offline training phase
to achieve high-speed during live operation. In contrast to visual SLAM frameworks, this
project considers scenarios in which the environment is known beforehand or can even be
actively modified. The environment is non-dynamic and planar, therefore, the MAV will
make use of texture on the bottom or ceiling of the environment. This opens the door for
improving the accuracy of the algorithm by changing the map. On the basis of desired
characteristics of a given map, an evaluation technique was developed that determines
the suitability of an environment for the presented approach. This technique allows for
spotting distant regions with similar image features, which could lead to deteriorated
performance. The evaluation can be performed using a given map image or recorded
images during flight. In the former case, synthetic images are generated from the map
image that simulate images taken during flight.

2



1.1 Problem Statement and Research Questions
The goal of this thesis is to develop a fast localization technique for MAVs. Therefore, we
formulated the following problem statement:

Problem statement: How can x, y-coordinates be estimated in real-time and on-board
of an MAV?

It is assumed that the UAV flies at an approximately constant height, such that the
estimation of height is not necessary. Since it is intended to further reduce the size of MAVs,
lightweight and scalable position estimation algorithms are needed. The problem was
addressed by combining computer vision and machine learning techniques for achieving
real-time position estimates. We focus on the following research questions (RQs):

• RQ 1: “Can 2D positions be estimated in real-time using a machine learning approach
on a limited processor in a modifiable indoor environment?”

Real-time position estimates can pave the way for autonomous flight of MAVs in
various indoor environments; pursuing an “on-board design” to make the MAV
independent of an external ground station is an important step for security and
versatility.

• RQ 2: “How can we predict and evaluate the suitability of a given map for the developed
localization approach?”

Computer vision techniques are commonly limited to environments with sufficient
and informative texture. If an environment can be evaluated before actually flying in
it, the performance of the approach can be predicted and possible dangers prevented.

1.2 Contributions
The first contribution of this thesis is a machine learning-based indoor localization system
that runs in real-time on board of an MAV, paving the way to an autonomous system. In
contrast to existing active approaches, the developed passive approach only uses a monoc-
ular downward-looking camera. Since computer vision-based localization approaches
yield noisy estimates, a variant of a particle filter was developed that aggregates estimates
over time to produce more accurate predictions. It handles the estimates of the k-NN
algorithm in an integrative way and resolves position ambiguities. The method is a global
localization system and does not suffer from error accumulation over time.

The second contribution is a map evaluation technique that predicts the suitability of a
given environment for the presented algorithm. To this end, a synthetic data generation
tool was developed that creates random variations of an image. The tool simulates different
viewing angles, motion blur, and lighting settings; the generated synthetic images are
labeled with x, y-coordinates based on the 3D position of the simulated camera model.

1.1 Problem Statement and Research Questions 3



The developed software is made publicly available. It encompasses (i) the localization
algorithm as part of the Paparazzi autopilot system [8], which consists of the texton-
based approach in combination with a particle filter1 (ii) software for augmenting an
image with synthetic views2, (iii) a script for labeling images with x, y-positions based
on homographies3, and (iv) a script for evaluating a map based on histograms and
corresponding x, y-positions4.

1.3 Thesis Outline
The remainder of this thesis is structured as follows. Chapter 2 surveys existing indoor
localization approaches related to this thesis. In Chapter 3, the developed texton-based
approach is presented and its components, the k-NN algorithm and the particle filter, are
introduced. Details about the synthetic data generation tool and map evaluation technique
are also given. Chapter 4 describes the setup and results of the on-ground and in-flight
experiments. We discuss the results and indicate future research directions in Chapter 5.
Finally, we draw our conclusions in Chapter 6.

1https://github.com/paparazzi/paparazzi
2https://github.com/Pold87/draug
3https://github.com/Pold87/relocalizer
4https://github.com/Pold87/map_evaluation
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2Related Work

This chapter discusses advantages and disadvantages of different approaches for indoor
localization. While a wide range of methods for indoor localization exists, from laser
range scanners over depth cameras to radio-frequency identification tag (RFID) based
localization, we only discuss methods that use the same technical and conceptual setup—
localization with a monocular camera.

Generally, two types of robot localization techniques are distinguished: local techniques
and global techniques [22]. Local techniques need an initial reference point and estimate
coordinates based on the change in position over time. Once they have lost track, the
position can typically not be recovered again. The approaches also suffer from “drift” since
errors are accumulating over time. Global techniques are more powerful and do not need
an initial reference point. They can recover when temporarily losing track and address the
kidnapped robot problem, in which a robot is carried to an arbitrary location [21].

Target systems and test environments are often too different to draw comparisons: factors,
such as the size of the environment, the speed of the robot or camera, or the processor
play crucial roles for the evaluation. Therefore, comparing the accuracy and run-time of
different localization methods is difficult.

2.1 Vision-based Localization Methods

2.1.1 Optical Flow
Optical flow algorithms are biologically inspired methods for navigation—taking inspiration
from insects and birds [42]. They estimate the apparent motion between successive images,
for example, by comparing the positions of their keypoints [9]. Optical flow methods
belong to the class of local localization techniques and can only estimate the position
relative to an initial reference point. The approaches suffer from accumulating errors over
time and typically do not provide a means for correcting these errors.

Chao et al. [9] compare advantages and disadvantages of different optical flow algorithms
for the use with UAV navigation. Most approaches are computationally rather complex [36].
To render on-board odometry feasible for small MAVs, McGuire et al. [36] introduce a
lightweight optical flow variant. The algorithm uses compressed representations of images
in the form of edge histograms to calculate the flow.
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2.1.2 Fiducial Markers
Fiducial markers (Figure 2.1), which are often employed in augmented reality applica-
tions [30, 24], have been used for UAV localization and landing [20, 39]. The markers
encode information in the spatial arrangement of black-and-white or colored image patches.
Their corners can be used for estimating the camera pose at a high frequency. The posi-
tions of the markers in an image are usually determined with local thresholding. Local
thresholding is a simple method for separating objects—salient image regions—from a
background. Its output is a binary image with two states: foreground (markers) and
background. Marker positions are then often further refined by removing improbable
shapes, yielding an adjusted version of possible marker positions [23].

An advantage of fiducial markers is their widespread use, leading to technically mature
open-source libraries, including ArUco [23] and ARToolKit [30]. Given adequate lighting
conditions, markers can be used in a wide variety of environments [28]. This makes them
suitable for indoor localization. A drawback of the approach is that motion blur, which
frequently occurs during flight, can hinder the detection of markers [3]. Furthermore,
partial occlusion of the markers through objects or shadows break the detection; each
marker needs to be fully in the camera view [28]. Another disadvantage is that markers
might be considered as visually unpleasant and may not fit into a product or environment
design [10]. They offer little flexibility because one has to rely on predefined marker
dictionaries. Additionally, marker-based approaches always require the modification of
the environment. Like most vision-based approaches, the detection of markers is prone to
changes in lighting conditions and may not work in low-contrast settings [28].

Fig. 2.1: Examples of fiducial markers of the ArUco library.

2.1.3 Homography Determination & Keypoint Matching
A standard approach for estimating camera pose is detecting and describing keypoints of the
current view and a reference image [43], using algorithms such as Scale-invariant feature
transform (SIFT) [35], followed by finding a homography—a perspective transformation—
between both keypoint sets (Figure 2.2). A keypoint is a salient image location described
by a feature vector. Depending on the algorithm, it is invariant to different viewing angles
and scaling.

