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Chapter 1

Introduction

Modern neuroscience often assumes that the mind is modular, meaning that
our minds consist of a collection of semi-distinct modules each with its own
function. Understanding how these modules are interconnected is essential to
understanding how the brain works as a whole and could potentially yield valu-
able insight into psychological disorders and neurological diseases, for example
clinical studies have already shown abnormalities in the brain networks of people
with Alzheimer’s or schizophrenia [2].

Both functional and structural brain networks are used to describe how the
different areas within the brain are interconnected. Functional brain networks
are based on the temporal correlation of brain activity, when a neuron is acti-
vated a signal is sent through its axon potentially spreading the activation to
the neurons connected to it, so it is reasonable to assume that two areas in the
brain are connected (possibly indirectly) if they show the same activation pat-
tern. Structural brain networks, however, are based on the physical structure
of the brain.

The basic structure of the brain is as follows: for the purpose of this pa-
per there are two parts that are truly important, the parts that perform actual
cognition [11] (consisting of grey matter) and the parts through which the gray
matter is interconnected (counsisting of white matter). Grey matter mainly con-
sists of neurons (including dendrites and unmyelinated axons!), glia cells> and
capillaries most of the grey matter can be found in the cortex (outer surface
of the brain), the cerebellum (found at the lower back of the brain), thalamus
and basal ganglia (both found at the center of the brain). White matter mainly
consists of thick bundles of myelinated axons, called tracts, these provide the
connections between the areas of grey matter, as a result most of the white
matter resides in an area around the center of the brain (where the thalamus
and basal ganglia are) and underneath the cortex.

At the moment one of the only ways we are able to, indirectly, observe white
matter tracts in living subjects is using weighted diffusion MRI [6]. The data
provided by a weighted diffusion MRI, or dMRI, consists of a three dimensional

1Some axons are myelinated so the signals travels faster and further. Myelin is primarily
composed of lipids, which are white, hence the name white matter.

2The different kinds of glia cells provide nutrients, structural support, immune defence and
electrical insulation to the neurons in the brain.



image where each voxel® contains information on the rate and direction of dif-
fusion. Due to their internal structure white matter tracts inhibit diffusion in
certain directions depending on the orientation of the tract, water will diffuse
quicker along the direction of the white matter tract, which is why dMRI data
can be used to infer the orientation and presence of these tracts.

The next step would be to determine what underlying structural brain net-
work gave rise to the dMRI results. Conventional methods would, after pre-
processing the dMRI data, arrive at a result by applying a simple threshold
function (regions are connected if sufficient evidence for a connection can be
found), yielding a single structural brain network. The actual method used in
this thesis is described in a framework proposed by Hinne et al in [9], the frame-
work proposes deriving structural brain networks from streamline data using
Bayesian inference. It provides a model that describes the relationship between
the dMRI data and the underlying structural brain network and yields a prob-
ability space of structural brain networks rather than just a single network.

In essence Bayesian inference is used to update the parameters of a model
(in this case the parameter is the structural brain network) based on new in-
formation (in this case the dMRI data) and describes a probability space of
updated parameters. In order to get actual results one will have to sample
the described probability space using a class of algorithms called Markov Chain
Monte Carlo Algorithms (or MCMC Algorithm), as defined by David Barber in
Bayesian Reasoning And Machine Learning [1], for calculating it in its entirety
would be utterly intractable. However depending on the number of subjects,
the resolution of the data and other factors it can still take quite a while for the
algorithm to yield results, assuming you even know the algorithm has finished.

The MCMC algorithms are all part of the broader class of Monte Carlo meth-
ods, a class of non-deterministic algorithms intended to solve problems whose
domain of possible inputs is just too large to consider in its entirety and instead
approximates the true result by considering only a limited random subset of in-
puts. The problem with this class of algorithms is knowing how large the subset
of inputs you have to consider, in order to generate a worthwhile approxima-
tion, is. The general solution to this problem is to independently run multiple
instances of the algorithm in parallel and monitor the difference between the
results they yield, under the assumption that once the subset is large enough
changing the exact input should not significantly change the approximation,
this is called Convergence Monitoring.

Which brings us to the actual problem of this thesis: can the time a Markov
Chain Monte Carlo sampler requires to converge on a solution, when used for
Bayesian inference of structural brain networks, be reduced? The framework
used for this thesis uses a Metropolis Hastings MCMC algorithm so this al-
gorithm will be used as a baseline and be compared to a couple of variant
algorithms, the Small World MCMC, the Shotgun Stochastic Search and Simu-
lated Annealing. Because these variant algorithms are intended to yield results
significantly different from the Metropolis-Hastings algorithm, the secondary
problem also addressed in this thesis is: how do the results of these different
algorithms compare to one another?

3A volumetric pixel, or voxel, is the 3d analogy of a pixel.



Chapter 2

Background

I will start by discussing the background of this project, Bayesian inference
the method used by the framework of Hinne et al to infer a structural brain
network, The model of the framework itself, how it relates to Bayesian inference
and Markov Chains a mathematical concept used in the Markov Chain Monte
Carlo algorithms.

2.1 Bayesian Inference

Bayes Theorem, named after Thomas Bayes (1701 - 1761) who was the first to
suggest it, is used in probability theory to determine probability of the param-
eters of a model in light of new information (often interpreted as confidence
instead of probability) [1]. In Bayesian theory this, the probability of the pa-
rameters of a model given certain new information, is called the posterior, in the
specific case of this project the posterior is the probability of a specific brain
network given the dMRI data. The probability of parameters of the model
without taking new information into account is called the prior.

Say one has a model with parameters # which can be used to determine
the probability of an event x, the posterior would be p(6|z) and the prior p(6),
Bayes theorem defines the relationship between these two as shown in equation
(2.1). The two two other elements used in Bayes theorem are p(z) the total
probability of event x called the marginal likelihood and p(x|6) the probability
of event x given parameters 6 called the likelihood.

p(z|0)
p(z)

Bayes theorem can be derived using the definition of conditional probability’
as follows:

p(0]z) = p(0) (2.1)

p(Olz) =2 if p(x) # 0

p(zld) =BG if p(6) # 0

p(0, ) =p(;v|9)p(9) - if p(6) #0

p(Ole) =B = 2R it p(6) £ 0
Ip(A|B) = 2



The issue with Bayes theorem is the marginal likelihood p(z) because if the
value of p(z) is not already known it is going to have to be calculated which
is likely to be computationally expensive or downright impossible. In a worst
case scenario the marginal likelihood p(z) would be determined using the law of
total probability?, but this would require integration over the entire parameter
space from which 6 is drawn, see (2.2), if this space is too large this integral
may be difficult to obtain.

p(z|0)
p0l) = o ) (2.2)

However one does not necessarily need to divide p(x|6)p(#) by p(z) in order
for the result to be useful. After all the value of p(z) is independent from 6,
even if we do not divide it by p(z) p(x|€)p(8) will still be in proportion to the
posterior and therefore still useful as a comparative measure. Alternatively,
when considering the distribution of p(|z), one could interpret p(x)~! as an
normalization constant and p(z|0)p() as a posterior distribution that has not
been normalized.

Bayesian inference is used to infer (or update) the parameters of a model
based on observed evidence. This can be achieved by calculating the entire
posterior distribution and then use it to determine the optimal parameters.
However calculating the entire posterior distribution is usually computationally
prohibitive, as the parameter space is likely to be rather large. In order to
circumvent this issue one can employ a sampling algorithm to get an approx-
imation of the distribution and use that to determine the optimal parameters
instead. The class of sampling algorithms most often used for Bayesian infer-
ence are the Markov Chain Monte Carlo algorithms, often shortened to MCMC
algorithms, these algorithms are capable of sampling non normalized probability
distributions [1, p. 598].

