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Abstract

This study presents methods, results and conclusions used and drawn from an attempt to cluster
fMRI brain activation patterns in an unsupervised manner in order to retrieve a categorization
in a set of nouns denoting objects. Over the last few years, a lot of work has been done on
the classification of neural responses patterns corresponding to the presentation of different ob-
jects or concepts, sometimes called brain reading. Here, we try to infer a categorization from
such a set of neural response patterns based only on the similarities between these patterns. By
assigning each neural response pattern for the presentation of an object to a cluster in a multi-
dimensional space, a categorization in the set patterns can be induced. Furthermore, clustering
methods are used to address the question which number of clusters is most plausibly present in
the pattern set. As it turns out, an experiment design with long inter trial intervals and multiple
stimulus presentations is critical for such an approach to be successful.
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Chapter 1

Introduction

Over the past few decades, machine learning methods have been used in hundreds of ways to
solve complex or time-consuming classification problems. In a wide range of research topics,
machine learning has shown to be a quick and efficient way of retrieving information and as-
signing patterns to their appropriate class. When used together with human physiological data,
machine learning methods could be used to either recognize individuals or evaluate the state in
which an individual is. For the first problem, applications like handwriting recognition, speaker
recognition and writer identification are already in use in everyday life. The second problem,
identifying the state of an individual, implies methods like facial expression recognition and
emotion recognition in speech. Logically, a next step would be to be able to infer what cogni-
tive state a person is in, or even what a person is thinking about. To do this appropriately, one
should know how concepts are organized in the brain. Obtaining a hierarchy of how the brain
organizes objects could really increase the understanding and recognition of human thought. In
this thesis, one possible approach to this problem is explored.

Quite recently, human state recognition has been taken one step further to the level of clas-
sifying neural activity patterns. This means that classification of human thought has already
come within reach. Machine learning methods have been applied to the problem of classify-
ing human brain activity associated with different nouns (2). Models have been trained that
are able to retrieve nouns belonging to specific neural activity patterns. Others have applied
machine learning methods for detection and classification of fMRI patterns in the visual cortex
(3). In (3), participants were looking at a picture drawn from one of ten classes, after which
the classifier could correctly identify from which of those classes the image was drawn, based
on the neural activity corresponding with the trial. Measuring the neural response to objects
further along the object visual pathway has also shown to pay off (4). It was found that widely
distributed and overlapping patterns of neural responses in the ventral temporal cortex could be
used to correctly classify image viewing trials.

This kind of research has been rapidly gaining ground, with techniques now even being
able to classify neural patterns excluding visual areas (5). Furthermore, the model used by
Shinkareva et al. was able to classify trials using a classifier trained only on neural patterns of
other participants. This shows that neural patterns are present, can be identified using machine
learning algorithms and are robust enough to be generalized among different human subjects.
This has implications for the use of this kind of brain reading in real life situations. Classifying
neural patterns elicited by the thought of a certain noun category could be used as a paradigm in
brain computer interfaces. Or even better, applied as a fast way of communication by concept
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Figure 1.1: Spatial and temporal resolution of several brain function assessing methods.
Adapted from (1).

with locked-in patients. When applied with the appropriate concern for ethical issues, these
methods can be used in crime suspect interrogation (6). Methods could be used to gain insight
in the thoughts of seriously autistic children or give us new insights in diseased like Alzheimer.
On a less serious note, brain reading could be used in games.

Where these studies offer a way to distinguish between predetermined classes of objects
(e.g. tools and dwellings (5)), in this thesis we try to infer a hierarchy in a set of objects based
only on the characteristics of the neural activation patterns that presentation of these objects
elicits. The difference is that while previous work has been done in a top-down fashion, here
we will attempt to use a bottom-up fashion, where the only source of information is the data.
This yields possibilities for finding new structures in the way the brain organizes the object set.

Functional magnetic resonance imaging (fMRI) has shown to be the appropriate tool for
research of this kind. As a noninvasive imaging method, fMRI has some advantages over
other imaging and electrophysiological methods for assessing brain function. In comparison
with its most direct competitor positron emission tomography (PET), fMRI does not require
radioactive injections and has a relatively high temporal resolution. Due to its high spatial
resolution in comparison with electrophysiological methods for assessing brain function such
as electroencephalography (EEG) and magnetoencephalography (MEG), fMRI offers a detailed
view in the workings of the different parts in the human brain. Though their temporal resolution
is much higher than that of fMRI, electrophysiological methods suffer from a trade off between
invasiveness and localization accuracy. It is mathematically impossible to uniquely identify
the locations of the neural sources that cause a given pattern of activity on the skull. This
problem, also called the inverse problem, limits the value of using EEG and MEG in creating
maps of brain function (7). More invasive electrophysiological methods such as ECoG, which
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uses electrodes planted on the cortex, have a higher spatial resolution, but their use involves
medical risks for the subject and a very restricted pool of subjects for empirical studies. As can
be seen in Figure 1.1, fMRI offers a fairly high spatial resolution, with the big drawback being
its somewhat low temporal resolution. Though this lack of temporal resolution puts constraints
on experiment design, fMRI has emerged as the most widely used tool in neuroimaging studies.

In this thesis, fMRI data is used. Neural activation patterns are extracted from fMRI data
used in a study by Rueschemeyer et al. (8). In that study, participants were shown words
corresponding to objects in one of two classes. Objects were either functionally manipulable
(FM) or volumetrically manipulable (VM). The FM class contains objects such as a cup and
a pen, that need manipulation to be of use. The VM class contains objects such as a bookend
or a clock, which can be manipulated, but also function when they are not. Standard event
related fMRI analysis has already been performed on this data, yielding significant differences
in particular brain areas. We try to retrieve these classes using machine learning techniques on
the individually acquired trial specific neural activation patterns.

In the experiment by Rueschemeyer et al., stimuli were presented with an 8 second inter
trial interval (ITI). This relatively short interval, combined with the low temporal resolution
of fMRI and the slow nature of the blood-oxygen-level dependent (BOLD) signal that fMRI
measures, puts heavy constraints on the possible analysis methods. In previous brain reading
studies, stimuli were either presented multiple times or with a large interval to get a more
reliable estimate of the neural activation corresponding to a stimulus presentation. For example,
(9) propose an ITI of around 20s to obtain a good estimate of activation for a single trial. The
problem with ITI’s of this size is that an experiment will take a very long time and participants
might easily lose their concentration after a while.The question is whether neural activation
patterns for individual trials can be extracted from fast event-related fMRI experiments with an
ITT in the range of 8 seconds. Such an extraction method would allow for online classification
of brain activation in a reasonably fast setup. One of the challenges in fMRI research is to find
methods that are capable of dealing with such ITIs.

One exploratory method of machine learning is unsupervised clustering, algorithms that try
to partition a set of patterns so that all patterns in a subset show a high similarity while the
similarity between subsets of patterns is kept low. These methods perform their classification
based only on the features in the patterns and the relationship between different patterns. An
optimal clustering of patterns contains compact and well-separated clusters. Over the years,
different clustering methods have been proposed, the most common being agglomerative al-
gorithms which combine clusters in a bottom-up fashion with each pattern starting out as a
cluster, and error-minimizing methods such as the k-means algorithm. The latter one tries to
find cluster centroids such that the total distance of patterns from cluster centers is minimized.

In this thesis, we try to retrieve a categorization in nouns from neural activation patterns
derived from a fast event-related fMRI experiment. For this, an fMRI data set already known to
contain two classes is used. In the set of nouns, we expect to find groups of which the members
have similar neural activation patterns. If any, we expect to find the distinction between FM
and VM words. The groups or clusters of neural activation patterns are found using various
unsupervised clustering methods and different clustering validity assessment methods are em-
ployed to assess the found clusterings. More precisely, we will derive trial-specific patterns
from a data set by (8) and cluster these patterns in order to retrieve the FM and VM classes.
Along with this, attention will be given to possible other existent classes in the data set.
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Chapter 2

Theory

2.1 BOLD functional magnetic resonance
imaging

Since the late 1960s, research has been conducted on measuring magnetic resonance (MR) in
biological tissue, early applications including detection of cancerous cells in rats. Through
the past few decades, MR has evolved to fMRI ((7) for an extensive overview). Magnetic
resonance imaging (MRI) makes use of the magnetic properties of protons. A strong magnetic
field is induced with an excitation pulse, forcing the protons to magnetically align with the
field and in this process absorb energy. When the magnetic field is removed, the protons return
to their original state, emitting a certain signal to a receiver coil. The protons return to their
equilibrium state at a different rate, depending on the kind of tissue in which they are contained.
This creates a contrast between different kinds of tissue.

] \ Gray Matter \ White Matter \ Cerebrospinal Fluid ‘

T 900 ms 600 ms 4000 ms
b 100 ms 80 ms 2000 ms

Table 2.1: Values for time constants 77 and 7> at field strength of 1.5 T. From (7).

The detected signal M,y at time ¢ depends on two tissue-specific time constants: T1 is the
time it takes a proton to return to the original energy level, T2 is the time it takes to retrieve
its original magnetic orientation. Table 2.1 shows the differences in these values for different
kinds of brain tissue. Equation 2.1 shows how M, depends not only on the original signal M,
but also on the values of 77 and 7>. Furthermore, M., depends on the time between an excitation
pulse and data acquisition (TE) and the time between different excitation pulses (TR).