2.1 Vision-based Localization Methods 6



The SIFT algorithm transforms an image into a set of image features. It works in four
subsequent stages using gray-scale images as input:

1. Maxima detection: The image is convolved with the Difference of Gaussian blob
detector. By changing the variance of the Gaussian distribution, the maxima—
potential keypoints—across different scales and spaces can be detected.

2. Refinement of keypoints: The potential keypoints are refined by removing maxima
with small contrast and non-discriminative edges.

3. Orientation assignment: A histogram of the gradient orientations around the keypoint
is created. The most frequent value indicates the keypoint orientation.

4. Keypoint description: The local image gradients are transformed into a feature vector
by describing pixels around a radius of a keypoint.

To locate the current view in the reference image, keypoints from one set are matched
with their nearest neighbor in the other set using the Euclidean distance between their
feature vectors. Based on the matched keypoint descriptions, a homography is calculated
between the coordinates of both keypoint sets. This allows for locating the current view in
the reference image. The calculation of the homography matrix (H) needs four matches
between both keypoint sets. Usually many more points are available, leading to an
overdetermined equation. The solution to H is then computed by minimizing the errors
between all the projected keypoints in a least-square sense.

While this homography-based approach is employed in frameworks for visual Simultaneous
Localization and Mapping (SLAM), the pipeline of feature detection, description, matching,
and pose estimation is computationally complex [31]. Therefore, ground stations for off-
board processing or larger processors are usually needed for flight control. The approach

Fig. 2.2: Perspective transformation between keypoints of the current image (left) and the refer-
ence or map image (right).

has been employed for global localization for UAVs: Blösch et al. [7] evaluate it on a
3.5m × 2m area and achieve a root mean square (RMS) positional error below 10 cm
in x, y, z-direction. Calculations are executed on a powerful ground station, which is
connected to the UAV with a USB cable. Subsequent research has brought the algorithm on

2.1 Vision-based Localization Methods 7



board of UAVs [1], achieving a frequency of 10 Hz with a 1.6 GHz on-board processor with
1 GB RAM. However, the required processing power is still too complex for small MAVs.

2.1.4 Convolutional Neural Networks
Convolutional neural networks (CNNs) are a specialized machine learning method for
image processing [34]. The supervised method has outperformed other approaches in
many computer vision challenges [18]. CNNs consist of multiple neuron layers that
represent increasing levels of abstraction [34]. While their training is usually time-
consuming, predictions with CNNs often take only few milliseconds, shifting computational
effort from the test phase to the training phase. CNNs have been used as a robust alternative
for keypoint detection and description if images were perturbed [18] but needed more
computation time than SIFT.

In recent work, Kendall et al. present a framework for regressing camera positions based on
CNNs [31]. The method has an accuracy of approximately 50 cm in indoor environments
with a size between 2×0.5×1m3 and 4×3×1.5m3. It is rather robust to different lighting
settings, motion blur, and varying camera intrinsics. The approach predicts positions on a
modern desktop computer in short time.1

2.2 Texton-based Methods
Textons are small characteristic image patches; their frequency in an image can be used
as image feature vector. Varma and Zisserman [46] originally introduced textons for
classifying different textures, showing that they outperform computationally more complex
algorithms. For the classification, the approach compares texton histograms between a
training set and the test sample. The class of the closest training sample is assigned to the
test sample. A texton histogram is obtained by extracting small patches from an image and
comparing them to all textons in a “texton dictionary.” The frequency of the most similar
texton is then incremented in the histogram.

Texton histograms are flexible image features and their extraction requires little processing
time, which makes them suitable for MAV on-board algorithms. The approach allows for
adjusting the computational effort by modifying the amount of extracted image patches,
resulting in a trade-off between accuracy and execution frequency [15]. A disadvantage is
that it discards all information about the spatial arrangement of image patches, so that
different images can have the same histogram.

De Croon et al. [14] use textons as image features to distinguish between three height
classes of the MAV during flight. Using a nearest neighbor classifier, their approach achieves
a height classification accuracy of approximately 78 % on a hold-out test set. This enables

1However, in our implementation—employing the scientific computing framework Torch [11]—the approach
was still computationally too involved for achieving real-time prediction on an Odroid XU-4 single board
computer.

2.2 Texton-based Methods 8



a flapping-wing MAV to roughly hold its height during an experiment. In another work,
De Croon et al. [16] introduce the appearance variation cue, which is based on textons,
for estimating the proximity to objects [16]. Using this method, the MAV achieves a high
accuracy for collision detection and can avoid obstacles in a 5m× 5m office space.

In the scope of this thesis, an efficient global localization was developed that draws upon
the lightweight character of texton-based approaches. The homography-based approach is
used in a pre-flight phase to assign x, y-coordinates to images.

2.2 Texton-based Methods 9



3Methods

This section describes the ideas behind the developed approach, the hardware, and
software implementations. The approach is based on three “pillars”: (i) a shift of processing
power to a pre-flight phase to pre-compute computationally complex steps, (ii) lightweight
and adaptable algorithms to ensure real-time performance and portability to different
platforms, (iii) modifiable environments to get the most out of the approach. The pseudo
code in Algorithm 1 shows a high-level overview of the parts of the framework. Details are
given in the following sections.

Algorithm 1 High-level texton framework
1: t← 0
2: X0 ← INIT_PARTICLES

3: while true do
4: t← t+ 1
5: It ← RECEIVE_IMG_FROM_CAMERA

6: Ht ← GET_TEXTON_HISTOGRAM(It)
7: zt ← k-NN(Ht)
8: Xt ← PARTICLE_FILTER(Xt−1, zt)
9: xt, yt ← MAXIMUM_A_POSTERIORI_ESTIMATE(Xt)

10: end

3.1 Hardware and Software
In our first approach, the commercially available Parrot AR.Drone 2.0 was equipped with
an Odroid XU-4 single board computer, a Logitech 525 HD webcam, and a WiFi module.
Figure 3.1 shows the setup. Instead of employing the AR.Drone 2.0 processor, the camera
images were processed on the more powerful Odroid processor and the resulting x, y-
estimates were sent over a USB data link to the MAV flight controller. The Odroid processor
has a full operating system (Ubuntu 15.04) and can run arbitrary Linux software. However,
the additional weight from the modifications of the system resulted in unstable flight
performance. Therefore, we abandoned the idea of adding an external Odroid processor
and modified the system to execute the localization algorithm directly on-board of the
MAV. To this end, the software had to be ported from the high-level language Python to
the low-level language C using the Paparazzi autopilot software [8]. This step removed
the need for the additional payload and made the flight performance stable. Also, it
circumvented the effort of buying and attaching an external processor, which can be
another point of failure. Another advantage is that the framework can be easily ported to
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any UAV supported by the Paparazzi software. The major disadvantage is that the on-board
processors of many MAVs have a lower performance than the Odroid processor.

Fig. 3.1: Comparison of an unmodified Parrot AR.Drone 2.0 (left) and a modified version (right).
The modified one was equipped with an Odroid XU-4 single board computer, a Logitech
C525 HD camera, a WiFi module, and a USB connection between the Odroid board
and the AR.Drone.2.0 flight controller. The additional weight led to unstable flight
performance, therefore, we resorted to unmodified MAVs.