2.2 The Model

In order to use Bayesian inference to infer a structural brain network from
streamline data one will need a definition for the likelihood and prior. In this
case the model for the likelihood and prior has been provided by the framework
proposed by Hinne et al [9].

The posterior, or the updated prior, is defined as (2.3), where the parameter
N is the streamline data, A is the structural brain network defined as an adja-
cency matrix and at, a~ and p are the model’s hyper parameters®, whose exact
definitions will be provided later. Note how (2.3) is equivalent to Bayes theorem
without the normalization constant, as previously mentioned in 2.1 a probabil-
ity distribution can be sampled by a MCMC algorithm even if the distribution
is not normalized.

P(AIN,a*,a”,p) x P(N|A,a*,a")P(Alp) (2.3)

The prior P(A|p), is based on the Erdés-Rényi model of random graphs
described in [5]. It is a simple prior that defines the probability of the adjacency

%p(y) = [ p(y|e)p(z)dz
3Hyper parameters are parameters of the distribution of parameters.




matrix as the product of the probability of each edge (2.4), a present edge has
probability p, an absent edge has probability (1 — p).

P(Alp) =[] p* (1 —p)'—v (24)
i<j
The likelihood P(N|A,a™,a™) is a bit more complex, it is the probability of
a particular distribution of streamlines N given adjacency matrix A and a couple
of hyper parameters and requires the combination of two different probability
distributions (a multinomial and Dirichlet distribution, as discussed below).
The drawing of streamlines, of a single voxel n;;, is modelled by (2.5) a multi-
nomial distribution. Like the multinomial distribution, the process of drawing
voxels, consists of multiple trials (multiple streamlines are drawn), has results
that belong to a fixed number of categories (the non-starting point voxels) and
each category has a fixed probability (based on dMRI data that does not change
while streamlines are drawn). The number of streamlines drawn between two
voxels ¢ and j is n;; and the probability of streamlines drawn between ¢ and j
18 X4

K
P(nilz;) o< [ ] =i (2.5)
j=1

However the multinomial distribution requires a probability vector x;, a
vector that corresponds with the probability that a streamline will be drawn
between two particular voxels. This vector is based on the structural brain
network, so the probabilities reflect the structure of the brain. In the framework

this is achieved by using (2.6), a Dirichlet distribution.

K
aatt(l—aa— —
P(Ccz'\ai,aJr,a_)ocHxi;’ F1mai)a” 1 (2.6)
j=1

The shape of the Dirichlet distribution is determined by its parameters,
in this case the hyper parameters a* and a~. These parameters reflect the
probability of a streamline being drawn between two voxels if a corresponding
edge is present (a*) or absent (a”) in the adjacency matrix (remember this
adjacency matrix represents a structural brain network). Due to the values of
a®™ and a~ that were used (a™ = 1 and a~ = 0.5) the Dirichlet distribution
favours probability vectors which assign a low probability to edges that do not
actually exist in the structural brain network, the probability of edges that do
exist are irrelevant for in those cases the exponent in equation (2.6) will always
equal 0.

Both the multinomial distribution (2.5) and the Dirichlet distribution (2.6)
have a normalization constant which is being left out because the MCMC al-
gorithm does not require normalized distributions. Both are also just defined
for connectivity of a single area, or row/column in the adjacency or streamline
matrices. However the combined probabilities are easily calculated, let P(N|X)
and P(X|A,a*,a™) be the combined probabilities.

Finally the likelihood P(N|A,a™,a™) is defined using the law of total prob-
ability? by integrating the product of the multinomial (2.5) and Dirichlet (2.6)

‘p(y) = [ p(ylz)p(x)ds




distributions over X. The result of this integral is called a Dirichlet com-
pound multinomial distribution, a probability distribution that is used often
in Bayesian inference.

P(N|A,a*,a”) = /P(N|X)P(X|A,a+,a*)dX (2.7)

In short the structural brain network A is combined with a Dirichlet distri-
bution (2.6) to define a space of hidden probabilities X which is combined with
a multinomial distribution (2.5) to determine the probability of the streamline
data N. The probability of the streamline data N given adjacency matrix A
(2.7) is multiplied by a flat prior (2.4) the result of which is in proportion to
the probability of the structural brain network A given the streamline data N
(2.3), also known as the posterior.

2.3 Markov Chains

A Markov chain considers a system that undergoes random transitions between
a finite number of states, represented as a sequence of states, and holds to the
assumption of conditional independence [1, p. 489]. This means that each state
of a Markov chain is only dependent on a fixed number of states preceding it.
This number of preceding states is referred to as the order L of a Markov chain:

P(Suls1s- s 8n1) = P(SulSn_ss- - 5n1) (2.8)

So a Markov chain of order 0 is completely independent of its past states, a
Markov chain of order 1 is only dependent on its preceding state, and so forth.

The marginal distribution of a Markov chain is the distribution over states
at a certain time. It can be interpreted as the relative frequency with which
each state has occurred within the sequence, and is defined as follows with n
being the time:

p(sn = Z) = Zp(sn = Z.|3n71 = j)p(snfl = .7) (2'9)

For some Markov chains, as the time approaches infinity, the marginal dis-
tribution at that time will become independent of the initial distribution, this
is referred to as the equilibrium distribution:

p(soo) :p<soo|31) (210)



Chapter 3

Data and Methods

Next I will show the data used with this particular problem and the methods
used in this thesis. The methods include four different algorithms and a perfor-
mance measure called convergence monitoring, I will also show how the optimal
parameters for each algorithm were determined.

The algorithms covered are the Metropolis-Hastings algorithm, which forms
the baseline to which the others are compared, and the Small World, Shotgun
Stochastic Search and Simulated Annealing algorithms, which are all variants
of the former. In addition to the definition of each algorithm I will also show a
number of visualisations based on a synthetic dataset in order to further clarify
their behaviour

3.1 Streamline Data

The data used for this project was provide by Max Hinne, primary author of
“Bayesian inference of structural brain networks” [9], and was obtained and
preprocessed by the methods as described therein.

A streamline represents a possible connection between two regions of the
brain via a white matter tract. Each streamline starts at a seed voxel, a voxel
on the boundary between grey and white matter, and is drawn from voxel to
voxel based on the diffusion direction, the length of a streamline is limited to
a certain number of steps. A large number of streamlines is drawn for each
seed voxel, each connecting two areas of the brain, which results in a large
distribution of possible connections.

The streamline data consists of a matrix where each column and row repre-
sents an area of the brain and each cell shows the number of streamlines that
connect the column and row areas. The ordering of areas 1 through 116 is ar-
bitrary though the odd numbered areas correspond to the left hemisphere of
the brain and the even numbers correspond to the right hemisphere, some areas
such as the cerebellum (lower right in Figure 3.1) were grouped.
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Figure 3.1: Image based on streamline
data. The colour is based on the logarithm of
the number of streamlines between two areas.

3.2 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm algorithm, part of the class of algorithms
known as Markov Chain Monte Carlo algorithms, is an algorithm for obtaining
samples from a probability distribution. Like all MCMC algorithms it gathers
samples by performing a random walk through the sample space. Such a ran-
dom walk is described by a Markov chain, see section 2.3, where each sample
corresponds with a state in the chain. The result of a MCMC algorithm is a set
of samples.