M,y (1) = Mo(1 — e TRITr) e~ TE/T> 2.1)

A contrast can be created by setting TE and TR such that M, is high for one kind of tissue,
while it is low for another kind of tissue. This gives equation 2.2 for the contrast between
tissues A and B. Different kinds of TE/TR combinations elicit different contrasts, the most
common being 7i-weighted contrast which shows differences in T1, and 7> or 75 -weighted
contrast which uses differences in T2.
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In blood oxygenation level dependent (BOLD) fMRI, the most commonly used fMRI tech-
nique, the magnetic properties of hemoglobin, the oxygen transporter in blood, are used. Active
neurons need more oxygenated blood and it is believed that there is a correlation between neu-
ral activation and the amount of oxygenated blood in a brain area. Oxygenated hemoglobin
(Hb) has no magnetic moment, but deoxygenated hemoglobin (dHb) has a significant magnetic
moment. In very strong magnetic fields, this difference is magnified. During the late 1980s, it
was found that a contrast could be made based on the amount of Hb. From this, images could
be constructed showing where in their brain there was more Hb and thus more neural activity.
Over time, the signal on 75" images shows a particular shape for activated brain areas, called the
hemodynamic response function. Though the actual shape may vary across individuals, brain
areas or even sessions (9), a canonical function can be drawn as in Figure 2.1.

Canonical hemodynamix response function
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Figure 2.1: Canonical hemodynamic response function, derived from the Matlab SPM toolbox.

fMRI experiments are usually aimed at localizing brain areas that are involved in a certain
cognitive task. In a review of 275 fMRI and PET studies, Cabeza and Nyberg present an
overview of the broad range of subjects for which fMRI has been applied (10). Applications
of fMRI range from attention, perception, language and all kinds of memory studies. Most of
these studies use either a blocked design or an event related experiment design. In a blocked
design, two or more different conditions are presented in an alternating pattern, e.g2. ABABAB
for conditions A and B. In an event-related design, stimuli are presented as individual trials,
their order being independent of the condition they belong to. In slow event-related designs,
the time between trials allows for the BOLD signal to return to its original state. In fast event-
related designs, methods such as linear regression, deconvolution and finite impulse response
(FIR) deconvolution have to be used to retrieve activations.
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2.2 Unsupervised Clustering

We attempt to apply unsupervised clustering methods to patterns of neural responses to stimuli.
These methods produce a clustering of the nouns, from which we try do infer a categorization
in the brain in a bottom-up fashion. According to (11), clustering is the unsupervised classi-
fication of patterns (observations, data items or feature vectors) into groups (clusters). It can
be noted that the clustering problem has been adressed in a broad variety of disciplines be-
cause of its usefulness as an exploratory step in data analysis. In this thesis, we employ several
clustering algorithms. Figure 2.2 offers a coarse taxonomy for different kinds of clustering
algorithms. The most important division here is between algorithms that work bottom up, se-
quentially grouping smaller clusters into bigger clusters, starting with the individual patterns
and partitional algorithms, that divide the whole set of patterns to optimize some objective

function.

Clustering

— —

Hierarchical

Partitional

Single Complete Square Graph Mixture Mode
Link Link Error | |Theoretic| | Resolving | | Seeking
k-means Expectation
Maximization

Figure 2.2: A taxonomy on unsupervised clustering. From (11).

Apart from this, other dimensions can be thought of on which to locate clustering algo-

rithms. Jain et al. propose some issues, the most important of which are:

e agglomorative vs. divisive. Methods are either agglomorative (starting with one cluster
per pattern, then merging clusters) or divisive (starting with all patterns in one cluster,

then splitting cluster).

e hard vs. fuzzy. Clusterings can be hard (each pattern can only belong to one cluster) or

fuzzy (patterns can have degrees of membership for several clusters).

e deterministic vs. stochastic. Deterministic methods have only one possible outcome,
while stochastic methods may have several possible outcomes, depending on the order in

which the patterns are clustered.
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We will apply both agglomorative and divisive methods to the pattern set obtained by the pre-
processing steps. We will only use hard clustering methods, since we assume a strict categoriza-
tion among words for this problem. Methods to be used can either be deterministic (e.g. single
link clustering) or stochastic (e.g. error-minimizing methods such as k-means clustering). All
used clustering methods will be introduced in depth in Chapter 3.

In their 2001 review on clustering validation techniques, (12) identify four stages in the
unsupervised clustering process:

1. Feature selection
2. Clustering algorithm selection
3. Validation of results

4. Interpretation

For feature selection, this thesis relies on literature from the brain reading field. Regarding
the second step, selecting a clustering algorithm, we will compare the results of different algo-
rithms and try and find which methods are most suitable in this case. Validation of results can
happen internally, based on the metrics of the found clusters. Clusters that are compact and
well-separated are thought to be more valid then overlapping clusters. External validation is
also possible, where validity equals the found clustering’s similarity with an other partition, in
this case the predefined categorization in the stimulus set. The last step, interpretation, depends
solely on the view of the researcher.

In addition to this, (11) and (13) propose a step between step 1 and 2. Measuring clustering
tendency can save a lot of work. If the pattern set seems to random, there is no need to cluster,
since all found clusters will not be any better than those of a random pattern set. In our case
however, we assume that there are clusters present among the stimulus set because this has al-
ready been shown by (8). Therefore, our hypothesis is that the patterns we find have a tendency
to cluster.

2.3 Machine Learning in fMRI classification

Over the past decade, large advances in so-called "brain reading’ have been made. In their paper
on brain reading, (3) pose the brain reading problem as a pattern recognition problem where
’given a pattern of brain activity across space at a given point in time as measured by fMRI, a
pattern recognition approach seeks to infer what percept a subject was experiencing’. In short,
a pattern of activity over a set of voxels is extracted for a visually presented object after which
this pattern is fed to a classifier together with its label. The classifier learns a mapping between
patterns and stimulus categories. In a test session then, the classifier is fed new patterns for
which it should correctly predict the category of the corresponding stimulus. This means that
the brain reading problem consists of two stages, pattern extraction and classifier learning, and
an additional test phase.

While approaches differ in the methods used in pattern extraction as well as the used clas-
sifiers, all brain reading methods use an approach similar to the one posed in the previous
paragraph. Results have been promising, with classifiers being able to make distinctions be-
tween faces and objects (4), animal species (3) or tools and dwellings (5). Furthermore, While
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these three examples are impressive as they are, new approaches taken by (2) and (14) yield
even more subtle distinctions between thousands of nouns or visual stimuli. These approaches
make use of intermediate semantic levels (Figure 2.3) or receptive field models, while earlier
approaches used simpler linear discriminant classifiers, support vector machines or gaussian
naive Bayes classifiers (3), (5).

Predictive model

@
stimulus 8 predicted
“c";cl’;rj — o AW — activity for
y “celery”
) y
@®
O
[
Intermediate Mapping learned
semantic features from fMRI
extracted from training data

trillion-word text
corpus

Figure 2.3: The brain reading model used by (2). The model uses an intermediate semantic
features level to which each word is encoded. After that, the model predicts an fMRI image as
a linear combination of fMRI signatures associated with the semantic features. From (2).

While brain reading approaches have been successful, the goal of this thesis is rather dif-
ferent from that of brain reading studies. Our problem has its first stage in common with that
of brain reading, that is retrieving a neural activation pattern for a presented stimulus. But in-
stead of then feeding this pattern to a classifier together with its label so that the classifier can
learn a distinction between classes, an unsupervised clustering method does not leak any class
label information. Instead, we try to infer a hierarchy based solely on the structure available
in the pattern set. Therefore, the work in this thesis does not make use of methods posed for
the second stage of brain reading, but instead only builds on pattern extraction methods used
in brain reading studies. These should have advantages over standard fMRI techniques, since
they try to infer stimulus-specific activation patterns, while event-related or blocked design
fMRI techniques infer patterns per condition.

Brain reading techniques differ in the way that patterns are extracted. Pattern extraction
methods heavily depend on the experiment design. Some studies deconvolve an average re-
sponse over several repetitions of the same stimulus or category to allow for short inter trial
intervals (e.g. (14),(3),(5)), while other studies use baseline conditions and long trials to al-
low for a trial-specific response to be found. In a tutorial on machine learning classifiers and
fMRI, (15), the authors introduce several methods to obtain activation patterns from data. One
method is to use the Percent Signal Change (PSC) relative to a baseline. An other method is to
take the mean signal strength over all scans in a trial. A third method using linear regression is
proposed in (15), where a pattern consists of 3 values for each voxel or signal. As we will see,
for several reasons this is the best approach to our problem. In the same tutorial, it is stressed
that the number of features should not exceed the number of patterns. Therefore, the number
of features should be used, either through selection of particular Regions Of Interest (ROIs) or
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dimensionality reduction methods such as PCA or ICA. In the methods section, We will further
elaborate on the lessons learnt from brain reading.
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Chapter 3

Methods

The approach to fMRI analysis described in this thesis consists of two clearly distinguishable
stages. The first stage amounts to pattern extraction and feature selection, while in the second
stage the found patterns are used to retrieve a hierarchy among stimuli. In Figure 3.1, an
overview of the approach as a whole is given. Along with this overview, this chapter describes
which steps were taken.

As has been described in Chapter 2, for the first stage of our pipeline we have built on
existing brain reading techniques, since our pattern extraction stage has a lot in common with
the brain reading pattern extraction stage. In the present chapter, the experiment setup and
resulting data set will be explained. Then, preprocessing steps and further processing steps
will be described. In section 3.3, the general linear model and its workings will be explained.
These steps all lead up to sets of patterns to be explored in the clustering steps. Section 3.4 will
introduce each clustering method and the way it has been applied to our data. The last part of
this chapter describes ways to measure validity of clusters.