We decided to conduct all our tests with a quadcopter. Quadcopters allow for navigating
in arbitrary directions without changing their yaw angle, show stable flight behavior, and
often have high-resolution cameras. We used the Parrot Bebop Drone as a prototype. It
is equipped with a lithium-ion polymer battery that lasts for approximately 11 minutes
of flying time. The UAV’s dimensions are 28 × 32 × 3.6 cm and it weighs 400 g. It has
two cameras: a front camera and a downward-looking bottom camera. The developed
approach makes use of the bottom camera only. This camera has a resolution of 640× 480
pixels with a frequency of 30 frames per second. The UAV’s processor is a Parrot P7
dual-core CPU Cortex A9 with a tact rate of 800 Mhz. It is equipped with 8 GB of flash
memory and runs a Linux operating system. The full specifications of the UAV can be
found on its official website [40].

The original Bebop software development kit was replaced with the open-source autopilot
software Paparazzi [8]. Paparazzi is used and advanced at the Micro Aerial Vehicle
Laboratory at the TU Delft. The software provides a link between a ground station
computer and the UAV to send commands and receive telemetry data. Furthermore, it
provides functions for creating flight plans, plotting and logging telemetry data, and
uploading firmware to the UAV. Its modular approach allows for combining functions
regarding stabilization, localization, and control of UAVs, which are executed on board
of the MAV. Paparazzi supports a wide range of commercially available aircrafts and
associated hardware. Figure 3.2 shows the ground control station of Paparazzi.

The presented approach is implemented as a module in Paparazzi’s computer vision
framework. Since low-level routines, like accessing camera information or attitude control
for different platforms, are already implemented in Paparazzi, the module can be readily

3.1 Hardware and Software 11



Fig. 3.2: The ground control station of the Paparazzi software. It displays information about the
status of the UAV and provides functions for controlling the vehicle (from PaparazziUAV
wiki [48]).

used across different platforms. Modules are written in the C programming language
and are cross-compiled on the host PC to make them suitable for the UAV’s processor.
Afterwards, they are uploaded to the microprocessor of the UAV to run them on board. A
downlink connection—from the UAV to the ground station—permits monitoring the state
of the aircraft and includes information about speed, altitude, position, or battery status.

3.2 Preliminary Dataset Generation
The first pillar of the presented method is to shift computational effort to a pre-flight
phase. Since the MAV will be used in a fixed environment, the results of these pre-
calculations can be employed during the actual flight phase. Supervised machine learning
methods need a training set to find a mapping from features to target values. In this first
step, the goal is to label images with the physical x, y-position of the UAV at the time of
taking the image. Therefore, a method for obtaining the physical position of the UAV is
needed and GPS information is not available in the indoor environment. In the presented
approach, the image is later converted to a texton histogram as described in the next
section (Section 3.3).

One possible way to create the data set is to align the images with high-precision position
estimates from a motion tracking system. The used camera forwards 640×480 pixel images
in Y’UV422 color space—a three-channel color space that encodes gray-scale information
in the channel Y and color information in the channels U and V. The x, y-position is
broadcast to the UAV via the ground station, which is connected to the motion tracking
system. The data set is created by saving the image with the corresponding position from

3.2 Preliminary Dataset Generation 12



the motion tracking system on the MAV’s hard disk. The approach yields high-quality
training sets since motion tracking systems can track rigid bodies at a high frequency with
an error tolerance of a few millimeters. Major disadvantages of the approach are that
motion tracking systems are usually expensive and time-consuming to move to different
environments. The workflow is illustrated in Figure 3.3.

x yhistogram

106 101

116 134

histogram extraction

image

motion tracking system

training set

Fig. 3.3: Training dataset generation if the motion tracking system is used. The texton histograms
of the camera images during flight are extracted and aligned with the highly accurate
position estimates of the motion tracking system. The result is a high-quality training set
of texton histograms and corresponding x, y-positions.

As an alternative, we sought a low-budget and more flexible solution. Of the presented
approaches in Chapter 2, the homography-based approach (Section 2.1.3) promises the
highest flexibility with a good accuracy but also requires the most processing time. Since
fast processing time is not relevant during the pre-flight phase, the approach is well-
suited for the problem. The required image dataset can be obtained by using images
gathered during manual flight or by recording images with a hand-held camera. To get a
hyperspatial image of the scene for creating a map, the images from the dataset have to
be stitched together. The stitched image has a higher resolution than the single images
and contains a greater range of detail (Figure 3.4). With certain software packages the
images can be “orthorectified”by estimating the most probable viewing angle based on the
set of all images. However, since a downward-looking camera is attached to the UAV, most
images will already be roughly aligned with the z-axis, given slow flight [7]. We used the
freeware software Microsoft Image Composite Editor (ICE) [37] for the stitching process.
However, this closed-source software does not publish details about its used techniques. As
an open-source alternative, the panorama photo stitching software hugin [13] is available.
In our tests, Microsoft ICE yielded results of a better quality.

Keypoints of the current image and the stitched map image are detected and described
using the SIFT algorithm. The keypoint sets are further refined using Lowe’s ratio test [35].
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Fig. 3.4: This figure shows the created orthomap of a texture-rich floor. It is stitched together
using 100 single images and represents a real world area of approximately 8× 8 meters.
Image distortions, non-mapped areas, and slightly skewed seams at several points are
visible.

This is followed by a matching process, that identifies corresponding keypoints between
both images. The matching uses a ’brute-force’ matching scheme and every keypoint is
compared to every other keypoint. These matches allow for finding a homography between
both images. For determining the x, y-position of the current image, its center is projected
onto the reference image using the homography matrix. The pixel position of the center in
the reference image can be used to determine the real world position by transforming the
pixel coordinates to real-world coordinates, based on the scale factors Cx and Cy, with
Cx = width(W )

width(I) and Cy = height(W )
height(I) , where W is the real-world dimension and I the digital

pixel image. Performing this step for all recorded images yields a preliminary dataset
of images—that is later converted to a dataset of texton histograms—labeled with x, y

coordinates. An illustration of the approach can be seen in Figure 3.5.

The stitching process can be time-consuming and error-prone. It can be impeded by
distortions and perspective transformations of the recorded images. To circumvent the
need for stitching together multiple images, an image with a high-resolution camera
from a top view point can be taken that captures the entire area in some environments.
Yet another method could start with an existing image and modify the environment
accordingly—for example by painting the floor or printing posters—to correspond to the
image. The homography-based process introduces noise into the dataset, since it only has
a limited accuracy (Section 2.1.3) that depends on the quality of the keypoint matches.

3.3 Machine Learning-based Approach and Filtering
In this section, the core of the developed algorithm is described: the implementation of
the texton framework, consisting of the texton dictionary generation, the extraction of
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Fig. 3.5: The figure illustrates the training set generation when applying the homography-based
approach. Images from an initial flight are stitched together to create an orthomap. The
same images are used to detect and describe their keypoints using SIFT, followed by
finding a homography between the keypoints of the flight images and the orthomap
to obtain x, y-coordinates per image. The training set is created by extracting texton
histograms from the images.

the histograms, the k-Nearest Neighbors (k-NN) algorithm, and the particle filter. The
dictionary of textons constitutes the basis for determining the texton histograms. These
histograms are used as features in the k-NN algorithm. The algorithm outputs k possible
x, y-coordinates for a given image, which are forwarded to the particle filter to yield a final
position estimate.