MCMC algorithms are used when one needs to sample an probability distri-
bution p(x) for which normalization is considered intractable, the Metropolis-
Hastings acceptance function describes a Markov chain which has the normal-
ized distribution as its stationary distribution [1, p. 598]. Over time, as the
algorithm progresses along the Markov chain, it will converge on the stationary
distribution.

The Metropolis-Hastings algorithm requires a method to generate new sam-
ples in the Markov Chain, in our specific case it simply flips a random edge in the
brain network, and a corresponding proposal density G(z,x,), which describes
the transition probabilities between samples in the Markov chain. This impor-
tant part is combined with the probability density function p(z) of the prob-
ability distribution that needs to be sampled to form the Metropolis-Hastings
acceptance function a , let x,, be the proposed sample and z the current sample
then a(x,|z) is the probability with which proposed sample should be accepted
[1, p. 599], as defined by:

a(z,|z) = min (1, CW’M) (3.1)
q(zp|z)p(z)

The main drawback of the Metropolis-Hastings algorithm is that it has no
natural termination point. Over time it will converge to, and provide samples
of, the normalized probability distribution but there is no inherent indicator of
when this is occurring. Therefore it is up to the user to determine the number of
iterations N the algorithm has to perform or implement a method of convergence
monitoring, which is covered in section 3.3.



Algorithm 1 Metropolis-Hastings MCMC

1: Set the maximum number of iterations I.
2: Generate first sample ;.
3: fori=2— I do

4: Generate a proposal sample x..
_ _d(=i—1|zp)p(®p)

> = qplei0)p@i-1)

6: if @ > 1 then

7 T; — T > Accept proposal.
8: else

9: Generate a uniform random number r between 0 and 1.

10: if r < a then

11: Ti T, > Accept proposal.
12: else

13: Ti 4 Ti—1 > Reject proposal.
14: end if

15: end if

16: end for

3.3 Convergence Monitoring - Potential Scale
Reduction Factor

As briefly touched on in the section 3.2 one of the issues with these algorithms
is knowing when to stop.

Sampling is by its very nature a problem without a clear solution. Unless you
are dealing with a normalized or highly structured probability distribution, in
which case you should not be using a MCMC algorithm, there will be multiple
solutions to the problem (different sets of samples that are all representative
of the target distribution). And without comparing multiple sets of samples
to each other (or a single set to the entire space, though that is likely to be
intractable) you have no clear indication of how representative your samples
are.

As discussed earlier regardless of the starting point within the sample space
the algorithm will, over time, converge on the target distribution (2.10). If
multiple instances of the algorithm are run in parallel, each with different start-
ing points, over time the samples returned each step by the instances should be
drawn from the same distribution. For while the random walks start at different
points they will all, given enough iterations, converge on the target distribution.
By performing a statistical analysis one can determine how probable it is that
the sets of samples are being drawn from the same area in the distribution, this
probability can be used as a measure of convergence. The process of determin-
ing whether or not the algorithm has converged upon the target distribution is
called convergence monitoring.

The specific method of convergence monitoring used here is the Potential
Scale Reduction Factor discussed by Brooks and Gelman [3, p. 436]. It is based
on analysis of variance models in statistics (commonly referred to as ANOVA).
It determines how similar the sets are by comparing the variance within each
set with an estimation of the true variance.

The between variance B is defined as (3.2), a measure for the difference



between the sets of samples.

B=—""3 (. —.)? (3.2)

The within variance W is defined as (3.3), a measure for the difference within
each set of samples.

W= o s DD (Wi — ;) (33)

j=1 t=1

Both between and within variance are calculated using v;; a scalar summary
of sample t of set j, a scalar summary represents the sample in such a way that
it can be used to determine a mathematically sensible mean and variance, it
however does not have to be the actual sample. The bar denotes an average
SO 1/_1j. is the average scalar summary of set j and .. is the average over all
sets. The variables m and n represent the number of chains and the number of
samples respectively.

The true variance 6% as defined by (3.4), an overestimation of within the
entire sample space. Note that if the starting samples of the algorithms are not
sufficiently dispersed throughout the sample space c}i will be too low and this
can possibly lead to a false indication of convergence [3, p.437]. If the random
walks start in the same place they will be similar from the start, rather than
becoming more similar as the algorithm converges.

-1 B
&i:”n W (3.4)

Two of these variances, the within and total variance, are used to calculate
the Potential Scale Reduction Factor R:

. 162 -1
R:m—i— i_n

m W mn (3.5)

As the algorithm converges, R will converge to 1, if the algorithm is not
converged R will be greater than 1. An often used threshold is 1.1. Early in the
random walk R is high because the samples of all the walks taken together will
be fairly dispersed (leading to a high (ﬁr) but the samples of each individual
walk will be close together (leading to a low W). As the algorithm progresses,
until it converges, each step will increase the W and decrease &i because indi-
vidually the random walks are becoming more different (each step within the
chain will be drawn from a different area of the distribution) but collectively
they are becoming more alike (because all chains will be moving towards the
target distribution).

3.4 Alternate Algorithms

3.4.1 Small World MCMC

The first modification of the MCMC algorithm I am going to cover is, the Small
World MCMC algorithm as defined by Guan et al in their paper Markov Chain
Monte Carlo in small worlds [7].

10



As we know the probability of the MCMC algorithm accepting a new sample
is equal to its acceptance ratio, which is 1 if the new sample has a higher
probability than the current sample and lower than 1 if it does not, this means
that the algorithm has the tendency to move towards the peaks within the
sampled probability distribution. This behaviour will not be a problem if the
probability distribution is unimodal!, with a smooth slope leading to the mode,
however if the probability distribution is multimodal® the algorithm can get
stuck in one of the peaks causing other peaks to be ignored, which would skew
the distribution of samples. This problem is further exacerbated if the proposal
distribution is rather flat tailed and only really considers samples that differ
little from the current sample.

In order to resolve this issue Guan et al [7] propose to change the proposal
distribution to a more heavy-tailed distribution. In essence they propose to
turn the sample space into a Small World network, a network where one can
travel between two random nodes in a small number of steps, changing the pro-
posal distribution and method in such a way that the chance of moving from
one random sample to another random non-adjacent sample increases dramati-
cally. The proposal distribution is expanded to include “jump” proposals, which
would connect two distant areas in the proposal distribution, the probability of
proposing a jump should be small and the jump should move the algorithm far
away from the current sample.

The basic concept of the Metropolis-Hastings algorithm is easily modified
to include jumps, see Algorithm 2 lines 6 through 10. However the specific
implementation can be considerably harder. In their paper Guan et al [7, p. 3]
offer a method to determine what the jump probability and jump size should
be, but the methods require one to know certain properties of the sample space,
for example how large the areas around the mode are compared to the rest of
the space and how far the modes lie apart. Given that my knowledge of the
shape probability space is limited, and determining the shape is likely to be
intractable, I can not use these methods. Instead, in section 3.6.2, a grid search
will be used to determine the optimal parameters for the algorithm.

1A probability distribution with a single peak.
2A probability distribution with multiple peaks.
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Algorithm 2 Metropolis-Hastings with Small World proposals

1: Set the maximum number of iterations I.
2: Set the jump chance J.

3: Generate first sample ;.

4: fori=2— 1 do

5: Generate a uniform random number r between 0 and 1.
6: if r < J then

7 Generate a jump proposal sample z..

8: else

9: Generate a normal proposal sample z..

10: end if

11: _ _a@i—alzp)p(@p)

G(xzplzi—1)p(zi_1)
12: if @ > 1 then

13: T; ¢ T, > Accept proposal.
14: else

15: Generate a uniform random number r between 0 and 1.