Clustering
Linkage
Dimensionality
reduction
R Singularv_al_ue | General linear R K-means R .
Data > | decomposition " model > > Categorization
neti
Brodmann's a?irietL?n
areas 9
N\ L
Spectral
clustering
N\ £

Figure 3.1: Overview of the pipeline approach used in this study.
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Figure 3.2: Standard temporal pattern for a trial. A trial consists of 4 stages: random jitter,
fixation, stimulus presentation and variable ITI.

3.1 Data set

All analysis in this thesis is done on a data set by (8), that was gathered in an fMRI experiment
which was part of a study on the distinction between objects with different manipulability. The
objective was to see if there is a distinction between neural activation caused by viewing of
either Functionally Manipulable (FM) objects, that need manipulation to be of use (e.g. a cup
or scissors) and Volumetrically Manipulable (VM) objects, that do not necessarily need manip-
ulation to function (e.g. a bookend or a clock). Here, I will briefly introduce the experiment
and the characteristics of the data set.

3.1.1 Experiment setup

All FM and VM objects were represented by nouns. The list of VM and FM words was matched
for relevant linguistic parameters, such as length, familiarity, imageability and frequency. There
were 100 stimuli (40 FM, 40 VM, 20 nonwords) that were each shown once to a subject in an
event-related design. Furthermore, there were 20 trials where there was no stimulus. This totals
to 120 trials per subject. Subjects had the task to read each word thoroughly and respond to
nonwords with a button press. Each of 120 trials was made up of four phases, which can be
found in Figure 3.2. After an initial jitter of 0, 500, 1000 or 1500 ms and a fixation cross pre-
sentation of 300 ms, the target word was shown for 2000 ms or until a response was recorded.
After that, the trial was filled up with an ITI so that every trial lasted exactly 8000 ms. After
that, a new trial started with the same pattern.

3.1.2 Data acquisition

The following specifications are taken from (8). Functional images were acquired on a Siemens
TRIO 2.0 T MRI System (Siemens, Erlangen, Germany) equipped with echo planar imaging
(EPI) capabilities, using a birdcage head coil for radio frequency transmission and signal re-
ception. The scanner acquired BOLD images (TE = 20ms, TR = 2000 ms) with a voxel size of
3.5 mm x 3.5 mm x 3.5 mm. Furthermore, it acquired anatomical images with a voxel size of 1
mm x 1| mm x 1 mm.
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3.1.3 Data preprocessing

Data went through several preprocessing steps using the SPMS5 (Statistical Parametric Mapping,
www.fil.ion.ucl.ac.uk/spm) Matlab package. For every session, the first 3 volumes were
removed to allow for 77 equilibration effects. Body registration was applied along 3 translations
and 3 rotations to correct for small head movements. This resulted in 6 motion registrations,
which could be used in the GLM to account for subject movement. The time series for each
voxel were realigned temporally to acquisition of the middle slice to correct for slice timing
acquisition delays. Images were normalized to a standard brain and resampled at a voxel size
of 6 X 6 X 6 mm as a first step in reducing the number of dimensions.

Because our fMRI signals were made up of £ 15 minutes of volumes each, it was inevitable
that there was some low frequency scanner drift in the data. As is usual and advisable in the
field of fMRI analysis (16), we applied a highpassfilter to the data that removed any noise with
a frequency below a particular threshold. In event-related fMRI experiments, values between
ﬁ Hz and ﬁ Hz for the cutoff point are typical. We chose the same value that (8) used, that
is 1—50 Hz. The cutoff point chosen makes sure that we do not lose the BOLD response, which
has a period that is much shorter. The result is a signal more situated around its baseline, which
makes regression results more reliable.

The resulting data set consisted of data for 14 subjects, each subject scanning session having
around 480 volumes. After standardizing and resampling, every volume consisted of 27 x 32
x 25 voxels. Stimulus presentation onsets were registered so that they could be mapped to the
acquired data. Though stimulus labels were also available, we did not use these until the cluster
validation step in order not to leak any information to the clustering algorithms.

3.2 Dimensionality reduction

The second step in our approach is dimensionality reduction, in this case bringing down the
number of possible features to be used in the clustering analysis. With only 80 critical patterns
(FM and VM) per clustering analysis, it is important to reduce the number of features to a value
well-below 80. High dimensionality is not so much a problem in standard fMRI experiments,
where voxel activations are analyzed in a univariate manner and a large number of voxels
would only increase computation time. But for brain reading high dimensionality is a problem,
since an abundance of features make classification very easy for the training cases, but causes
overfitting and thus very low generalizability for new cases. Though reducing dimensionality is
necessary for a good clustering analysis, it has its drawbacks. We run the risk of losing perhaps
very subtle information while going through the process of dimensionality reduction. We could
easily throw the baby out with the bath water in averaging over signals or just removing signals,
that is using methods too coarse for this type of signal. We should not forget that the signal
to noise ratio in fMRI is very low, which means that the signals are very fragile. A good
dimensionality reduction method should make sure not too lose the signal.

There are multiple ways of reducing dimensionality in fMRI data, both in standard fMRI
analysis and in brain reading analysis. In cognitive fMRI studies, it is common to focus only
on a part of the brain that the task or stimuli are already known to activate. This reduces the
number of voxels to be analyzed and thus the feature space. This approach, using regions of
interest (ROIs) has been used in e.g. brain reading studies, where experimenters were just
looking at activations in the visual cortex. As an other example, experimenters interested in
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language might focus their analysis on brain regions known to be associated with language.
A review on 275 fMRI and PET studies by (10) shows that ROIs have been used in studies
on a broad variety of cognitive tasks (e.g. attention, perception, working memory ,episodic
memory).

We could use a ROI approach like this on our data, but this would not suit the goal of this
study. We try to infer an object hierarchy from the brain on a purely data driven basis. Of course
we already know that there should be a class distinction in the motor cortex, but by narrowing
our search down only to the motor cortex we run the risk of missing object distinctions that
are not associated with manipulability. These might as well be registered in other parts of
the brain, which means that we might miss new and unexpected hierarchies. Apart from this,
narrowing our analysis down to just one part of the brain would be too much like peaking, since
we increase the chance of finding the manipulability class distinction. But if we would apply
our approach to a whole new set of nouns with no intended distinction, we could not use a ROI
approach. For generalizability of our approach thus, it is better to do a whole-brain analysis.

An other way to bring down dimensionality is to combine chunks of voxels and derive a
signal from each of these chunks. Basically, this is what also happens in spatial down-sampling,
where nearby voxels get combined and an average signal is calculated for the new, larger voxel.
Note that this step in preprocessing left us with 27 x 32 x 23 = 19872 voxels. If we were to
perform an extra step of down-sampling to bring the number of voxels down to around 40,
we would have to concatenate chunks of % =497 voxels. Voxels combined to one chunk
might be in completely different brain regions, could exist of non-neural matter or could even
be outside the brain. This would leave each chunk with a lot of noise. Averaging over such
a chunk would probably throw away all interesting signal. Instead, it makes more sense to
combine voxels that are in the same brain region, because on the basis of the similar function
of neurons in the same brain regions, we can assume that they would respond in a similar way
to stimuli. Furthermore, such an approach would only take into account in-brain and neural
matter. Instead, we used two other techniques.

Area Comments
12 Too small for detection.
14 | Only for non-human primates.
15 | Only for non-human primates.
16 Non-existent.
26 Too small for detection.
27 | Only for non-human primates.

Table 3.1: List of Brodmann’s areas excluded from our analysis.

3.2.1 Brodmann’s areas

In their review on 275 fMRI and PET studies (10) use Brodmann regions (Figure 3.2) to
describe the localization of cognitive components. It is of course possible to divide the brain
into areas based on other criteria, but both the functional characteristics of the Brodmann’s areas
and their size make them the ideal candidate for this problem. Their nature is such that we can
still oversee the dimensionality of the obtained patterns, while functional similarities within
areas are preserved. Since in the human brain there is only a limited number of Brodmann’s
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Figure 3.3: Korbininan Brodmann’s anatomical description of the brain, based on the organi-
zation of neurons he observed in the cortex. From (17).
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Figure 3.4: Labeling of voxels by mapping our brain to a standard brain. The left subfigure
contains the mapping of Brodmann’s area 4 (primary motor cortex) on the brain of subject 3.
The right subfigure shows Brodmann’s area 4 on a standard brain, adapted from (18).
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areas, averaging over Brodmann’s areas would bring the size of neural activation patterns down
from 19782 to somewhere around 40, depending on the number of areas mapped. For every
Brodmann’s area, we average the signals of the voxels in that area to get one signal. For this,
we map our brain to a standard Brodmann’s area brain atlas ((19), (20)) using the Fieldtrip
Matlab package. This leaves us with quite accurate estimates of the brain regions (Figure 3.2).
Due to the size of our voxels and the characteristics of the mapping procedure, some areas did
not get any signal. Table 3.2 lists the areas that were excluded from our analysis. In total, 41
Brodmann areas were included.

3.2.2 Principal component analysis

An other way to go would be to use dimensionality reduction techniques that are based solely
on the information in the data. These multivariate techniques transform the set of signals to a
new coordinate system based on components, where the first component explains the greatest
variance in the data, the second coordinate the second greatest variance and so on. Two of
these techniques are very commonly used in the field of fMRI analysis, either as a stand alone
analysis method (21) or in combination with existing methods such as linear regression (22),
(23): independent component analysis (ICA), which tries to find components that are statisti-
cally independent, and principal component analysis (PCA), where components only have to
be uncorrelated. A third method, singular value decomposition (SVD) is less used, but yields
results identical to those of PCA in less time and is thus a worthy opponent of PCA.