3.3.1 Texton Dictionary Generation
For learning a suitable dictionary for an environment, image patches were clustered. The
resulting cluster centers—the prototypes of the clustering result—are the textons [47].
The clustering was performed using a competitive learning scheme with a “winner-take-all
strategy,” a simple variant of a Kohonen network [32]. In the beginning, the dictionary
is initialized with n = 20 random image patches from the first image, which form the
first guess for cluster centers. Then, a new image patch x is extracted and compared to
each texton dj in the tentative dictionary using the Euclidean distance. The most similar
texton dr is the “winner.” This texton is then adapted to be more similar to the current
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patch by calculating the difference in pixel values between the current image patch and
the texton and updating the texton with a learning rate of α = 0.02:

dr := dr + α(x− dr)

The first 100 images of each dataset were used to generate the dictionary. From each
image, 1 000 randomly selected image patches of size w × h = 6× 6 pixels were extracted,
yielding N = 100 000 image patches in total that were clustered. An example of a learned
dictionary of grayscale textons can be found in Figure 3.6. For our approach, we also used
the color channels U and V to obtain color textons.

Different maps and environmental settings require different texton dictionaries. If one
would use the same dictionary for each map, it might happen that the histogram has only
a few non-zero elements, and thus, cannot represent the variance in the map. While we
set the number of textons to n = 20 for all maps, this parameter is also map-dependent
and should ideally be adapted to the given map.

Fig. 3.6: The figure shows a dictionary consisting of 20 grayscale textons (w × h = 6× 6 pixels).

3.3.2 Histogram Extraction
The images from the preliminary dataset (Section 3.2) are converted to the final training
set that consists of texton histograms and x, y-values. It is the purpose of the conversion to
obtain a more representative and dense description of an image, which should facilitate
and speed-up recognition during the prediction step [26]. To extract histograms in the full
sampling setting, a small window—or kernel—is convolved across the width and height
of an image and patches are extracted from all positions. Each patch is compared with
all textons in the dictionary and is labeled with the nearest match based on Euclidean
distance comparing the pixels values in the channels Y, U, and V. The frequency of each
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label is reported in the corresponding “bin” of the texton histogram. The histogram is
normalized by dividing the number of cases in each bin by the total number of extracted
patches to yield the relative frequency of each texton.

The convolution is a time-consuming step, since all possible combinations of width and
height are considered: (640 − w + 1) · (480 − h + 1) = 301 625 samples are extracted.
To speed up the time requirements of the histogram extraction step, the kernel can be
applied only to randomly sampled image position instead [15]. This sampling step speeds
up the creation of the histograms and permits a trade-off between speed and accuracy.
The random sampling step introduces random effects into the approach. Therefore, to
generate the training dataset, no random sampling was used to obtain high-quality feature
vectors.

3.3.3 k-Nearest Neighbors (k-NN) algorithm
The k-Nearest Neighbors (k-NN) algorithm is the “machine learning-core” of the developed
approach. Taking a texton histogram as input, the algorithm measures the Euclidean
distance of this histogram to all histograms in the training dataset and outputs the k most
similar training histograms and the corresponding x, y-positions.

While the k-NN algorithm is one of the simplest machine learning algorithms, it offers
several advantages [33]. It is non-parametric, allowing for the modeling of arbitrary
distributions. Its capability to output multiple predictions enables neat integration with the
developed particle filter. Its simplicity combines with transparency: it allows for spotting
the possible sources of error such as wrongly labeled training examples. k-NN regression
often outperforms more sophisticated algorithms [12]. A frequent point of criticism is
its increasing computational complexity with an increasing size of the training dataset.
While the used training datasets consisted of fewer than 1000 images, resulting in short
prediction times, time complexity can be reduced by storing and searching the training
examples in an efficient manner, for example, with tree structures [6].

3.3.4 Filtering
Computer vision-based estimations are often noisy or ambiguous. Texton histograms
obtained during flight will not perfectly match the ones in the training dataset: blur, lighting
settings, viewing angles, and, other variables change the shape of the histograms.

To filter out outliers and smooth estimates, a popular filter choice is the Kalman filter. How-
ever, the Kalman filter is not able to represent multimodal probability distributions [17].
This makes it unsuitable for the presented global localization approach. The “naive” k-NN
regression calculates the mean of the k outputs and forwards this value to the Kalman
Filter. However, if the output values are distant, averaging them yields a value in the center
between them, which is not likely to be the correct position (Figure 3.7). This approach
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can lead to biased predictions, especially, if the model outputs belong to distant locations
due to similar texton distributions at these positions.

Prior (t = 1) Likelihood (t = 1) Posterior (t = 1)

Prior (t = 2) Likelihood (t = 2) Posterior (t = 2)

Prior (t = 3) Likelihood (t = 3) Posterior (t = 3)

Fig. 3.7: The figure illustrates three time steps of a Kalman filter. The colors represent the
probability of an x, y-position (red: high probability; blue: low probability). In timestep
t = 1, the filter is initialized with an uniformed prior and each position has equal
probability. To incorporate measurement error, the likelihood (measurement model) is
calculated using a Gaussian distribution that is centered around the mean of the k = 2
predictions (white crosses) from the k-NN algorithm. The posterior results from the
multiplication of the prior with the likelihood and indicates the position estimates after
one timestep. In the next timestep, the previous posterior becomes the new prior. The
filter receives distant measurements in time steps t = 1 and t = 2 that are averaged to
receive a position in the middle. In time step t = 3, the ambiguity is resolved but the
filter only slowly adapts to the new position.

We decided to use a more sophisticated method to capture multimodal distributions. Given
an adequate measurement model, a general Bayesian filter can simultaneously maintain
multiple possible locations and resolve the ambiguity as soon as one location can be
favored (Figure 3.8). In this case, the predictions of the k neighbors can be directly fed
into the filter without averaging them first. The filter is able to smooth the estimations,
handle uncertainty, and simultaneously keep track of several position estimates. However,
a general Bayesian filter is computationally intractable. Therefore, a variant based on
random sampling was used: the particle filter. While its computational complexity is still
high compared to a Kalman filter, one can modify the amount of particles to trade off
speed and accuracy and adapt the computational payload to the used processor.

The weighted particles are a discrete approximation of the probability density function
(pdf) of the state vector (x, y-position of the MAV). Estimating the filtered position of
the MAV can be described as p(Xt | Zt), where Xt is the state vector at time t and
Zt = z1, ..., zt are all outputs of the k-NN algorithm up to time t, with each zi representing
the k x, y-outputs of the algorithm at time i.
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Prior (t = 3) Likelihood (t = 3) Posterior (t = 3)

Fig. 3.8: Three time steps of a general Bayesian filter. The colors represent the probability of an
x, y-position (red: high probability; blue: low probability). In contrast to the Kalman
filter, the likelihood (measurement model) is calculated using a mixture of Gaussian
distributions centered around the outputs the k-NN algorithm (white crosses). The filter
can immediately resolve the ambiguity in time step 3 and the posterior gets updated
accordingly.

The used particle filter is initialized with M = 50 particles at random x, y-positions. To
incorporate the measurement noise for each of the k estimates from the k-NN algorithm,
we developed a two-dimensional Gaussian Mixture Model (GMM) as measurement model.
The GMM is parameterized by the variances Σ[j], j ∈ {1, . . . , k} that are dependent on
the rank j of the prediction of the k-NN algorithm (for example, j = 2 is the second
nearest neighbor). The variance matrix Σ[j] specifies the variances of the deviations in
x-direction and y-direction and the correlation ρ between the deviations. The values for
Σ[j] were determined by calculating the variance-covariance matrix for the difference
between the ground truth T from the motion tracking system and the predictions Pj of the
k-NN algorithm: Σ[j] := Var(T − Pj).