16: if r < a then

17: Ti < Te > Accept proposal.
18: else

19: T; ¢ Ti_q > Reject proposal.
20: end if

21: end if

22: end for

3.4.2 Shotgun Stochastic Search MCMC

The Metropolis-Hastings algorithm can, for certain problems, require a large
amount of iterations to converge on a solution. Which, depending on processing
speed, can result in processing times in the order of days or weeks. An often
used strategy to optimise an algorithm is to try to redefine the algorithm so
large parts of it run in parallel. But the nature of Markov Chains does not
allow this since each step in the chain depends on the step before it you can not
calculate steps out of order. At best one could parallelize the processes within
each iteration, the parts within the for-loop in Algorithm 1 starting at line 3,
which if properly implemented are not that computationally expensive to begin
with.

The Shotgun Stochastic Search, which I will refer to as SSS, proposed by
Hans et al [8] is based on the Metropolis-Hastings algorithm and allows for
greater parallelization. At the core of this modification lies the proposal neigh-
bourhood. Unlike Metropolis-Hastings, which only proposes a single sample
each iteration, the SSS proposes multiple samples each iteration, this collection
of samples is referred to as the proposal neighbourhood. First the Metropolis-
Hastings acceptance ratio a is calculated for each sample in the proposal neigh-
bourhood, after which the sample with the highest a in the neighbourhood is
determined and accepted as the new proposal with a probability of a (just as the
single sample the Metropolis-Hastings algorithm proposes is also accepted with
a probability equal to its acceptance ratio). The result is, as intended by Hans
et al, that, on average, the sample the SSS algorithm accepts each iteration will
be of significantly higher probability than the sample the Metropolis-Hastings

12



algorithms would accept each iteration, resulting in an algorithm that quickly
moves to the nearest mode of the distribution and samples a tight area around
it.

Because a neighbourhood of proposals is considered instead of a single pro-
posals, the chance that a good proposal is considered increases significantly. In
order to further capitalize on this effect one should try to ensure variability
within the proposal neighbourhood. In their paper Hans et al 8], while mainly
considering highly dimensional problems, suggest generating the neighbourhood
by applying three different types of moves on the current sample. The addition
move adds a single variable, the deletion move removes a single variable and the
replacement move replaces a single variable with another variable (combining
a deletion and addition move). In essence this is a sampling problem, where
one samples the space of proposal samples. In the specific case covered in this
thesis, the derivation of structural brain networks, the addition, deletion and
replacement moves either add, remove or replace a single edge in the network.

However one should keep in mind that improved parallelisation is not the
main goal of the SSS algorithm, this is merely an intentional side effect of the
modification. The main goal of the SSS algorithm is to quickly provide high
probability samples found in a small area around the mode of the probability
distribution, which is significantly different from the goal of the Metropolis-
Hastings algorithm which, is to sample the entire sample space. So when using
the SSS algorithm with Bayesian inference you will not get an estimate of the
posterior distribution.

Each iteration of the SSS is far more computationally complex that that
of the Metropolis-Hastings algorithm. But the generation and evaluation of
proposals within the neighbourhood can be performed independently from one
another and can therefore be run in parallel. Ideally this would alleviate the
increase in runtime per iteration to the point where the total runtime is actually
less than that of the Metropolis-Hastings algorithm.

13



Algorithm 3 Shotgun Stochastic Search

1: Set the maximum number of iterations I.

2: Set the neighbourhood size N.

3: Generate first sample ;.

4: for i =2 — I do

5: Generate N proposals.

6: h«+0

7: for each N as z,, do

]: — fi(wifl‘xp)p(wp)

q(zplzi—1)p(zi-1)

9: if a > h then

10: h+a

11: Th < Tp

12: end if

13: end for

14: if h > 1 then

15: T; < Tp > Accept proposal.
16: else

17: Generate a uniform random number r between 0 and 1.

18: if r < a then

19: T; < Tp > Accept proposal.
20: else
21: Ti 4 Ti—1 > Reject proposal.
22: end if
23: end if
24: end for
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3.4.3 Simulated Annealing

The Simulated Annealing variant is a method for finding an approximation of
the global maximum, it was independently suggested by both Cerny [4] and
Kirkpatrick et al [10], not to provide a neat sampling of the target distribution.
The results of this algorithm is, unlike the other algorithms, the final sample it
returns and not a set of samples.

The Simulated Annealing algorithm was inspired by a form of heat treatment
used in metallurgy, called annealing, which is used to relieve internal stress of a
metal making it more malleable. In metallurgy annealing basically means one
has to heat the metal to a great temperature, typically until it glows, allowing
the atoms in the metal to redistribute relieving internal stress and then cool
it off slowly so the stress has time to dissipate completely. This concept is
applied to the Metropolis-Hastings algorithm, resulting the Simulated Annealing
algorithm, by introducing a temperature variable that regulates the mobility of
the algorithm. When the temperature is high, mobility is high as well, increasing
the probability of accepting samples with a low acceptance ratio (enabling the
algorithm to move out of a local maximum). When the temperature is low,
mobility is low as well, decreasing the probability of accepting samples with a low
acceptance ratio (forcing the algorithm to move up the slope of the probability
distribution towards the closest mode).

The actual modification is fairly simple, see Algorithm 4. The temperature
T and cooling rate ¢ are added, instead of checking if acceptance ratio a is
smaller than a random value between 0 and 1 we check if a# is smaller and each
iteration the value of t is multiplied by the cooling rate c.

Algorithm 4 Simulated Annealing

1: Set the maximum number of iterations I.
2: Set the initial temperature T'.
3: Set the cooling rate c.
4: Generate first sample x7.
5: for i =2 — I do
6: Generate a proposal sample z..
7. a = d@i-1lzp)p(zp)
q(zplzi—1)p(®i-1)
8: if min(l,a%) > 1 then
9: T; ¢ T, > Accept proposal.
10: else
11: Generate a uniform random number r between 0 and 1.
12: if r < a then
13: T; ¢ Te > Accept proposal.
14: else
15: T Ti 1 > Reject proposal.
16: end if
17: end if
18: Tc-T
19: end for
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3.5 Synthetic Dataset Simulations

The algorithms discussed above all behave quite differently from one another,
and while the differences can be understood by the differences in their definition,
it would be better demonstrated by the differences between the random walks
they perform. However the problem of brain inference does not have a probabil-
ity space that lends itself to easy visualisation, so in order to demonstrate the
differences between the random walks I will be using a synthetic dataset based
on a two-dimensional normal distribution.

The following simulations were performed using two different datasets. One
unimodal, defined by:

u(z,y,0) = e (3.6)

and one bimodal, defined by:

m(z,y,0) = 1.5 u(z — 100,y — 100, 0)
+ u(z + 100,y + 100, o) (3.7)

Both dimensions x and y are limited to integers from -200 to 200 (including
bounds), with the space is shaped like the surface of a torus, so a step “up” from
y = 200 brings you to y = —200. This was done so the proposal distribution is
identical at each point in the space and it could be left out of the Metropolis-
Hastings acceptance function. The proposal samples itself is generated using
the current sample by randomly moving to an adjacent sample in the distribu-
tion (including the diagonally adjacent samples) with an equal chance for each
possibility. The standard deviation o had a value of 60 and the mean p, while
left out of the equations below, had a value of 0.

Each chain was started at a random point in the space and performed 30 000
steps.