Component analyses are used as an exploratory analysis in many fields of research, since
they have the capability of translating a large set of variables to a much smaller set of compo-
nents. In our case, we would have to run a component analysis on the set of 19872 voxel signals
and take an acceptable number of components from this to reduce the number of dimensions in
the clustering analysis, but on the other hand get as good a representation of the original signals
as possible. To get pattern lengths similar to those of the Brodmann’s area approach, we would
have to take around 40 components. On the other hand, there are some statistical restrictions
to the number of components used. A rule of thumb is to use those components that together
make up 99% of the variance in the data.

Of the three methods proposed here, ICA is the most commonly used in fMRI. ICA could
be applied either spatially (sICA, finding a set of mutually independent activation images) or
temporally (tICA, finding a set of mutually independent time courses). Furthermore, one could
use spatio-temporal ICA (stICA), which finds a trade off between independence in time and
independence in space. Using either sICA, tICA or stICA has yielded good results compared to
SVD and PCA methods (24). The big drawback in using ICA is its computation time, which by
far exceeds that of PCA and SVD. When differences between SVD/PCA and ICA performance
are small, one might want to use the computationaly more attractive SVD/PCA approach. As
(25) points out, using ICA on fMRI data is all about separating signals of interest (e.g. task-
related signal, transiently task-related signal) from signals not of interest (e.g. physiology-
related signals, motion-related signals). As ICA does, SVD and PCA try to find components
that explain the variation in the data. These components however have to be uncorrelated,
but not independent, which makes computation faster. Box 3.1 shows the calculation steps in
PCA and SVD. As this box shows, both methods generate eigenvectors as components. The
difference is in the calculation. PCA uses a covariance matrix, the generating of which could
take a lot of time when using 17982 signals. SVD calculates the components directly on the
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data, thus taking less time. Therefore, we chose to use SVD as our method of data-driven
dimensionality reduction.

Principal Component Analysis Singular Value Decomposition
1. X =N x d data matrix, with one

row vector ¥ per signal. 1. X = N x d data matrix, with one

row vector x" per signal.

2. Subtract x from each x".
2. Subtract x from each x".

3. Calculate covariance matrix of -
X. ¥ 3. Solve X =USV

4. First M columns of V are M

4. Find eigenvectors and eigenval- o
principal components.

ues of .

5. First M eigenvectors are M
principal components.
Box 3.1 PCA and SVD calculation steps.

3.3 General Linear Model analysis

The dimensionality reduction stage outputs sets of either 41 or 50 signals for each subject. In
the univariate GLM stage, we induce a response for each stimulus from each of these signals
using linear regression. For each stimulus then, we get either 41 or 50 B-values, one for the
strength of the stimulus’ regressor in each signal. These -values make up the patterns to
be analyzed in the unsupervised clustering stage. The basis for using a GLM in fMRI data
analysis is very strong, with model-based approaches like this one being used in a majority of
fMRI studies (7). Most GLM fMRI studies use the SPM Matlab package (Statistical Parametric
Mapping, www.fil.ion.ucl.ac.uk/spm), which also contains options for preprocessing and
statistical assessment.

Using a general linear model in fMRI analysis implies making the assumption that the
fMRI data is a linear model made up out of model factors with parameter weights and an added
amount of noise. Though most fMRI studies use a GLM approach, it is debatable whether the
linearity assumption holds when the same stimuli are presented with a small interval (26), (7).
In that case, the refractory period of the activated brain area might cause the response to be
smaller, with the linear model overestimating the actual response. Though models that work
under a nonlinear assumption are available (27), most studies are performed under the linearity
assumption when intervals between subsequent trials are longer than the refractory period. A
good compromise is that ITIs of 6s form the boundary between seeing the fMRI signal as a
nonlinear system and assuming that the signal is linear (7). Since our experiment used ITIs of
8s, we can thus assume that we are dealing with a linear system.

X=G-B+e, X=[dxT], G=[T xR], B=[Rxd] 3.1)

In the standard GLM for fMRI (Equation 3.1), data is denoted as a matrix X with d voxels
signals as rows where the number of columns 7 equals the number of samples, the model
factors are gathered as R column regressors in a design matrix G and the parameter weights are
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represented as a vector 3, with one parameter for the contribution of each regressor. Then there
is an additional amount of unexplained signal, which is noise denoted with €. Figure 3.5 shows
the basic principles of a GLM in fMRI. Regressors in the design matrix can be thought of as
a set of basis functions that make up the signals in X. What is important here is that there are
two known variables, X and G and that there is one variable [ that is not known. This problem
can easily be solved using least squares linear regression as

B=(G'G)'G'X (3.2)

Since the design matrix models the factors in the experiment, it is important to decide
upon what regressors to use. The GLM analysis was originally performed on the whole signal
set by (8), using 13 regressors. For each of four conditions (FM, VM, Nonword, Null) there
was one regressor, there were six regressors for motion correction, one regressor for a constant
scanner baseline and there were two regressors for the derivative of the HRF in the FM and VM
conditions. These last two regressors are used to account for individual differences in BOLD
response latency. In our analysis, we use one regressor per stimulus, since we want to infer one
B-value for each stimulus instead of one B-value for each condition. Since we do data-driven
analysis, we cannot make any assumptions about which stimuli belong together. Depending on
the dimensionality reduction method taken, our design matrix will include motion regressors.
The Brodmann’s area preprocessed data will be treated with a set of motion regressors, since
motion artifacts are assumed to be preserved in the preprocessing method and thus in all signals
resulting from preprocessing. For the SVD preprocessed data, no motion regressors are used,
since the motion artifacts are believed to be captured in specific components and not in all
components. Furthermore, a baseline regressor has to be included to amount for the constant
proportion of the signal.

A stimulus regressor is made up of the convolution of the canonical hemodynamic response
(Figure 2.1) with a constant signal that has a spike at the time #; when stimulus i is presented.
Since we have 120 stimulus presentations, we have 120 stimulus regressors in our design ma-
trix. Also, there are six motion regressors and one baseline regressor in our GLM. Regression
thus takes into account all trials.

The matrix B contains either 41 or 50 -values for every trial. We can consider the rows
of the B-matrix to be the activation patterns for the trials, where every B-value is an activation
feature. Using the experiment setup files, we then match every pattern to a presented stimulus.
Of the 120 trials, we only keep the 80 trials where a VM or FM word, a critical stimulus,
was presented. Of these, we remove the false positive trials where the subject made an error
in perceiving the stimulus as a nonword. At most, subjects made 3 of these mistakes. For a
subject, we then get one pattern of B-values per critical stimulus.

3.3.1 On the use of HRF time derivatives

Most standard fMRI experiments use first order time derivatives of the condition regressors to
account for slice timing differences or shifts in the hemodynamic response due to individual
differences (28). Adding a temporal derivative shifts the HRF in time (Figure 3.3.1). Using
second order derivatives of the HRF is also quite common and adds even more flexibility to the
estimated HRF. It is common practice to include derivatives for every condition regressor. One
then has the opportunity to either contrast conditions based only on the condition regressors
or to also include the B-values for the derivatives (28). According to (16), using a temporal
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derivative has its drawbacks. Though the regression model fits the residuals better, it can reduce
the power of a 7-test because it increases variance in the residuals. A comparable empirical
GLM parameter study by (29) however states that using a temporal derivative can give a slight
advantage towards estimation of the neural response. By all means, one should be careful when
adding additional regressors to the design matrix, since they can have an effect on the estimated
responses and overfitting mistakes are easily made.

Hemodynamic response function and temporal derivative

0.025 T T T T T T
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Figure 3.6: Shift of HRF by including the temporal derivative. The blue line is the original
canonical HREF, the red line is the derivative of the HRF and the green line is the combination
of HRF and temporal derivative

In our case, taking the temporal derivative into account would mean either adding one
regressor to the model to account for hemodynamic and slice-timing delays in all conditions
or adding one regressor per stimulus to account for the possible delay in the response elicited
by that stimulus. Since we assume that we do not know which stimuli belong together, it
is impossible to group stimuli and add one derivative per group. Adding one derivative per
stimulus would mean that we would be fitting more than 240 (2 regressors per 120 stimuli, plus
additional baseline and motion regressors) on a signal of around 480 time-points. This would
mean that there are only 2 times more time-points then variables. Fitting such a model would
result in very questionable activations estimates (30). It is recommended to use at least 10 to 20
times more data points than regressors, since adding more regressors will decrease statistical
power of the model. Therefore, we do not take this approach to using the temporal derivative.
In fact, we have decided to leave the temporal derivative out. Adding just one derivative term
would mean fitting delay in 120 presumably very dissimilar hemodynamic responses with one
derivative term. This didn’t seem to make much sense either and would probably add very little
to the estimations, while increasing the chance of overfitting.
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3.4 Unsupervised Clustering

The result of the feature extraction step is a matrix 3 = [R X d| with one activation pattern
per critical stimulus. These activation patterns are to be clustered using unsupervised cluster-
ing methods. As mentioned in Chapter 2, unsupervised clustering methods can be categorized
among different dimensions. Here, we have used four different techniques that cover the do-
main of unsupervised clustering methods, ranging from simple to relatively complex methods.
Essentially, clustering tries to minimize the dispersion within clusters and maximize the dis-
tance between clusters. Several distance metrics can be used to define dispersion and distance.
Using different distance metrics can yield different results, because metrics handle e.g. out-
liers in different ways. We have employed three distance metrics (Figure 3.4) for the distance
between two patterns x and y of dimensionality n. The simplest is Chebychev or Ly distance
(Equation 3.3), where the distance is given by the minimum distance on any one dimension i.
For L or City Block distance (Equation 3.4), the metric is given by the sum of the distance
over all dimensions. The most common metric, Euclidean or L, distance (Equation 3.5), is
given by the square-root over the sum of the squared distance on all dimensions.