In contrast to the measurement model, the used motion model is simple. It is solely
based on Gaussian process noise and does not consider velocity estimates, headings, or
control inputs. Its mean and variance are dependent on the expected velocity of the
MAV. We used the forward difference Tt − Tt−1 to estimate the average movement and its
variance-covariance matrix Σprocess between timesteps t and t − 1. While the employed
motion model is simple, the developed software provides functionality for including an
odometry-based motion model based on optical flow.

The algorithm of the developed particle filter is presented in the pseudo code in Algorithm 2.
In the pseudo code, X is the list of particles, f the two-dimensional Gaussian probability
density function, z[i]

t the ith neighbor from the kNN prediction, x[m]
t the mth particle at

time t, and w[m]
t its corresponding weight.
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Algorithm 2 Particle filter update

1: procedure PARTICLE_FILTER(Xt−1, zt)
2: . Initialize particle list
3: Xtemp := ∅
4: for m = 1 to M do
5: . Add random process noise (motion model)
6: x

[m]
t ← x

[m]
t +N (0,Σprocess)

7: . Iterate over predictions from k-NN (measurement model)
8: w ← 0
9: for i = 1 to k do

10: . Gaussian Mixture Model
11: w ← w + f(z[i]

t ;x[m]
t ,Σ[i]

measurement)
12: Xtemp := Xtemp ∪ (x[m]

t , w)
13: . Importance resampling
14: Xt ← RESAMPLING_WHEEL(Xtemp)
15: return Xt

The “resampling wheel” [45] (Algorithm 3) performs the importance resampling step. Its
underlying idea is that the particles are arranged in a “wheel,” with each particle occupying
a slice that corresponds to its weight. The particles are then resampled with a probability
proportional to the area of the slices. This step ensures that particles with a low weight
are removed and replaced with well-performing ones. Otherwise, the algorithm might
“collapse” when all but one particle have a low weight.

Algorithm 3 Resampling wheel

1: procedure RESAMPLING_WHEEL(Xtemp)
2: . Initialize particle list
3: Xt ← ∅
4: . Sample random index from the number of particles
5: sample i ∼M · U(0, 1)
6: β ← 0
7: for m = 1 to M do
8: β ← β + U(0, 1) · 2 ·max(wt)
9: while β > w

[i]
t do

10: β ← β − w[i]
t

11: i← (i+ 1) mod M

12: Xt ← Xt ∪ X [i]
temp

13: return Xt

With the GMM, the information of all k neighbors can be used, yielding a possibly multi-
modal distribution. While a multimodal distribution allows for keeping track of several
possible positions, certain subsystems—for example a control loop—often need one point
estimate. Using a weighted average of the particles would again introduce the problem
that it could fall into a low density region (an unlikely position). Instead, we used a
maximum a posteriori (MAP) estimate, as described by Driessen and Boers [19]. This
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approach is a discrete approximation of the true MAP estimate [19]. It uses the following
formula to obtain the MAP estimate XMAP

t —the “final” x, y-position:

XMAP
t = arg max

x
[i]
t ∈{i=1,...,M}

M∑
j=1

f(x[i]
t ;x[j]

t−1,Σprocess)w[j]
t−1

Therefore, the final position estimate is equal to the position of one of the particles.

The estimation of uncertainty is a core part of the developed approach, due to its importance
for safety and accuracy. Therefore, uncertainty was modeled using the spread of the
particles—as expressed by their variance in x-direction and y-direction. Initially, we
planned to include the distance between the current histogram obtained from the camera
image and each of the k neighbors from the training set as confidence value. One could
thus reduce the measurement noise if a high similarity between the current histogram
and a training histogram is achieved. While we found no correlation between these
variables (Section 4.3), we still provide the functionality for incorporating the distance in
the developed software. We also tried to use the amount of detected keypoints (K) as a
confidence value for the quality of the sample in the training set if the homography-based
approach is used for labeling. Again, no linear relationship between K and the error in
x-direction (X) and the error in y-direction (Y ) could be found.

3.4 Map Evaluation

3.4.1 Evaluation Scheme
The performance of the developed method depends on the environment: a texture-
rich environment without repeating patterns will be better suited than a texture-poor
environment. Ideally, one would like to know if the algorithm will work in a given
environment. Therefore, we propose an evaluation scheme that can compare different
environments and areas within an environment. This scheme assigns a global fitness value
or global loss value to a “map”—expressed as dataset D consisting of N texton histograms
hi and corresponding x, y-coordinates posi = (xi, yi). The fitness value is intended to be
proportional to the accuracy that can be expected when using this dataset as training set
for the developed localization algorithm. The scheme allows for inspecting the dataset
and detecting regions within the map that are responsible for the overall fitness value.

The idea behind the global loss function L is that histograms hi and hj in closeby areas
should be similar and the similarity should decrease with increasing distance of the
corresponding x, y-coordinates posi and posj . Therefore, the approach is based on the
difference between actual and ideal texton histogram similarities in a dataset. The ideal
texton similarity distribution is modeled as a two-dimensional Gaussian distribution around
each x, y-position in the dataset (Figure 3.9). Using this idea, a histogram is compared to
all others by comparing expected similarities to actual similarities. This results in a loss
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value per sample of the dataset (local loss). Applying the algorithm to each sample in the
dataset yields the global loss of a dataset. A visualization of the global loss is illustrated in
Figure 3.10.

Fig. 3.9: Left: Actual similarity between histogram hi (posi: white cross) and all other histograms;
the heatmap shows low similarity in blue and high similarity in red. For the visualization,
the actual similarities were smoothed with a Gaussian filter. Middle: Ideal histogram
similarity distribution for the given position posi. Histograms hj taken at closeby positions
should have a high similarity to hi. The farther away the position posj , the lower the
similarity between hi and hj should be. Right: The difference between the actual and
the ideal similarity shows regions that do not follow the ideal similarity distribution for
histogram hi (high loss: red; low loss: blue)

The method uses the cosine similarity (CS) to compare histograms:

CS(hi, hj) = hT
i hj

||hi|| ||hj ||

The cosine similarity has the convenient property that its values are bounded between
−1 and 1. In the present case, since the elements of the histograms are non-negative,
it is even bounded between 0 and 1. Let the function f describe the non-normalized
one-dimensional Gaussian probability density function:

f(x;µ, σ) = e−
(x−µ)2

2σ2

Since we assume that the ideal similarity in x-position is independent of the y-position, the
ideal two-dimensional similarity function de(posi, posj ; Σ) can be modeled as the product
of the respective one-dimensional function f :

de(posi, posj ; Σ) = f(xi;xj , σx) · f(yi; yj , σy)

This function is also bounded between 0 and 1, which makes the functions de and CS—
ideal similarity and actual similarity—easily comparable. In summary, we propose the
following global loss function (L) for evaluating a given dataset (D):

L(D) = 1
N2

N∑
i=1

N∑
j=1

CS(hi, hj)− f(xi;xj , σx) · f(yi; yj , σy)

The simple difference—in contrast to least absolute deviations or least square errors—
ensures that similarities that are less similar than the ideal similarity reduce the loss.
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Therefore, a high variation in texture is always seen as “positive”. The variances σx and
σy specify the dimension of the region, where similar histograms are desired. The lower
their value, the more focused the ideal similarity will be, requiring a high texture variety
for getting a low loss value. A high value might overestimate the suitability of a dataset.
While the approach is relatively robust to the choice of the parameter values, we still need
to find a heuristic for suitable values.
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Fig. 3.10: The figure shows the loss of a map: the regions that did not follow the ideal similarity
pattern are displayed in red. For the visualization, the loss values per sample in the
dataset were smoothed with a Gaussian filter. This assigns a loss value to each x, y-
position of the map. The synthetic data generation tool was used for generating the
underlying dataset (Section 3.4.2).