Metropolis-Hastings

The results of the simulations of the Metropolis-Hastings algorithms are shown
in Figure 3.2. While the Metropolis-Hastings algorithm is the standard to which
the others are compared there is something one should take note of. Theoret-
ically the Metropolis-Hastings algorithm should sample the entire space and
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should therefore be capable of moving out of an area of high probability, as
shown in the unimodal simulation. however it could still get stuck in a local
maximum due to the limited number of steps performed we are actually able to
perform, as shown by the bimodal simulation.

Small-World

The simulations of the Small World algorithm were performed with a jump
chance p; = 0.005 and a jump size s; = 200 the results are shown in Figure
3.3. The figures clearly show how the Small World differs from the Metropolis-
Hastings algorithms. Unlike the latter the jumps enable it to cover a wider
area of the probability space and is capable of moving from one mode to an-
other, as shown by the bimodal simulation. When sampling multimodal prob-
ability distributions the Small World algorithm has a clear advantage over the
Metropolis-Hastings algorithm.

Shotgun Stochastic Search

The simulations of the SSS algorithm are shown in Figure 3.4. As expected
this random walk is quite different compared to the walks of the Metropolis-
Hastings and Small World algorithms for unlike those two, which are intended
to sample the entire space, the SSS is intended to only sample areas of the
highest probability. As a result the walk of the SSS algorithm quickly moves
up the slope of the distribution, getting stuck in a local maximum if the slope
leads to one, and samples a small area around the mode of the distribution.
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Figure 3.6: Random walk of a Shotgun Stochastic Search algorithm (left) and a Simulated An-
nealing algorithm (right), both using a Small World proposal distribution.

Simulated Annealing

The results of the unimodal simulation of the Simulated Annealing algorithm
was performed using a coolrate ¢ = 0.5 and initial temperature 7" = 1, while
the bimodal simulation was performed using ¢ = 0.9995 and T" = 1000. As
these simulations show, the choice of parameters greatly influences how this
algorithm functions. The unimodal simulation basically skips the period of
high mobility and immediately has a high preference for samples that are better
than the current sample. As a result it quickly moves up the slope towards
the mode of the distribution and just like the SSS algorithm it will move to
whatever maximum lies at the top of the slope be it global or local. The bimodal
simulation however starts with a long period of high mobility performing a
random walk much like the Metropolis-Hastings’s random walk, except that it
has a greater tendency to accept moves towards a sample of lower probability.
It should be pointed out however that the high mobility does not guarantee that
the algorithm moves out of a local maximum and towards the global maximum,
the reverse can also happen.

Figure 3.6 shows the result of a bimodal simulation using a SSS and Simu-
lated Annealing algorithm both using a Small World proposal distribution with
jump chance p; = 0.005 and jump size s; = 200. While both of them do not
jump nearly as frequently as the normal Small World algorithm, what few jumps
they do perform enable them to find the global mode.

18



3.6 Optimization

Before the performance of the different algorithms using the brain inference
problem can be compared, the actual point of this entire thesis, the optimal
parameters need to be determined, these parameters can have quite a large
impact.

In the following the variable n, will refer to the number of chains used, ng
will refer to the number of samples obtained, n; will refer to the number of
iterations the algorithm was allowed to run and d will refer to the density of the
initial sample.

Please note that the error bars indicate the first quantile, mean and third
quantile of the data.

3.6.1 Metropolis-Hastings Initial Sample

As described in section 3.2 the Metropolis-Hastings algorithm does not have
any true parameters, no external variables that influence the behaviour of the
algorithm. However it does require a random starting sample, as described by
the framework in [9], which means we need to determine the optimal density of
the initial random sample.

In order to determine the optimal density R was determined using n, = 12,
ns = 1000, n; = 10° and d € {0,0.1,...,1}, this entire process was repeated 10
times, the average psrf values were used to draw Figure 3.7.
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Figure 3.7: Maximum psrf value R at iteration i of the Metropolis-Hastings algorithm

using different initial densities. The change in line colour and the horizontal errorbars
indicate the moment of convergence.

During the first 100 000 iterations, see Figure 3.7, the chains with a density
of 0 and 1 appear to have the best performance. Despite these being opposites
this is not really surprising, remember that R is low when chains are sampling
the same area (see section 3.3) and, unlike the other chains, these chains all start
at exactly the same spot in the distribution. So this is not an actual indica-
tion of better performance but rather a result of the limitations of convergence
monitoring.

A closer look at the data reveals that there is a difference of about 100 000
iterations between the number of iterations required for convergence given dif-
ferent starting densities, however the variability of the number of iterations
required is so high that it seems improbable that there is a real effect. Which is
supported by the theory behind the MCMC algorithm which states that, given
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sufficient iterations, the current sample being obtained should be independent
of the initial sample, so the initial sample should not really matter.

So I will adopt the initial density used in the framework by Hinne et al [9],
which is a density of d = 0.5.

3.6.2 Small World jump chance and size

As described in section 3.4.1 the Small World algorithm has two parameters
jump chance and jump size. Theoretically one could determine the optimal
value of these parameters mathematically (described by Guan et al in [7]) using
the properties of the distribution however practically these properties are quite
hard to determine, especially given the size of the sample space, so instead the
optimal parameters were determined using a grid search.

In order to determine the optimal jump chance and size R was determined us-
ing n. = 12, ny, = 1000, n; = 10000 and d = 0.5 for each possible combination of
jump chances p; € {0.05,0.1,...,0.5} and jump size s; € {0.1%,0.2%, ...,1%}
of edges , this entire process was repeated 10 times and the average psrf values
were used to draw figures 3.8, 3.10 and 3.11.
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Figure 3.8: Maximum psrf value R of last Figure 3.9: Number of accepted jumps n;
iteration for jump size s; and jump chance over 100 000 iterations for jump size s; and
Pk- jump chance py,.

The results of the grid search, shown in Figure 3.8, are based on a limited
number of iterations, about 50 times less than would be required for convergence,
this was done because of practical considerations for a search that required ac-
tual convergence would probably have taken nearly a year to compute. However
even this limited search seems to indicate an inverse linear relationship between
jump chance and psrf value. This effect is shown more clearly in Figure 3.10
which is based on Figure 3.8 with the jump size dimension averaged out. Both
Figure 3.8 and 3.11 do not show any relationship between jump size and psrf
value.

The lack of effect of jump size seems to suggests that either jumps are ac-
cepted and somehow jump size does not matter or, a bit more plausible, no
jump is accepted regardless of size. And by comparing figures 3.8 and 3.9 one
can clearly see that the number of actually accepted jumps, not merely the
amount of jumps proposed, has no relation to R. Furthermore remember, as
discussed in 3.4.1, each proposed jump comes at the cost of a normal step in the
algorithm, so even if each proposed jump is rejected it will still have an adverse
effect on the efficiency of the algorithm because a rejected jump still delays the
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algorithm by a single iteration. The inverse linear relationship between jump
chance and psrf value, while no relation between size and psrf value is shown,
is simply the result of the delays each proposed jump causes.

The results of the grid search seem to indicate that using p; = 0.05 and any
s; € {0.1%,0.2%, ...,1%} is optimal (s; = 40, 0.6% of edges was used). When
extrapolating from the results, especially Figure 3.10, one might conclude that
pj = 0 would be best, however jump proposals are what defines a Small World
algorithm, using p; = 0 would just turn it back into a Metropolis-Hastings
MCMC algorithm.
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Figure 3.10: Maximum psrff%value of last Figure 3.11: Maximum psrf R value by
iteration by jump chance p;, based on Figure jump size s;, based on Figure 3.8
3.8

3.6.3 Shotgun Stochastic Search
neighbourhood distribution and size

As described in section 3.4.2 the SSS algorithm has one parameter, the com-
position of the neighbourhood. The most straightforward way of determining
the optimal neighbourhood composition would be a 3d grid search, with num-
ber of replacement, addition and deletion moves each as a dimension, however
even limiting the search to a small number of increments per dimension (say
10) would result in a impractically long search. Instead I opted to split the
optimization process in two parts, first the ratio of moves and second the total
size of the neighbourhood.