d(X,y)r, = argmin;|x; — x| (3.3)
n

d(x,y)r, = Y |xi — il (3.4
i=1

d(x,¥)r, = | Y (xi = yi)? (3.5)
i=1

Figure 3.7: Distance metrics Ly (green line), L; (yellow line) and L, (blue line) in two dimen-
sional space.
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3.4.1 Linkage clustering

The simplest clustering algorithms combine clusters of patterns in a bottom-up fashion accord-
ing to some combination criterion. Starting with n clusters, one for every pattern, clusters are
combined pairwise until all clusters are combined in one large cluster containing all individual
patterns. This type of clustering yields a hierarchy among patterns, where categories of pat-
terns that are similar are merged into a supercategorie. Hierarchical clustering algorithms like
these yield dendrograms which show how the clusters are united (Figure 3.8). Intuitively, this
would lead one to think that patterns corresponding to e.g. cats are clustered together as are
patterns corresponding to dogs and that these two clusters are merged at a higher level. Dif-
ferent criterions for merging exist. The most common are single link clustering and complete
link clustering, which are based on the distance between elements in clusters. We have also
employed Ward linkage, which aims to minimize the gain in error by combining two clusters
(31). One can cut off the hierarchy at a particular level to obtain & clusters.

Linkage clustering algorithms try to optimize an objective function on every merging step.
Single link clustering combines clusters on the basis of the distance between their closest ele-
ments. Pairs of clusters for which this distance is minimal are combined into new clusters. The
complete link clustering algorithm also combines pairs of clusters on the basis of the distance
between elements, but instead of taking the distance between the closest elements, it takes the
distance between the elements furthest away from each other. Ward link clustering tries to
minimize the increase in error that would result from combining two clusters. In Joe Ward’s
1963 paper, the objective is to minimize the increase in the error sum of squares ESS on every
merging of clusters. The ESS for a particular clustering is given by

k nc

ESS=Y Y d(xic, %)’ (3.6)
c=li=1

where k is the number of clusters, n, is the number of elements in cluster ¢ and d(Xj¢, X,)
is the distance between element i in cluster ¢ and the centroid of cluster c. This ESS is zero
in the original partitioning, where every element equals the centroid of its cluster and the sum
of the distances is thus zero. As the number of clusters decreases, ESS increases. For a total
of n— 1 steps, in step ¢+ Ward’s algorithm then chooses to unite two of the clusters from ¢ — 1

whose combination minimizes ESS; — ESS;_;.

3.4.2 k-means clustering

While linkage clustering is an agglomerative method, seeking to combine clusters bottom-up,
k-means clustering is a divisive method, trying to find positions for cluster centroids which
minimize the dispersion in every cluster. The algorithm starts out with k random centroids.
Every element is appointed to the nearest of these centroids. Then, every centroid is moved so
that it is in the center of its appointed elements. Again, elements are appointed to their nearest
centroid after which the centroids are repositioned. On every step, the ESS is calculated. The
objective is to minimize the ESS. Once there is no more decrease in the ESS or membership
of elements is constant, the convergence criteria are locally set to be met and the centroids that
minimize the ESS are found. Several variants of this algorithm exist, some trying to start off
with good initial centroids based on a heuristic , others having a dynamic number of clusters
k (11). The latter variant poses a solution to the problem where the exact number of groups is
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Figure 3.8: Dendrogram (a) for the single link clustering of a one-dinmensional sample set
{0,1,2,3,6,7,9,11,12,15,16,22,23,27,286} (b) using the L, distance metric.

unknown. Since the algorithm is usually very fast, we will run it several times with random
starting centroids on each combination of subject and preprocessing pipeline.

3.4.3 Genetic Algorithm

An other approach to solving clustering problems is to use a Genetic Algorithm. Such an
algorithm could find the optimal partitioning of a data set based on recombination and mutation
of a population of initially random partitionings. Typical steps in a GA are

1. Population initialization: Initialize a population of n random individuals.

2. Selection: Select individuals for recombination based on their fitness value, according to
some fitness function.

3. Reproduction: Create new individuals by recombinination or mutation of the individuals
selected in step 2.

4. Termination: After a fixed amount of generations or when a termination criterium is met,
stop. If not, return to step 2.

GAs are infamous for the high number of free parameters in their implementation. Every
fenotype, in this case a partitioning, is represented by a genotype or individual in the population.
For a clustering implementation, there are two possible representations. One can make an
integer string with length n is the number of patterns or elements. For every element, the
integer at that position denotes the number of the elements cluster. This implementation was
succesfully used by (32). The fitness function in their implementation was the inverse of the
ESS. The higher this number is, the lower the ESS is and the better the partitioning minimizes
the clusters dispersion. In step 2, the fittest individuals are selected, while in step 3 these
individuals are combined via cross-over. The drawback of using this kind of representation
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is that its length increases with the number of samples. Since complexity increases with the
length of the representation, it might be better to take a representation that is only dependent
on the number of dimensions and the number of clusters, since these values are less flexible in
our problem.

An other approach is to let the genotypes denote the cluster centroids. This yields a string
of floats as a genotype on which selection and reproduction can be performed (33). The length
of this string is [D x K|, where D is the dimensionality of the element (in this thesis either
41 for Brodmann preprocessed data or 50 for PCA preprocessed data) and K is the number
of centroids. In step 2, elements are first appointed to their nearest cluster centroid. Then,
centroids are moved so that they are at the centre of their appointed elements. Then the fitness
is computed on the float string as a whole. Again, fitness equals the inverse of the ESS. Note
that this technique is quite similar to the k-means algorithm. The difference is that we run a
whole population of k-means algorithms at the same time and try to find the optimal centroids
position by searching as large a portion of the search space as the population size permits.
In k-means, we are restricted by the initial positions of the centroids. The question is whether
running a batch of k-means yields the same results as running a GA. In that case, using k-means
would be the best choice because of its low computational cost.

In our implementation, we use the centroid coordinate representation by (33). Our fitness
function is the same as that in (33) and (32), that is the inverse of the ESS. In their paper,
(33) propose methods for recombination and mutation which we adopt. For crossover, simple
single-point crossover is used, where two parent genotypes generate two new genotypes. For
chromosomes of length /, a random integer is generated in the range [; —/ — 1] and the portions
of the chromosomes lying to the right are exhanged to produce two new offspring. On mutation,
a small number +3 is added to the float v at a random position in the genotype. For selection, we
use tournament selection, where two random parents are drawn from the population, crossover
is performed and the fittest of these four is put into the new population so that the size of the
new population is equal to that of the old one.

3.4.4 Spectral clustering

As a fourth clustering method we employed spectral clustering. In contrast to the other three
clustering methods, spectral clustering does not cluster on the position of the patterns in high-
dimensional space, but on the basis of a similarity matrix derived from the patterns. The spectral
clustering algorithm is extensively described in a tutorial by (34) and in a paper by (35). In the
latter paper, six steps in the spectral clustering process are described in a way that is reproduced
here. Given our set of patterns S = {sy,...,s,} in RP, where D is the dimensionality of the
patterns that we want to cluster into k subsets:

llsi—s:|12
1. Form the affinity matrix A € RP? defined by Ajj= exp(M) ifi# j,and A;; = 0.

2062

2. Define D to be the diagonal matrix whose (i,i)-element is the sum of A’s i-th row and
construct the matrix L = D~1/2AD~1/2

3. Find xp,x;...x; the k largest eigenvectors of L and form the matrix X = [xjxp...x;] €
RP* by stacking the eigenvectors in columns.

4. Form the matrix Y from X by renormalizing each of X’s rows to have unit length.
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Figure 3.9: k-means clustering (a) and Spectral clustering (b) on a 2-dimensional data set.

5. Treating each row of Y as a point in R, cluster them into k clusters via k-means or any
other algorithm that attempts to minimize distortion.

6. Assign the original points s; to cluster j if and only if row i of the matrix ¥ was assigned
to cluster j.

This algorithm tries to find clusters based not on the points in high dimensionality, but only
on the points in k-dimensionality. Then, the original data points are mapped onto the clusters
in k-dimensionality. This method has shown to outperform simpler methods like k-means in
many situations, for an example see Figure 3.4.4. One could think of spectral clustering as a
method that creates a graph representation of the data and then removes particular vertices to
split the graph in k pieces. These pieces then are the clusters. The decision on what vertices
to cut is based on the eigenvalue decomposition and this decomposition is based on the affinity
matrix A. The way in which this matrix A is formed, is very important. Here, we have used
the function proposed in step 1, but many other functions are possible. In our implementation,
there is one important scaling parameter ¢, which defines the affinity between patterns. The
higher © is, the faster the affinity between two patterns falls off with the distance between the
patterns. One option to find an appropriate value for ¢ is trying out different values and then
picking the value that minimizes cluster dispersion. We have used a self-tuning technique for
this.

3.5 Cluster Validation

We want to infer a hierarchy of nouns based on clusters of neural activation patterns, but in
order to make claims about the reliability of the obtained partitioning of patterns, we need to
have some measure of validity of this partitioning. Furthermore, having a measure of validity
can help determine the optimal number of clusters k in the data. This in fact has by far been
the most common application of cluster validity techniques (13). Methods to assess cluster
validity can be roughly separated into two categories (36). Internal validity is based only on the
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characteristics of the found clusters and their patterns. External validity assessment methods
measure the similarity between a found partitioning and an other, possibly known to be present,
clustering. Numerous methods exist, but here we will present two internal validity indices and
the single external validity index used.