3.4.2 Synthetic Data Generation
To compare environments before actually flying in them, a software tool was developed
that creates synthetic images to simulate those taken during an actual flight. The tool
generates the patches based on perspective transformations of an image. Examples of
generated images are displayed in Figure 3.11.

The application allows for comparing and predicting the performance of different “maps”
as specified by an image. The software is written in C++ and OpenCV 3.0.0. The algorithm
simulates a simple camera model that moves above the image (Figure 3.12). It generates
a specified amount of image patches using random values—sampled from uniform and
normal probability distributions—for various parameters:

• rotational angles: roll α, pitch β, yaw γ

• translational shifts: dx, dy, dz

• brightness: addition of constant value b to all pixels
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Fig. 3.11: Six image patches generated by means of the synthetic data generation tool.

• contrast: multiplication of pixel values with constant value c

• blur: application of a box filter with kernel size kw × kh

By finding a homography M—a perspective transformation specified by rotational and
translational parameters—one can obtain image patches and consequently texton his-
tograms to create a training dataset. The tool labels the generated patches with the
corresponding simulated x, y-position of the camera model, which represents the position
of the UAV.

Fig. 3.12: Illustration of the camera model for the synthetic flight. The developed tool extracts
image patches from an given image to simulate those taken with the bottom camera of
the MAV during an actual flight.

The steps for specifying the homography are outlined in the following. The implementation
is partly based on work by Jepson [29]. Hartley and Zisserman [27] describe multiple view
geometry and image transformations in computer vision in detail. To simulate camera
movements in the 3D world, a 2D to 3D projection of the image is performed first, using
the matrix P3, with the width w and height h of the image:

P3 =


1 0 −w

2
0 1 −h

2
0 0 0
0 0 1


The result is a 3D space with the center of the image as point of origin. The camera
rotations are specified by the rotation matrix R = Rx · Ry · Rz. By building rotation
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matrices Rx, Ry, and Rz around the axes x, y, and z, the rotations with the corresponding
angles α, β, and γ can be defined separately:

Rx =


1 0 0 0
0 cos(α) − sin(α) 0
0 sin(α) cos(α) 0
0 0 0 1



Ry =


cos(β) 0 − sin(β) 0

0 1 0 0
sin(β) 0 cos(β) 0

0 0 0 1



Rz =


cos(γ) − sin(γ) 0 0
sin(γ) cos(γ) 0 0

0 0 1 0
0 0 0 1



The 3D translational matrix T specifies the location of the camera in world coordinates:

T =


1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1


Now, a rotation followed by translation can be specified by matrix H:

H = T ·R

However, this matrix H describes how the world is transformed relative to the camera
coordinates, while the position of the camera is fixed. Instead, we would like to specify
the camera movement relative to a fixed world. To this end, the inverse of H is needed:

H−1 = (T ·R)−1 = R−1 · T−1

The transposed rotation matrix is equal to its inverse: R′ = R−1. The inverse of T negates
the translations:

T−1 =


1 0 0 −dx
0 1 0 −dy
0 0 1 −dz
0 0 0 1
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To obtain a 2D image again, a projection from 3D space to 2D is applied using the matrix
P2. The matrix needs the focal distance f (the distance between camera and image).

P2 =


f 0 w

2 0
0 f h

2 0
0 0 1 0


The ratio between dz and f specifies the size of the patch. The final 3 × 3 perspective
transformation matrix M becomes:

M = P2 ·R−1 · T−1 · P3

The pixel values of the image patch at position x, y are calculated by applying the perspec-
tive transformation M to the original image:

patch(x, y) = original(x′, y′)

= original
(
M11x+M12y +M13
M31x+M32y +M33

,
M21x+M22y +M23
M31x+M32y +M33

)

For modifying brightness and contrast, each pixel value is transformed with

patch(x, y) := c · patch(x, y) + b

The blurring is performed by convolving the image patch with a box filter:

1
kw · kh


1 1 . . . 1
1 1 . . . 1
. . . . . . . . . . . .

1 1 . . . 1



The script provides a command line interface for selecting the original image and the
amount of desired image patches. It creates a dataset of image patches and a comma-
separated values (CSV) file that specifies the sampled values from the random distributions
per patch.
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4Analysis

In this chapter, the setup of the experiments is presented and the results are described.
The flight tests were carried out in an indoor flight arena of the TU Delft: the “CyberZoo”
(Figure 4.1).

To compare estimates from the developed framework to a ground truth, we employed
the motion tracking system OptiTrack [38]. This system uses an array of cameras and
reflective markers attached to the body of the MAV to track the MAVs at a high frequency
within an error of a few millimeters. We used OptiTrack as MAV guidance system for
autonomous flight, yielding accurate and stable control. The Parrot Bebop Drone was the
prototype for all flight tests.

4.1 Determining the Number of Image Patches
The computational complexity of the developed framework can be modified by changing
the number of extracted image samples in the random sampling step of the texton his-
tograms creation. The goal is to use as few samples as possible, while still obtaining an
adequate localization accuracy.

To determine a suitable number of extracted samples, we compared the influence of
random sampling by measuring the cosine similarity between histograms based on random
sampling and the histogram obtained by full sampling based on N = 5 000 images that
we obtained from different environments. The independent variable is the number of
extracted patches per image.

Figure 4.2 displays the results: the mean cosine similarity of histograms as a function of
the number of samples and the corresponding standard deviations.
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Fig. 4.1: The indoor flight arena—the “CyberZoo”—at the TU Delft.
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Fig. 4.2: Mean cosine similarity between histograms obtained by random sampling to the his-
tograms obtained by full sampling (301 625 samples) as a function of the number of
extracted samples. The error bars show the standard deviation of the cosine similarity.
The squares indicate the positions at which the dependency was evaluated.

4.2 Determining k in the k-NN algorithm
The number of nearest neighbors, k, influences the predictions of the k-NN algorithm: a
low value can lead to unstable predictions, while a higher value reduces the variance in
the predictions. However, a too high value can lead to a high bias resulting in inaccurate
predictions. In this experiment, we analyzed the influence of the number of nearest
neighbors, k, on the distance between ground truth and the predictions. The value of the
measurement model was set to a constant value for all neighbors: ∀j ∈ {1, . . . , k} : Σ[j] = c.
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This ensures that the effect of the number of neighbors is measured without influence of
the underlying measurement model. The results are displayed in Figure 4.3.
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Fig. 4.3: The distance between ground truth and predictions in x-direction and y-direction as
a number of the neighbors in the k-NN algorithm. The error bars show the standard
deviation of the distances.

4.3 Histogram Distance and Measurement Error
As described in Section 3.3.4, we planned to include the distance to the neighbors in the
k-NN algorithm as confidence value for the predictions. Figure 4.4 shows the dependence
structure between the distance to the nearest neighbor and the error in x-direction and
y-direction, measured as the distance in cm between the ground truth and the label of the
nearest neighbor.
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Fig. 4.4: Distance between ground truth and predictions from a k=1-NN model in x-direction
(Left) and y-direction (Right) as a function of the distance to the closest training sample.
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4.4 Flight Tests
In these experiments, the MAV was guided along flight plans using the motion tracking
systen. If not otherwise stated, we used the following default values for the parameters in
our framework.