In order to determine the optimal neighbourhood ratio n, = 10 chains of
n; = 5% 10* iterations were generated and every 100 iterations the type of
moves used during those iterations was stored as well as the density of the
current sample, the neighbourhood consisted of 50 of each type of move, this
was used to draw Figure 3.12. In order to determine the neighbourhood size R
was determined using n. = 12, n, = 100, n; = 5-10°, d = 0.5 for neighbourhood
size n, € {2,4,...,18}U{20,30,...,200}, with equal parts deletion and addition
moves (no replacement moves), this entire process was repeated 10 times the
average psrf values were used to draw Figure 3.13.

The distribution of what type of move is accepted is shown in Figure 3.12, a
clear pattern is established after about 3000 iterations (which is long before con-
vergence occurs), deletion and addition moves are used in roughly equal parts,
replacement moves are barely used at all while the density remains constant.
The initial sample is random, with a density of 0.5 while the density of the

21



—— Replacement 102,20
901 Addition
—— Deletion of
80r —— Density in%
708 8r
60- 7t
S 50 =6
a0
5
200
al
200
10} 3r
% 2000 00 6000 8000 1000 % 50 100 150 200
i nn
Figure 3.12: Total number of moves ac- Figure 3.13: Number of iterations required
cepted n, by type over the last 100 iterations for convergence n., maxR < 1.1, by size of
and the density of the sample. Neighbour- the neighbourhood n,,. Neighbourhood com-
hood composed of 50 of each type. posed of deletion and addition moves only.

samples at the target distribution is about 0.16, so at first there are going to
be a lot of edges that need to be removed (resulting in a lot of good potential
deletion moves) and some edges that need to be added (resulting in a decent
number of good addition moves). However this means that good replacements
moves will also be common and the Metropolis-Hastings acceptance ratio of a
good combination of two moves is far greater than either move on its own.

Figure 3.13 shows the number of iterations required for convergence using a
certain neighbourhood size n,,, initially the number of iterations drop quickly
as n,, increases but as n, reaches 50 the number of iterations required for con-
vergence levels off. The initial drop is expected for when n,, increases the neigh-
bourhood will better represent the entire proposal distribution, so the odds of
proposing one of the better moves found in the proposal distribution increases
as well. However only a single good proposal is required, as only one move
can be performed per iteration, once n,, is high enough that the neighbourhood
reliably proposes at least one good move per iteration increasing it further is
not likely to yield better results.

In order to shed some additional light on these results I ran an extra test
where multiple neighbourhood proposals were generated using neighbourhood
size n,, € {2,4,...,18}U{20,30,...,200}, consisting of only a single move type
based on either the initial random sample or the sample of the 4 000th iteration,
the maximum acceptance ratio found in each neighbourhood was stored, this
was repeated 1 000 times and used to draw Figure 3.14.

Regarding the distribution of move acceptance Figure 3.14 clearly shows
that the moves that were proposed at the start of the chain have an acceptance
ratio of an order of magnitude higher than the moves proposed after the equi-
librium had been reached. Furthermore the relative quality of each move type
also changes as expected, with replacement moves initially being an order of
magnitude better than the rest, while they are far worse after the equilibrium
has been reached.

And regarding neighbourhood size Figure 3.14 shows that while the best
move in a neighbourhood does increase with neighbourhood size this trend does
not last and it starts levelling off at a neighbourhood size of about 20.

The results found in Figure 3.12 and 3.13 seem to indicate that using a
neighbourhood size n,, = 50 while only proposing addition and deletion moves
is optimal, since proposed replacement moves get rarely chosen and the gains
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Figure 3.14: Highest Metropolis-Hastings acceptance ratio in
neighbourhood of the proposal distribution of an initial sample (up-
per three) and a post equilibrium sample (lower three).

from increasing n,, level off at about 50.

3.6.4 Simulated Annealing
cooling rate and initial temperature

As described in section 3.4.3 the Simulated Annealing has two different param-
eters, the initial temperature T and the cooling rate c. The initial temperature
determines how high the mobility of the algorithm is at the start, while the cool-
ing rate determines how fast this mobility drops as the algorithm progresses.
In order to determine the optimal initial temperature and cooling rate R
was determined using n., = 12, ny, = 103, n; = 10° and d = 0.5 for each
possible combination of initial temperature 7' € {10°,10!,...,10%} and cooling
rate c € {1 —-5-10"1,1—5-10"15 ..., 1 — 5.107°}, this entire process was
repeated 10 times and the average psrf values were used to draw figures 3.15.

10°10'10%10° 10“T105105107108 10°

Figure 3.15: Maximum psrf value R of last
iteration for initial temperature T and cool-
ing rate c.

The results in Figure 3.15 shows an unexpected pattern, the chains with
the longest period of high mobility (a high initial temperature combined with
a cooling rate close to 1) seem to converge the fastest. Intuitively this is not
what one would expect since high mobility should prevent the algorithm from
staying in a single area and should therefore delay convergence. Just in case the
grid search showed unexpected results I stored the last sample of one chain of
each possible parameter combination in the grid search. The samples of most of
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the blue area appear to be random, while the samples corresponding to chains
outside of the blue area show a pattern similar to the streamline data 3.1 and
furthermore are all identical. And they had been identical for quite a number of
iterations indicating that all these chains had already reached the peak of the
global mode.

It is surprising however that the chains consisting of mostly random samples
have such a low R value since one would expect these chains to have a higher
variance than the non-random chains. However while the between and within
variance of the random chains is much higher than that of the other chains
the ratio bﬁf;’}'ﬁ?, which is what R actually depends on, is smaller leading to a
smaller value of R.

So it appears that the Simulated Annealing algorithm performs so well that
it reaches the peak of the global mode long before R reaches 1.1 suggesting that
this form of convergence monitoring does not suffice for this algorithm. Luckily
an alternative presents it self as well. If 2 or more chains of Simulated Annealing
algorithms have reached the same sample and have stopped moving, it clearly
has converged.

The next test is a repeat of the grid search shown above except for the
number of chains which is n, = 4 and the convergence measure used. During this
test convergence was monitored using the difference between samples, defined
for samples a and b as (3.8), each iteration this differences was calculated for
every possible combination of chains. The test was repeated 30 times, and the
results were used to draw Figure 3.16.
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Figure 3.16: Number of iterations n re- Figure 3.17: Number of times ny, out of
quired until the chains become identical for the 30 tests performed, that the chains failed
initial temperature T" and cooling rate c. to converge on the same sample, for initial

temperature T and cooling rate c.

The results in Figure 3.16 show a similar pattern as the results in 3.15 except
inverted. The chains with the cooling rates close to 1 and a high initial tem-
perature converge slowly, or not at all within the 100 000 iterations performed
during this test, while the rest of the chains seem to converge in about 75 000
iterations.

Seeing as nearly the entire first column of chains, the chains with an initial
temperature of 1 which means they lack a period of high mobility, converges
just as quickly on the solution as most of the other chains, it seems as if the
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period of mobility does not add anything to the performance of the algorithm.
Furthermore, as Figure 3.17 shows, the number of times that a group of chains
fails to converge n¢ seems to depend only on the speed at which they converge,
suggesting the probability distribution is unimodal rather than multimodal.
For should the distribution have been multimodal one would expect the faster
cooling groups of chains to fail occasionally by having some of its members get
stuck in separate modes.