3.5.1 Internal Validity

Different interval validity measures have been proposed. Usually, such measures allow for an
investigation into the optimal number of clusters. If we take the clustering in Figure 3.4.4, we
would say that there are three clusters there. One for each circle and one for the bowl. We
could run a k-means or spectral clustering algorithm on this data with different values for k and
measure the validity of the clustering for each k. If we have a good validity measurement, we
would then find that three is the optimal number of clusters in this dataset.

The Dunn cluster validity index is based on the maximum cluster dispersion and the min-
imum intercluster distance ((37),(38)). When we have n. clusters in a d-dimensional dataset,
we will get a Dunn index of

: . d(cbcj)
D = min min - 3.7
i=l.ne | j=itl..nc \ max (diam(cy)
k=1...n.
dleicj) = min {d(x,y)} (3.8)
diam(c;) = max {d(x,y} 3.9
pige

P

Here, equation 3.8 denotes that the distance between two clusters is given by the distance
between their closest pair of members. In equation 3.9 the diameter or dispersion of a cluster
is given as the distance between its two most distinct members. Equation 3.7 shows how in the
partitioning a pair of clusters is found with minimal intercluster distance, while on the other
hand the cluster with maximum intracluster dispersion is found. Separating the first by the latter
will yield an index that is high for compact and well separated clusters but low for clusterings
where clusters are very close to each other. Note that the distance between clusters is measured
in a way that is similar to that used in single and complete linkage clustering.

While essentially very simple, this method has some drawbacks. The main disadvantage of
the Dunn index is its sensitivity to noisy data. When a cluster is compact, but has a few outliers,
the actual diameter of the cluster could easily be misestimated. This effect is strengthened
when outliers of neighbouring clusters are close to each other. A better way would be to define
cluster dispersion as the average distance to a centroid and use the distance between centroids
as a measure of intracluster distance.

The Davies-Bouldin index for cluster validity matches these criteria (39) . It measures
the average of similarity between each cluster and its most similar one by using a similarity
measure R;; between clusters

R,'j: Sl-iisj,dij:d(vi,v]')ﬂi: : ZEcid(x,vi) (3.10)
dij ||l x
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Figure 3.10: Davies-Bouldin index for the first two principal components in the Iris data set.
The figure on the left shows the patterns in 2D-space. The figure on the right shows different
values for the Davies-Bouldin index for different values of n,.

where v; and v; are the centroids of cluster i and cluster j respectively, ¢; is the i-th cluster
and ||c;|| is the number of patterns in cluster i. The Davies-Bouldin index is then given by the
average of the minimal value of all R;;’s for every i or

DB:—ZRi (3.1D)

e i =3

where

Rl' = max .(Rij),l': ...n, (3.12)
j=Ll..ng,i#j

A demonstration of this method in order to find the optimal number of clusters in a dataset
can be found in Figure 3.10. The first two principal components where taken from a PCA on
Fisher’s Iris data set (40). It is clear here that the blue datapoints denoting the Iris Setosa are
linearly separable from the red and green datapoints which denote Iris Virginica and Iris Versi-
color. Based on this plot, a value of n, = 2 seems to be the best setting for a k-means algorithm.
The subfigure on the right, where the Davies-Bouldin index is plotted against different values
for n., shows the same. Since a low index means that clusters are not similar, n, = 2 seems to

be the best pick.

3.5.2 [External Validity

External validity measures are based on the similarity between the found partitioning ¥ and an
other, external, partitioning Y’. Both Y and Y’ have length n equal to the number of patterns
in the dataset, where each pattern X; has an assigned cluster k. We assume that the number of
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clusters in both partitionings is equal to n.. In clustering methods, the labelling of clusters is
often quite arbitrary. A cluster could be labelled 1 in one k-means run, while in another run it
gets the label 2, depending on the order in which the random centroids where placed, while the
patterns in each cluster are the same on both runs.

A similarity measure between partitionings should ignore the values of the labels and only
take into account which patterns do and which patterns do not share the same label. The
index proposed by William Rand (41) does just that. A [n x n| matrix R is formed for each
clustering, where R;; is 1 if X; and X are in the same cluster and O if they are not. Then, matrix
Y= 1—abs(R—R') is formed. This matrix has values 7;; is 1 if two patterns are in the same
cluster in both partitionings or if they are in different clusters in both clusterings. Otherwise,
this value is 0. The number of zeros of this matrix is then taken and divided by the total number
of possible pairings to yield the Rand index with

N
ZYij

i<j

N
()

This index always has a value between 0 and 1. A value of 0 means that two clusterings
are maximally dissimilar, a value of 1 means that they are identical. We will use this method
to assess how well the found clusterings match the distinction we already know to be present
in the data set, that is the difference between FM and VM words. The clustering to which all
found clusterings will be matched has a label 1 for all FM words and a label 2 for all VM
words. Though we keep in mind that there is the possibility of finding more than only this class

distinction, we know this distinction to be at least present in the stimulus set. It thus offers a
good baseline to compare our clustering results to.

cv,Y) = (3.13)
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Chapter 4

Results

The methods introduced in Chapter 3, up to the point of unsupervised clustering, have been
applied to our data set. All preprocessing steps were taken to the point where there were 28
pattern sets, one for each dimensionality reduction method performed on each subject session.
Each pattern set consisted of 78 to 80 patterns, depending on the number of errors the subjects
made in the lexical decision task. Here, the results of running the different algorithms will be
presented. For every clustering configuration, we can look at both the interval validity, using
Dunn and Davies-Bouldin index, and the external validity, taking the Rand index with relation
to the FM-VM labeling of the patterns. Chance level for the Rand index lies at 50%. Further-
more, we will make a qualitative estimation of the best clustering results obtained (measured
by internal validity) to see by eye if the obtained hierarchy contains any semantic information.

4.1 Linkage Clustering

Complete, single and Ward linkage clustering have been performed on the data. Here, external
validity is given by the Rand index of the two main clusters, obtained by cutting off the hier-
archy at one step from the top. Figure 4.1 shows the external validity for all pattern sets, one
plot per clustering configuration. For both single and complete link clustering, distances L,
L and L, have been used. For Ward linkage, only distance L, was used. As we can see, the
external validity values are centered a bit below chance level. There seems to be little similarity
between the FM-VM labeling and the found clusters. This might be because linkage clustering
algorithms often produce one large cluster and one small cluster at the top level. The Rand
index between such a clustering and an evenly spread clustering equals 0.5, because for half
the pattern pairs there is no difference between the two clustering. In fact, both single linkage
and complete linkage seem to give clusterings with an extreme ratio between clusters sizes, an
example of which can be found in figure 4.3.

An other interesting thing to look at is the similarity between subject-specific clusterings.
Figure 4.2 contains a mesh plot of the between-subject Rand indices, where we see a peak
similarity value between subjects 2 and 4 on L, ward linkage clustering. Though this looks
promising, when looking at the pattern distribution we see that the average cluster size ratio in
single link clustering is =~ 79 : 1 with a SE of only 0.25 pattern. In Ward clustering, thisis ~ 73 :
7 with a SE in the larger cluster of 7 patterns. It is highly unlikely that such pattern distributions
contain information about the inherent classes in the pattern set. High intersubject Rand indices
are either artifacts of extreme cluster size ratios, as with the single link and complete link
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methods, or of a large difference between cluster size ratios, as we have seen in calculating the
similarity between found clusterings and FM-VM labeling. In fact, the cluster size ratios of
subjects 2 and 4 in Figure 4.2 are 61:19 and 43:37. The difference between these two values,
as the large variation in intersubject Rand indices, lead to the assumption that the peak value is
probably caused by such algorithmic artifacts.

Brodmann preprocessed SVD preprocessed
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Figure 4.1: External validity of different linkage clustering configurations. S means ’single’, C
means 'complete’, W means *Ward’. Ly, L and L, stand for the different linkage metrics. The
figure on the left shows the distribution for the Brodmann preprocessed patterns, the figure on
the right shows these for the SVD preprocessed patterns.

The internal validity of linkage clustering results can give an indication for the correct
number of clusters. Internal validity indices are either minimal (Davies-Bouldin) or maximal
(Dunn) when intercluster distance is maximal and intracluster dispersion is minimal. We can
determine the optimal number of clusters by cutting off the dendrograms at different levels
and calculating the interval validity for the obtained clusterings. As we can see in Figure 4.2,
cutting off a single linkage clustering dendrogram at one level from the top would leave us
with a cluster size ratio of 78:1:1. This will lead to a monotonous trend in internal validity
index for these kinds of clusterings, with the optimal number of clusters being the number of
patterns n. Though mathematically correct, this is very uninformative, since we are looking
for some general similarity among patterns. Therefore, we choose to perform this analysis on
the combination of linkage algorithm and distance measure that yields the fairest cluster size
ratio between the two largest clusters. This is true for complete linkage clustering using Ly
distance metric, with an average ratio of ~ 56 : 24 for sets preprocessed using Brodmann’s area
dimensionality reduction and ~ 62 : 18 for sets preprocessed using SVD. Also, we calculate
the internal validity for Ward clustering using L, distances, the second best configuration in
terms of cluster size ratio. The fact that there is a difference between these two preprocessing
methods suggest that there might be a difference in the optimal number of clusters for the
different preprocessing pipelines as well. Results of both analyses can be found in Figure 4.4,
where we show the results for an analysis using Ward linkage and Euclidean distance. What
the graphs tell us is that for both configurations there is an optimum in Dunn index and Davies-
Bouldin index at k = 2 when SVD preprocessing is used. Calculating the Davies-Bouldin index
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Figure 4.2: Intersubject Rand index, SVD preprocessed patterns clustered with L, distance
Ward clustering.

on the Brodmann preprocessed data yields optima at k = 2 as well, but the Dunn index for these
clusterings seems to increase monotonously. This could be due to the lowdimensional nature
of the Dunn index, as explained in Chapter 3.