• number of samples in the histogram extraction step: 400

• number of textons in the dictionary: 20

• number of particles of the particle filter: 50

• number of histograms / images in the training set: 800

• number of histograms / images in the test set: 415

• number of neighbors in the k-NN algorithm: 5

Map-dependent texton dictionaries were by used and created by conducting an initial
flight over the respective maps.

4.4.1 Training Set based on Motion Tracking System
In this experiment, the position estimates were calculated on board of the MAV using
the texton-based approach with the particle filter. The Euclidean distances between the
estimates of the motion tracking system and the texton-based approach were measured in
x-direction and y-direction.

The training dataset was composed of 800 texton histograms with corresponding x, y-
coordinates that were obtained from the motion tracking system. The images were
recorded in a 5× 5 meter area at a height of approximately one meter in a time span of
one hour before the experiment to keep environmental factors roughly the same.

The results can be found in Table 4.1. They are based on 415 images, which corresponds
to a flight time of approximately 35 seconds.

Tab. 4.1: Differences between ground truth and the developed framework in x-direction and
y-direction. The used training set was based on the position esimates of the motion
tracking system (Section 3.2).

x-position y-position

Error in cm 61 59
STD in cm 39 39

4.4.2 Baseline: Homography-based Approach
To find a baseline for our approach and to provide a homography-based training set, we
used the homography-based approach to estimate x, y-coordinates in the same environment
and based on the same images as the texton-based framework. The required hyperspatial
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image (Figure 4.5) of the environment was stitched together using 800 images and the
software Microsoft ICE.

Fig. 4.5: The created map that was stitched together using 800 images. The “non-mapped” area
in the center of the image is a result of the set flight path. An image distortion can be
seen at the right-hand side, where the landing spot appears twice, while in reality, only
one circle was visible.

We estimated the x, y-coordinates of the 415 test images using the homography-based
approach (3.2) and compared the predictions to the ground truth. The predictions were
not filtered. The results can be found in Table 4.2.

Tab. 4.2: Error statistics for the homography method.

x-position y-position

Error in cm 31 59
STD in cm 68 77

4.4.3 Training Set based on Homography-finding Method
In this experiment, the training dataset was created by estimating the x, y-positions of
the 800 training images using the homography-finding method from the previous section
and the same hyperspatial image. Apart from that, the settings are the same as in
Experiment 4.4.1.

Tab. 4.3: Differences between ground truth and the developed framework in x-direction and
y-direction. The used training set was based on the position esimates of the homography-
finding method (Section 3.2).

x-position y-position

Error in cm 54 97
STD in cm 41 61
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4.4.4 Triggered Landing
For the triggered landing experiment, the MAV was guided along random flight paths,
which covered a 5× 5 meter area; during navigation, the MAV was programmed to land as
soon as its position estimates were in a “landing zone”: an x, y-position with a specified
radius r. A safety criterion was introduced such that the landing is only performed if the
standard deviations of the particles in x-direction and y-direction are below thresholds
θx and θy. We set the parameters to θx = θy = 60 cm. The x, y-coordinate of the circle
was specified in the flight plan; the radius was set to r = 60 cm. We performed six
triggered landings; after each landing, the x, y-center of the zone was randomly set to
another position in the map. For the texton framework, the same training set as in
Experiment 4.4.1 was used.

Four out of six landings were correctly performed in the landing area. The distances of
the two outliers were 14 cm and 18 cm, measured as distance to the circumference of the
landing area.

4.5 Speed versus Accuracy Trade-Off
Adapting the frequency of the main loop of the developed approach to make it suitable for
different platforms with varying processing power is one of its core parts.

Figures 4.6 and 4.7 show the speed versus accuracy trade-off as a function of the used
particles and of the used samples in the histogram extraction step, respectively. As a
reference, the frequency using full sampling in the histogram extraction step was 0.1 Hz.
The above stated default values were used for the ceteris paribus assumption, when varying
the parameters.

While the bottom camera of the Parrot Bebop Drone has a frequency of 30 Hz, the Paparazzi
software currently only receives the images with a frequency of 12.5 Hz. Therefore, the
maximum achievable frequency without further image processing is 12.5 Hz, which is the
baseline for the conducted experiments.

Figure 4.8 illustrates the frequency as a function of the used histograms in the k-NN
algorithm. We did not compare the frequency to the distance between ground truth and
the predictions, since our training dataset did not contain more than 800 histograms.

After having received the image, the processing time of the presented algorithm using the
default parameter values is 32 ms, which includes the histogram extraction (16 ms) as well
as the k-NN predictions, the filtering and the output of the best x, y-coordinate (16 ms).
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Fig. 4.6: Top row: Distance in cm between ground truth and the predictions in x-direction and
y-direction as a function of the number of used particles in the particle filter. Middle
row: Standard deviations of the distances. Bottom row: Frequency of the algorithm.
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Fig. 4.7: Top row: Distance in cm between ground truth and the predictions in x-direction and
y-direction as a function of the number of used samples in the histogram extraction
step. Middle row: Standard deviations of the distances. Bottom row: Frequency of the
algorithm.
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Fig. 4.8: Frequency of the main loop as a function of the number of histograms in the training set.

4.6 Comparing Maps
For the map comparison, 46 possible maps have been collected using the search term
‘wallpaper’ in Google’s image search. This search term was used, since it is (i) a general
term, without any specific image categories, (ii) wallpapers are likely to have a high
resolution, and (iii) wallpapers are often visually pleasant. Only images with a minimum
resolution of 1 920 × 1 080 pixels were chosen. Images with a higher resolution were
converted to 1 920 × 1 080 pixels. For each image, we generated 1 000 random image
patches using the synthetic data generation tool described in Section 3.4.2, followed by
the histogram extraction (Section 3.3.2) using the same texton dictionary for all maps.
This yielded a labeled dataset of histograms and corresponding positions. For each map,
we determined the expected overall loss based on the method described in Section 3.4.2.
The compared maps were then sorted according to their estimated loss.

In Table 4.4, the results of the map evaluation procedure for the N = 46 maps are shown.

Tab. 4.4: Results of the map evaluation procedure on synthetic data

Statistic Value

mean 0.81
median 0.79
standard deviation 0.10
max 0.98
min 0.58

Figure 4.9 shows the map with the highest global loss value and the map with the lowest
global loss value.

4.6 Comparing Maps 35



Fig. 4.9: Left: Image with the lowest loss value [41]; Right: Image with the highest loss value [44]
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5Discussion

In this chapter, the results of the experiments are discussed with regards to accuracy and
frequency. Afterward, in the General Discussion, we address the research questions and
indicate directions for future research.

The comparison between random sampling and full sampling (Section 4.1) has shown
that only a small part of the maximum amount of samples in the histogram extraction
step is necessary. In fact, 1000

301625 = 0.33 % of the maximum amount of samples suffice to
achieve cosine similarities greater than 99 % between the texton histograms. This sets the
stage for large speed-ups during live operation and allows for executing the main loop of
the algorithm in real-time. In contrast, the full sampling technique—where a kernel is
convolved over the entire image—would require 10 seconds to process one image.

The experiments addressing the “Speed versus accuracy trade-off” (Section 4.5) show that
with an increasing accuracy of the approach, the frequency of the algorithm decreases.
However, the errors reach a plateau after which no large improvements can be expected
at the lower end of parameter ranges. By optimizing the parameters, one can obtain
localization errors below 50 cm with the developed approach.