A Simulated Annealing algorithm with a sufficiently low temperature will
only accept proposed moves that move it up the slope of the probability distri-
bution, as an acceptance ratio of a < 1 will be drastically reduced by applying
the temperature modification when the temperature is far below 1, while an
acceptance ratio of ¢ = 1 will remain the same regardless of the temperature.
So if moving continuously up the slope of the distribution will inevitably lead
one to the mode of the distribution, which seems to be the case according to
Figure 3.17, it would be preferable to skip the period of high mobility and start
the algorithm with a low temperature and fast cooling rate.

Given these results it seems that using a fast cooling algorithm with a low
starting temperature is the optimal choice, the lowest combination of parameters
tested is T'=1 and ¢ = 0.5 so I will be using those.
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Chapter 4

Results

Finally T am going to discuss the performance and results of the algorithms.
The convergence speed, performance measured by the number of iterations re-
quired for a solution to be found, as indicated by the potential scaler reduction
factor and the runtime required to compute the required number of iterations.
Furthermore I will compare the actual results of the algorithms with one an-
other, since these algorithms are supposed to yield different results it would be
interesting to see if they each yield the kind of results they are intended to yield.

Please note that the error bars indicate the first quantile, mean and third
quantile of the data.

4.1 Convergence

The convergence speed, the number of iterations required for R to reach 1.1,
of the different algorithms was calculated using n. = 12, n, = 1000, n; = 105,
d = 0.5, a jump chance p; = 0.05 and jump size s; = 40 for the Small World
algorithm, a neighbourhood size of n, = 50 with only addition and deletion
moves for the SSS algorithm and a initial temperature 7' = 1 and cooling rate
¢ = 0.5 for the Simulated Annealing, this entire process was repeated 10 times.
The average psrf values were used to draw Figure 3.13.

Metropolis—Hastings

— Shotgun stochastic search
Small world

—— Simulated annealing

|
5 6 7 8 9 10
Iteration X 16

Figure 4.1: Maximum psrf value R at iteration i. The change in line colour and the
horizontal errorbars indicate the moment of convergence.

Figure 4.1 shows clear results, the SSS is a lot quicker, the Small World
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is a bit slower than the Metropolis-Hastings algorithm and the Simulated An-
nealing a bit faster, the Metropolis-Hastings takes n,,, = 556 - 103 iterations,
the SSS ngss = 32 - 103 iterations (0.058 times that of Metropolis-Hastings),
Smalls world n,, = 647-10° iterations (1.16 times that of Metropolis-Hastings)
and Simulated Annealing n,, = 444 - 103 iterations (0.798 times that of the
Metropolis-Hastings).

However as discussed in section 3.6.4 the psrf value may not be a good
indication of whether or not the Simulated Annealing algorithm is finished. So as
an extra measure the number of different edges between 12 Simulated Annealing
chains (60 differences it total) over 100 000 iterations has been calculated and
the results shown in Figure 4.2, it shows that the Simulated Annealing algorithm
is finished after nZ, = 72 - 10? iterations (0.127 times that of the Metropolis-
Hastings).
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Figure 4.2: Difference between 12 chains of the Simulated Annealing algorithm. The
horizontal errorbar indicates the moment the difference becomes 0.

Small World discrepancy

The difference between Small World and Metropolis-Hastings is interesting, we
know that a Small World that does not accept any jumps should be similar
in performance as the Metropolis-Hastings, allowing for wasted iterations due
to proposed (but rejected) jumps, let nl,, be an estimate of ns, without jump
proposals:

o T . 647-103
W l4p; 14005

=616 -10° (4.1)

As we can see n/,,, is still larger than n,,; there probably have been a number
of accepted jumps which deterred the algorithm sufficiently to explain the extra
60 - 103 iterations of lag, or they adversely affected the convergence monitoring.

A separate test was performed to determine the number of jumps a chain
accepts, using the same s; and p; as defined above, the results of which were
used to draw Figure 4.3. It shows that all the accepted jumps occur during the
first 10* iterations and that there are relatively few of them.

The question that remains is if these 35 odd jumps have a significant impact
on the characteristics of the chains of the Small World algorithm when compared
to the Metropolis-Hastings algorithm. In order to shed some light on this the
variance of the first 10 samples (taken over 10 000 iterations), the density and
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Figure 4.3: Number of jumps n; performed by 12 different chains of the Small World
algorithm over 10 000 iterations i. Iterations 10* to 10° were omitted because no jumps
occurred during those.

Variance Density
Metropolis-Hastings | 7.46 - 1034+0.37 - 10° | 0.25+0.005
Small World 7.84-103£0.39 - 10% | 0.26+0.004

Table 4.1: Average and standard deviation of characteristics of 1000 chains.

acceptance ratio of the 10th sample were calculated for 1 000 different chains
and the results consolidated into table 4.1.

The density is a rough indicator of the algorithm’s progress, the samples of
target distribution have an average density of 16% so as the algorithm progresses
the density of the samples will also become 16%. As table 4.1 show the density
at 10 000 iterations is practically the same for both algorithms just after the
Small World chains have stopped jumping. So while the first 10 Small World
samples have increased variance compared to the Metropolis-Hastings samples,
it seems that that the jumps have not actually impeded the progress of the
algorithm but that they throw off the convergence monitoring.

4.2 Runtime

While the number of iterations required for convergence can be quite interesting,
the actual real-world time required for the computations to be completed is also
of concern. The Small World and SSS algorithms are both significantly more
complex than the baseline Metropolis-Hastings algorithm and this increase in
complexity could completely undo the advantage the SSS has.

The runtime of a single iteration was determined by performing 10 000 it-
erations of each algorithm and measuring the time it took to compute each
iteration. The runtime until convergence was determined by measuring how
long it takes to perform the required number of iterations, as determined in sec-
tion 4.1, this process was repeated 24 times. Both these tests were performed
using the parameters as defined in section 4.1 and the results are shown in table
4.2. Note that the SSS algorithm was not using any parallelisation for this test.
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t; (ms) 7 -t (ms) te (8)
Metropolis-Hastings 0.535%0.148 | 0.535£0.148 450+33.3
Small World 1.17+2.45 1.3242.75 1083+12.9
Shotgun Stochastic Search | 23.2+0.479 | 1.054+0.0216 | 1018+116.6
Simulated Annealing 0.547+0.14 0.49+0.12 350+22.5
difference measure 0.06+£0.02 55.4+3.36

Table 4.2: Average and standard deviation of the runtime of a single iteration, a weighted iteration
and until convergence.

Shotgun Stochastic Search parallelisation

As discussed in section 3.4.2 one of the major advantages of this algorithm is that
the generation and evaluation of the neighbourhood could be run in parallel,
potentially yielding a significant increase in performance.

Matlab offers parallel computing in the form of the parfor loop, while this
loop is convenient to use it does come with significant overhead. Using this loop
to run multiple chains in parallel works, because the overhead is relatively small
compared to the runtime of a single chain, but using it to parallelize processes
within a single iteration just is not feasible. It is still possible to determine the
efficiency of a SSS algorithm run in parallel by comparing the performance of a
parallel SSS with 12 threads available to it to the performance of a parallel SSS
with only a single thread available to it, this way the overhead is present under
both conditions.