4.2 k-means Clustering

k-means clustering and the consecutive validity analysis was performed on the data. Only L
and L, distance were used for k-means clustering. As for the linkage clustering algorithms,
it is interesting to look at the cluster size ratios when k = 2. These are ~ 42 :38 £ 11 and =
41 : 394 12.5 respectively for Brodmann preprocessing and SVD preprocessing. The external
validity relative to the FM-VM labeling for all 28 datasets is given in Figure 4.2. Validity
measures for each subject were calculated as the average over 100 k-means runs. As we can
see here, the external validity values are somewhat below chance level. Of interest is also the
similarity between clusterings for different subjects. These values are given for both L; and
L, distance in Figure 4.2. Here, we see that there is very little similarity between clusterings
of different clusterings when k = 2. Using other values for k yields similar results, with the
similarity values centered around 0.5 The fact that the cluster size ratio is more symmetric
here than with the linkage clustering algorithms, and the observation that here the intersubject
similarity is very low, supports the idea that the high intersubject similarity values for the
linkage clusterings was a mere artifact of the skewed cluster size ratios. The internal validity
for different values of k showed a preference for k = 2, similar to the preference of the linkage
clustering.
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Single linkage clustering dendrogram
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Figure 4.3: Typical single link clustering dendrogram of SVD preprocessed pattern set.
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Figure 4.5: External validity of k-means clustering configurations.

4.3 Genetic Algorithm

We found that the genetic clustering algorithm yields results that are very similar to that of
the k-means algorithm. On a population of 100 individuals or possible clustering, the genetic
algorithm was run for 40 generations on each data set. We found that the external validity
of the found clusterings was, as was the case with the linkage and k-means clusterings, cen-
tered around chance level. Taking a closer look at another performance measure for the genetic
algorithm, the sum of squared distances within the found clusters, we see that these are approx-
imately equal to those of the k-means algorithm for each data set (p > 0.99) in a one-factor
ANOVA). When competing against an individual k-means run, the genetic algorithm seems to
get some optima that the k-means algorithm misses, but when running against a batch it always
yields the same dispersions. Performing the between cluster external validity analysis with the
genetic algorithm yields similarity values that are equal to that of the k-means algorithm. All in
all, the genetic algorithm seems to yield the same results in this approach. As was mentioned in
Chapter 3, the genetic algorithm approach can be of use when there are multiple local optima
in the fitness landscape and we do not want to be restricted to the original location of the cen-
troids in the k-means algorithm. In such a scenario, using a genetic algorithm could be of use,
since its individuals cover a large area of the fitness landscape. However, here it seems like the
fitness landscape of this clustering problem is quite simple and that running a batch of k-means
algorithms yields the same results with a lower computational cost.

4.4 Spectral Clustering
Spectral clustering was performed on the feature sets, using standard affinity matrices based on

Euclidean distance. We found that the external validity was centered around 0.5 with a very
small variance. The cluster size ratio in these clusterings was similar to that of the k-means
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Figure 4.6: Intersubject validity for spectral clustering.

algorithm, so we can say that the external validity is an estimate of the similarity between
the found clustering and the FM-VM labeling. Rand similarity between data sets is shown in
Figure 4.6. The corresponding landscape is very flat, with outliers only reaching a similarity
value of. Comparing Davies-Bouldin indices for different values of k gives an estimate of the
number of clusters in the data set. Here we see an optimum at k = 2 (Figure 4.7). This supports
the results we got from the k—means internal validity measures.

4.5 Group analysis

There are multiple ways to combine the data sets of all the subjects into one pattern set. One can
either combine the data before preprocessing and then extract patterns from the preprocessed
data, extract new patterns from the different pattern sets of all the subjects or concatenate all
pattern sets to create one very large pattern set. Here, we choose to use the second method.
For every stimulus (excluding the ones on which one or more subjects failed), we have 14
patterns. In total, there are 73 stimuli on which all subjects responded correctly. Using an
independent component analysis, we can extract the main components from these patterns and
perform clustering on the principal components of the patterns. The question is whether one
component suffices or a combination of components is better. Furthermore, if one compo-
nent alone optimizes an internal validity measure, which component is it? A third question is
whether Brodmann preprocessing or SVD preprocessing better optimizes the internal validity.
To allow for this question to be answered, we normalized the pattern sets, thereby normalizing
the distances between patterns in both types of pattern sets.The clustering method we picked
for this group analysis is spectral clustering. If there is anything to be found in the data, spec-
tral clustering should be capable of doing so. As a measure of internal validity, we take the
Davies index, which in individual analysis has shown to be a reliable estimate of the number of
clusters.

Figure 4.5 shows the Davies index for different component settings. We have either used
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Davies-Bouldin index of spectral clustering on Brodmann preprocessed data
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Figure 4.7: Davies-Bouldin index of spectral clustering using different values of k. Clustering
performed on Brodmann’s area preprocessed data.
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Figure 4.8: Group analysis of data for Brodmann preprocessing (a) and SVD preprocessing (b)
using the first, second or third component of ICA on patterns or combination of these three.
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Group 1 Group 2 Group 3 Group 4 Group §
Rookmelder Spiegel Mannequin Slinger Horloge
Tuinkabouter Tafeltje Nachtlampje | Muziekstandaard | Zoutvaatje

Klok Prikbord Kolen Medaille Punaise
Halsketting Kapstok Kalender Kleed Pepermolen

Dakpan Fotolijstje Kaarsje Dromenvanger Paraplu

Bloempot Fontein Foto Computerscherm Kam

Beeldje Tuinslang Ballon Beugel Uitlaatpijp

Baksteen Stuurwiel Zaklamp Touw Deurknop
Schoenveter Speer Tang Spons Borstel

Schep Schroevendraaier | Speelkaarten Paperclip Vaas
Rekenmachine Schaar Pincet Kwast Zandloper
Potloodslijper Naald Golfclub Hamer Ventilator

Pijp Gitaar Bezem Fietsslot
Nietmachine Flesopener Vissenkom
Lucifer Aansteker
Kop Speaker
Vulling
Koffiemolen

Table 4.1: Optimal spectral clustering for group analysis.

only the first, second or third component or taken the average value of these three components.
We see that using different components has little effect on the obtained validity values. In
Figure 4.8(a) using the third independent component seems to give an increased similarity
between clusters and in Figure 4.8(b) this is true for the combination of components, but all
component options seem to follow the same trends in both figures. A large difference between
the two figures is that Brodmann preprocessing seems to put the optimal number of clusters
at 2, while SVD preprocessing puts k at 4 or 5, depending on the component. It is debatable
which one of these two estimations is correct, but the fact that the Davies-Bouldin index values
are much lower for the SVD preprocessed data set while using normalized data suggests that
SVD clusterings are more reliable. This speaks in favor of the SVD estimation of k.

4.6 Qualitative analysis

A last interesting way of analyzing the clustering results is to look at some of the found cluster-
ing and explore them by eye to see if there are any sensible groups of nouns in them. Looking
at all the different clusterings obtained for every data set would take an inappropriate amount
of time, therefore we decided to look only at one of the clusterings obtained from the spectral
clustering approach. This is the clustering obtained by by using group analysis with SVD pre-
processing (Table 4.1). With no clear formalism at hand for this analysis, we are restricted to
giving our own interpretation, which might be very subjective.

In the clustering we see five groups. At first sight, there are no clear semantic similarities
between nouns in clusters. All clusters seem to have an approximately equal ratio of FM and
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VM words. What’s interesting to note is that in the first cluster there are some stone or baked
objects like "baksteen’ (brick), ’dakpan’ (roof tile), "beeldje’ (figurine), ’bloempot’ (flowerpot),
"kop’ (cup) and ’tuinkabouter’ (garden gnome). In the second group of nouns, there seem to
be a lot of sharp objects. Both a ’speer’ (spear) and a ’schroevendraaier’ (screw driver) as a
‘naald’ (needle) and a ’schaar’ (scissors) can be used to pierce objects. In the third group,
there are three nouns denoting objects that give light: a "nachtlampje’ (nightlight), a ’zaklamp’
(flashlight) and a ’kaarsje’ (candle). The fourth and fifth group do not seem to contain these
kind of semantic similarities between nouns. Though it is notable that "horloge’ (wristwatch)
and ’zandloper’ (hourglass) are both in group five, one might wonder why they are not grouped
with “klok’ (clock), which clearly also is involved with time measurements. What is interesting,
is the fact that *zoutvaatje’ (saltshaker) and ’pepermolen’ (pepper mill) are both in group five.
When looking at the broader picture, one would expect words like ’fontein’ (fountain) to be
grouped with the stone words in group 1.