The flight tests showed the real-world suitability of the method. It yields slightly less
accurate results than the unfiltered homography-finding method. While we did not test the
frequency of the homography-based approach on board of an MAV, on a desktop computer,
it took 200 ms per image. Therefore, the developed algorithm runs at a much higher
frequency. The training set generation based on the homography method yielded higher
errors in the flight test. Filtering the estimates of the homography-method first could
improve the accuracy. The triggered landing (Experiment 4.4.4) showed good accuracy:
while most landings were triggered inside the landing zone, two out of the six landings
were outliers. However, their distance to the landing area were rather small, with an
average distance of 16 cm.

The evaluation of different maps using the synthetic data identified high differences
between the evaluated images. The range of losses from 0.58 to 0.98 underlines the
varying suitability of different maps for the developed algorithm. The image with the
minimum and the one with the maximum loss value are shown in Figure 4.9. The different
patterns of the images are visible: while the image with the minimum value roughly fulfills
the desired properties—closeby areas have similar color values, distant areas are dissimilar,
the image with the maximum loss is mainly black resulting in similar histograms all over
and leading to high loss values. The image with the lowest loss value still has a loss of
0.58 and, therefore, leaves room for improvement. Adapting the texton dictionary to each
image to make them better suited for the respective image could lead to different results.
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While we compared the settings of different parameters, there are no generally optimal
parameters for the presented framework: setting the number of textons, the number
of images patches, or the number of neighbors is dependent on the environment and
the size of the training dataset. The parameters have to be adapted to the particular
environment.

5.1 General Discussion
In this thesis, we addressed the problem of estimating x, y-coordinates in real-time and
on-board of an MAV. We identified a computer vision-based approach to be most suitable
due to the limited payload capacity of MAVs. We recapitulate the research questions
(RQs):

• RQ 1: “Can 2D positions be estimated in real-time using a machine learning approach
on a limited processor in a modifiable indoor environment?”

• RQ 2: “How can we predict and evaluate the suitability of a given map for the developed
localization approach?”

Regarding RQ 1, the conducted experiments provide supportive evidence that a texton-
based machine learning approach is able to accomplish real-time indoor localization. The
developed algorithm runs with a high frequency—32 ms per iteration with the default
settings—on a single board computer with limited CPU. Shifting processing power to an
offline training step by creating a training set and relying on random sampling are the
cornerstones of the developed algorithm. For finding a way to modify the environment in a
certain direction, we introduced RQ 2. In the scope of this research question, we developed
a framework for evaluating different maps based on an ideal similarity of histograms.
To answer RQ 2, we still have to evaluate, whether the regions with a high loss value
within an environment are actually the regions where the algorithm performs worse. We
also still need to investigate whether the results of the synthetically generated images
generalize to the real-world. The requirement here is that maps that follow the ideal
similarity distribution in the synthetically generated images also follow this distribution
after being recorded with a camera. Or stated differently, for maps with a low loss value,
distant image positions should neither have similar histograms in the synthetic images nor
in real-world images.

Despite the overall promising results of our localization algorithm, we noticed drawbacks
during the flight tests and identified several directions for future research that are described
in what follows.

The accuracy—that is the difference between the estimates of the motion tracking system
and the texton-based approach— could be further improved by combining the presented
global localization technique with a local technique. To this end, odometry estimates using
optical flow or the inclusion of data from the inertial measurement unit (IMU)—which is a
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sensor that measures the angular displacement and acceleration of the MAV— could be
suitable.

The current implementation assumes constant height up to few centimeters and only small
rotations of the MAV. While a quadroter can move in every direction without performing
yaw movements, other MAVs or the use of the front camera for obstacle avoidance could
require them. The inclusions of images of arbitrary yaw movements into the dataset
would inflate its size to a great extent. This could lead to a deterioration of the accuracy
and increase the time-complexity of the k-NN algorithm. Instead, a “derotation” of the
camera image could be performed to align it with the underlying images of the dataset.
We developed a prototype for this procedure.1 In the prototype, the rotation is done on
the basis of data from the IMU.

While the current map evaluation approach used existing images, it could also serve as a
fitness function for an optimization approach—for example, an evolutionary algorithm—
that modifies a given image. While the solution to a loss value of zero or near zero might
be unique and independent of the original image, a higher loss value might change the
initial image only to a certain extent, yielding an “improved version of the image”, which
is better suited for the developed algorithm and still visually pleasant.

Initially, we planned to use the synthetic images (Section 3.4.2) directly as training data.
This was not successful and not further investigated: the reality gap between the synthetic
data and real-world data was too large. Figure 5.1 shows an example of two image patches,
one synthetically generated, one taken with the camera of the MAV. While the patches
can be easily identified as similar for human eyes, the texton maps, where different colors
represent different textons, are dissimilar. Blur, lighting settings, and camera intrinsics
modify low-level features of the image to a strong extent. The texton images in the figure
show that corresponding regions are classified into different textons, resulting in different
histograms. This makes the transfer from the synthetic data to the real world difficult. A
possible improvement might be to find a mapping from histograms of synthetic images to
histograms of real images, by mapping “synthetic textons” to “real-world textons.”

The presented synthetic data generation software generates image patches by drawing
samples from parametric distributions only. This was motivated by the fact that an ideal
map should be independent of previous estimates and based on single images—ideally
requiring no filtering. In the future, the synthetic flights could be performed by simulating
a continuous route above the image. This would allow testing the ability of the particle
filter on synthetic flights.

The shift of the processing power could be further amplified by using a different regression
technique. While the k-NN algorithm showed one of the best performances in our tests,
larger training data sets are penalized due to a greater prediction time. However, the

1The prototype uses an AR.Drone 2.0 and the software rospy:
https://github.com/Pold87/derotator
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Fig. 5.1: Exemplifying the reality gap. Top left: image patch generated using the synthetic data
generation tool. Top right: image patch taken with the MAV’s camera after printing the
patch. Below left: Texton image of the synthetic image. In the image, the colors indicate
the closest texton (dictionary size: 20 textons) at the respective position. Below right:
Texton image of the real image.

choice of a different regression technique is not straightforward: it should be able to
output multiple predictions, since certain map regions might be ambiguous.
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6Conclusion

This thesis presented a novel approach for lightweight indoor localization of MAVs. We
pursued an on-board design to foster real-world use. The conducted experiments underline
the applicability of the system. Promising results were obtained for real-time position
estimates and accurate landing in the indoor environment.

The approach is based on three pillars that we identified for indoor localization for MAVs.
The first pillar shifts computational effort from the flight phase to a preprocessing step.
This provides the advantages of sophisticated algorithms, without affecting performance
during flight. The second pillar states that on-board algorithms should be able to trade off
speed with accuracy. This capacitates their use on a wide range of models. Examples of
these adaptable algorithms are the random sampling steps in the texton-based approach
and the particle filter. The third pillar is a known—and possibly—modifiable environment.
This knowledge and flexibility allows for predicting and improving the quality of the
approach.

The developed algorithms set the stage for global localization in various GPS-denied
environments, such as homes, offices, or factory buildings. While the used platform for this
project was the Parrot Bebop Drone, the characteristics of the developed system generalize
to smaller MAVs in a flexible and innovative way. We hope that our indoor localization
approach will pave the way for various applications, including delivery, search and rescue,
or surveillance to support human operators in everyday life.
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