The performance of a the parallel SSS algorithm was tested by performing
10 000 iterations with neighbourhood size n = {24,36,---,120} once using
12 threads and once using a single thread and measuring the time it took to
compute each iteration, the result were used to draw Figure 4.4. Let ts551 be
the runtime when using a single thread, ¢,5512 when using 12 threads and e, be
the efficiency of using parallelisation defined as e, = tts—lf
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Figure 4.4: The reduction in runtime when using a parallel
Shotgun Stochastic Search instead of a single threaded Shotgun
Stochastic Search over different neighbourhood sizes. Only 12
threads available.

As Figure 4.4 clearly shows a parallelised SSS algorithm is considerably faster
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than one that is not, with efficiency increasing as neighbourhood size increases.
However a single iteration, when using a neighbourhood size of 50, takes 65.7
ms to compute, still considerably longer than the non parallelised version. The
results of this test can be used to determine an estimate of how fast ¢., from
section 4.2, would be for the SSS algorithm had it been possible to paralellise it
without a large amount of overhead, let ¢/ be this estimate:

t!, =t. - e,(50) = 1018sec - 0.0421 = 42.8sec (4.2)

c =

4.3 Comparison of samples

As discussed in sections 3.4.1 through 3.4.3 while the Small World, SSS and
Simulated Annealing algorithms are all based on the Metropolis-Hastings algo-
rithm they are all intended to yield different results. Consider figures 4.5, 4.6,
4.7 and 4.8 each shows the average connectivity matrix of 12 000 samples ob-
tained once every 100 iterations after the algorithm in question had converged,
pe reflects the probability of an edge being present in a sample.

Figure 4.5 shows the result of the Metropolis-Hastings algorithm, this will
be the baseline to which the other results will be compared.

20 40 60 ) 20 40 60 80

Figure 4.5: Metropolis-Hastings average of Figure 4.6: Small World average of 300
300 post-convergence samples. post-convergence samples..

Figure 4.6 shows the results of the Small World algorithm. As discussed in
section 3.4.1 the Small World is intended to, during sampling, jump between
the different modes of a multi-modal distribution. Yet with this particular
problem the algorithm stops jumping after about 8 000 iterations, as shown
in Figure 4.3, long before convergence is reached. So when the samples were
obtained the Small World algorithm actually behaved as a Metropolis-Hastings
algorithm (which was confirmed by monitoring the number of jumps performed,
zero, during sampling), no wonder that that figures 4.5 and 4.6 are virtually
indistinguishable.
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Figure 4.7: SSS average of 300 post-convergence Figure 4.8: Simulated annealing average of 300

samples. post-convergence samples.

The results of the SSS and Simulated annealing, shown in Figure 4.7 and 4.8
respectively, are quite different from the Metropolis-Hastings results. calculate
The SSS algorithm is intended to aggressively pursues high probability samples,
as discussed in section 3.4.2, and ends up sampling an smaller area much closer
around the mode of the distribution than the Metropolis-Hastings algorithm.
This is reflected in the results by the samples being less varied in Figure 4.7.
Most edges have a probability p. that is either 0 or 1, they are usually either
present or absent in all samples, compared to the Metropolis-Hastings results.

As discussed in section 3.4.3 the Simulated Annealing algorithm is designed
to quickly provide a single high probability sample. Where the Metropolis-
Hastings samples a large area around the peak of the distribution, the Small
World samples multiple areas around multiple peaks and the SSS samples a
small area around the peak, the Simulated Annealing moves to the top of the
peak and then stops. The 300 samples taken after the algorithm had converged
were all identical as every edge in Figure 4.8 has a probability p. of either 0 or
1, which is only possible if every sample was identical.

In order to put the difference between the results in clearer contrast the
results found in figures 4.5 through 4.8 were consolidated into a single histogram
found in Figure 4.9, note that the height of the first bin in the histogram was
divided by 10 so a reasonable y scale could be used. It shows the effects found

2000~
[l Metropolis—Hastings
[ Small World
150 15000 [ IShotgun Stochastic Search
[l simulated Annealing
< 1000~ 110000
500~ 5000
0 W\Iﬂm\lﬂr—\\lﬂhwlﬂ \Iﬂm\lﬂm\lﬂﬁ\
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pe

Figure 4.9: Comparison of edge probability in figures 4.5, 4.6, 4.7 and 4.8. Warning
the n. of the first bin, 0 to 0.1, was divided by 10 in order to improve readability.
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in the other figures a bit more clearly. The distribution of edge probabilities of
the SSS results clearly favour e, € {0,1}, compared to the Metropolis-Hastings
and Small World, while the probabilities of the Simulated Annealing results are
exclusively either one or zero.
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Chapter 5

Conclusion

There is no clear winner, which algorithm is best depends on your needs and
how much effort one is prepared to put in the actual implementation.

The Small World algorithm is designed to be used to sample a multi-modal
distribution, it is supposed to jump from mode to mode providing samples of
each, something the other algorithms are unlikely, practically unable, to do.
Yet while the simulations of section 3.5 do show that given the right probability
distribution the Small World algorithm will behave in this fashion, the results of
the optimization tests in section 3.6.2 show the algorithm behaving as a normal
unmodified Metropolis-Hastings algorithm (except for the first 10 000 iterations
when it will jump about 40 times). In addition the Simulated Annealing test,
and to a lesser extend the others, suggest strongly that the probability distri-
bution of this brain inference problem is a unimodal distribution. So given that
it worsens performance, see section 4.1, while yielding the same results I would
advise against using the Small World algorithm for this particular problem.

The Simulated Annealing algorithm is the fastest of the algorithms evalu-
ated, assuming you are using the alternate method of convergence monitoring,
see section 3.6.4, otherwise it will be about as fast, both convergence and run-
time wise, as the Metropolis-Hastings.

The SSS algorithm, for this problem, does require far less iterations to con-
verge than the Metropolis-Hastings algorithm, while actually requiring more
time per iteration, which in the end causes it to take about 2.5 times longer to
converge than the Metropolis-Hastings algorithm, see table 4.2. However the
algorithm does allow for parallelisation, so given the right implementation it
could actually end up being significantly quicker than the Metropolis-Hastings.
Theoretically it could even be faster than the Simulated Annealing, assuming
a near perfect parallelisation, since it requires less iterations to converge than
even a Simulated Annealing algorithm using the alternate convergence method.

However there is still the problem of convergence monitoring, which in most
cases requires running multiple chains of the algorithm, by doing so one already
has an opportunity to run parts of the calculation in parallel which could negate
the advantage of the SSS completely. The SSS algorithm could be faster than
a Metropolis-Hastings algorithm by taking advantage of any unused parallel
processing power, however if multiple chains are going to be calculated there
may be no parallel processing power left unused. Having said that, in theory
the number of iterations required for convergence should be relatively constant
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within a single type of problem, so in theory you would not be required to use
convergence monitoring all the time.

In the end though these algorithms are all designed to yield different results,
which one you should use depends on your needs. If you only need a single
model (in this case a structural brain network) with a high, possibly highest,
posterior you should definitely use the Simulated Annealing. If you need more
than one model but they all need to have a high posterior use the Shotgun
Stochastic Search. And if you need a general, non specific, sampling of the pos-
terior distribution use the normal Metropolis-Hastings. And if these algorithms
perform unreliably, if their convergence speed is inconsistent even though the
parameters are, the distribution may be multi-modal and chains may be get-
ting stuck in different modes, in which case you should probably use the Small
World algorithm (or use a Small World proposal distribution with any of the
other algorithms).

So in conclusion for the purpose of Bayesian inference of whole brain net-
works using a Small World algorithm would not be better than the Metropolis-
Hastings and using a SSS or Simulated Annealing algorithm can be beneficial,
depending on your exact purpose, implementation and hardware.
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