Though it is tempting to draw conclusions from this, it should be noted that is actually quite
hard to assess the reliability of this clustering. The internal validity was high, but this could
also be the case for a random data set. Were the sample nouns separated randomly into five
clusters, one could also identify some similarity between nouns within groups.
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Chapter 5

Conclusion and discussion

In the present study, an attempt was made to infer a categorization of neural activation patterns
elicited by the presentation of nouns. The problem of obtaining a categorization of stimuli in a
single-trial, bottom up way was approached with a two-stage model of whole-brain neural acti-
vation pattern extraction and unsupervised clustering methods. In a first step, neural activation
patterns were extracted from fMRI data obtained from an event-related experiment design (8)
where a subject was instructed to identify nonwords by pushing a nonword. Using a conven-
tional statistical parametric mapping approach, two distinct classes of words in the stimulus set
were found to elicit different neural activation patterns. Words denoting functionally manipu-
lable (FM) objects elicited stronger activations in certain parts of the motor cortex than words
denoting volumetrically manipulable (VM) objects. The hypothesis was that our unsupervised
clustering approach could at the very least identify these two distinct classes to be present in
the fMRI data.

Relying on both functionally (Brodmann’s area downsampling) and mathematically (sin-
gular vector decomposition) grounded dimensionality reduction methods, dimensionality was
reduced in order to prevent overfitting in the clustering step. In accordance with literature in
the brain reading field and commonly used methods in general fMRI analysis, deconvolution
using a general linear model was applied on the resulting signals. Out of 120 trial activation
features per signal, the trials on which the subject correctly identified a word as being a word
were selected. Trials where a nonword was presented or where the subject incorrectly identi-
fied a word as a nonword and baseline trials were excluded from further analysis. For each of
77 to 80 correctly identified words, the activation levels over the signals were used as features
to form a set of patterns. As a result of this first step, 28 pattern sets were obtained, one per
dimensionality reduction method per subject.

In the second stage, the resulting pattern sets were analyzed using a variety of unsupervised
clustering algorithms. Though the specific approach of these algorithms differs, they all try to
match two criteria. First, the within cluster dispersion should be minimized. Second, the simi-
larity or distance between clusters should be maximal. The result of this is a clustering with k
groups whose member patterns have a certain similarity while they differ from patterns in other
groups. Three distance metrics were used in calculating similarity between sample patterns.
Using a Chebychev distance metric, only the most discriminating features were rewarded. On
a City Block and Euclidean metric, all features were taken into account.

In a series of analyses using different configurations of both distance metrics and clustering
methods, we found no support for the hypothesis that the FM/VM class distinction was iden-
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tifiable using an unsupervised clustering approach. The similarity between different clustering
was measured using the Rand index, which takes into account the number of items that pair or
not pair in both clusterings (41). We found that the similarity between the found clusterings
and the FM/VM labeling of the patterns was around chance level for all clustering configura-
tions. This means that the clusterings have as much as in common with the FM/VM labeling as
would a clustering with 2 approximately equal groups consisting of randomly drawn patterns
with a probability that is the same for FM and VM patterns. This implies that the FM/VM class
distinction in the stimulus set is not propagated to the eventual categorization’of neural activa-
tion patterns. As in the second stage of our approach similarities between patterns should be
identified, and because we have used intrinsically different clustering algorithms, this leads to
the assumption that the distinction is lost in the pattern extraction stage. An obvious possibility
is that the pattern extraction stage is too rigorous in its dimensionality reduction and activation
estimation, thereby killing off any information that could be present in the fMRI data.

To test whether the pattern extraction stage removes the signal from the data, or that a
class distinction stronger than the FM/VM distinction overrules the FM/VM distinction, we
compared the clusterings for different subjects with each other. If there was high similarity
between clusterings, this could imply that the stimulus set contained a categorization that was
stronger than that between FM and VM words. It was found that for most of the applied
clustering algorithms, these between subject clustering similarities were around chance level.
For the linkage algorithm though, these similarities could reach values of up to 90%. A closer
look at the clustering compared showed this to be merely an artifact of the similarity index.
The Rand index performs best when all k groups in both clustering contain an approximately
symmetric amount of samples. The problem with some of the linkage clustering configurations
was that they yielded two clusters where one cluster contained only one sample and the other
cluster contained the rest of the samples. This cluster size distribution, which in fact is specific
for random data sets, causes the Rand index to give skewed estimates of the similarity between
clusterings.

With the clusterings showing no clear FM/VM distinction, nor any other consistent stimulus
grouping over subjects, the question remains whether there is a preferred number of clusters & in
the pattern set. If there is such a number, this might suggest that there is indeed some structure
in the data. For a random set of n patterns, the optimal number of clusters k would equal n, since
such a clustering matches the clustering criteria best. Instead, we found k£ = 2 to be the number
of clusters that optimizes these criteria for most of the clustering configurations. Only on a
group approach, where independent components of the set of patterns for each stimulus were
used as samples, did we find an optimal number of clusters k = 5. On a normalized pattern set,
we found that this was true only for the SVD preprocessed pattern set and that the criteria were
met better than for the Brodmann’s area preprocessed pattern set, where the optimal numbers of
clusters was 2. A qualitative analysis of the optimal group clustering with k = 5 showed some
semantic similarities between nouns that are in the same group. It is however highly debatable
whether these similarities would not have occurred when five random groups of stimuli were
drawn. The existence of a clear formalism to analyze the semantic value of such groupings
could help assess the results.

One could say that our endeavors have been futile and that the rather dissatisfying results
are caused by our choices to do a whole-brain area analysis and use only the trials correspond-
ing to existing words. No clear class distinctions have been found, not even for the FM/VM
classes that are known to be present in the stimulus set. One could also suggest to narrow
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the analysis down to just those brain areas in the motor cortex that are known to contain the
FM/VM distinction. As a matter of fact, to see whether this would enhance the results, we did
an investigation in which we fed voxel locations to the two-stage pipeline and obtained features
only from those areas in the motor cortex which were known to show a preference for FM-
words. Though this clearly deviates from our main research question, where we try to infer a
categorization from the whole brain and do not any assumptions about the nature of the stimuli
whatsoever, this was useful to further narrow down where the exact location of the problem in
the processing pipeline. The results of this investigation were very similar to that of the whole-
brain analysis. Decreasing the factor in the dimensionality reduction step thus does not seem to
make a very large difference. On the assumption that the word-nonword distinction was very
strong, considering the activation of motor cortex areas as subject pushed a button on nonword
presentations, we performed a last analysis to try and retrieve this distinction between trials.
Estimation of the similarity between the clustering results and the word/nonword labeling using
the Rand index showed no results deviating from chance level.

Considering that the clustering step in our two-stage approach is fairly trivial, we can only
draw the conclusion that it is very hard if not impossible to obtain activation patterns from an
event-related fMRI experiment with short inter trial intervals on a single-trial basis. As stated
in the introduction of this thesis, the problem at hand was in fact very hard. Where some
studies advice to use an inter trial interval of at least 20 seconds to allow for the hemodynamic
response to return to baseline (9), the data we used was recorded in an experiment with an 8
second inter trial interval. Furthermore, we were trying to obtain activations based on only
one presentation per stimulus. This is in fact very fragile, since fMRI has a very low signal to
noise ratio and there are numerous ways in which a hemodynamic response could be corrupted
by other processes in the brain or artifacts of the measurement methods. In fMRI studies, it
is therefore common to present a stimulus multiple times to a subject in order to increase the
reliability of the activation estimation. In fact, one might argue that the strength of the SPM
GLM analysis lies in the fact that it extracts a stimulus specific response by regressing for all
stimulus presentations at once. This makes the estimate much more reliable since it does not
add trial-specific noise to a trial. Furthermore, using a shorter interval between scans (TD),
could increase the sampling rate of the BOLD signal and the estimation of activation.

Another way to increase the reliability of the activation estimates is to add longer baseline
conditions to the experiment design. In such a baseline condition, the hemodynamic response
can return to baseline, giving an estimate of the brains rest state. This would make the calcula-
tion of a percent signal change (PSC) possible, which could be an even better estimate of the
neural activation than just the B-values in a GLM-analysis. The percent signal change is the
percentage of signal deviation from the rest condition. One could take this value for multiple
timepoints ¢ after stimulus presentation and append these in a feature vector, instead of using
only one B-value per stimulus. Another possible analysis method would be finite impulse re-
sponse analysis (FIR), which is very similar to the SPM approach, but uses one regressor for
each of an arbitrary number of time bins after stimulus presentation. Like the PSC analysis,
this yields a feature vector per stimulus per signal instead of just one feature. Both SPC and
FIR analysis can only be used when two other criteria are met: a stimulus has to be presented
multiple times and the inter trial interval should be such that there is a sufficient amount of time
for the hemodynamic response to relax.

We see here that the number of presentations per stimulus, the time between presentations
and the length of baseline conditions can enhance the quality of the neural activation estimates.
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To further increase the reliability of the estimates, another lesson with respect to the nature of
stimuli can be drawn from brain reading studies. In basically all brain reading studies (e.g. (2)
(5) (3)), subject are presented with pictures of objects instead of words denoting objects. In
accordance with this, one can narrow down the region of analysis to parts of the cortex that are
related to visual processes, as is done in typical brain reading studies. Note however that this is
quite different from the goal of this thesis, where we do not take into account any information
about the nature of the stimuli. A more controlled set of stimuli could also increase catego-
rization performance. For example, previous studies have used two clearly distinct groups of
figures representing dwellings or tools. This leaves little space for ambiguity, while the stimu-
lus set used in this study offers a lot of interpretations.

The lessons drawn from this study can be summarized in a set of advices for a possible
follow-up study:

1. Present stimuli multiple times in separate trials, get an activation estimate based on the
combination of these trials.

2. Use long inter trial intervals, preferably around 20 seconds.

3. Insert long baseline conditions at the start and at the end of the experiment.

4. Use PSC estimation and FIR analysis to get more informative activation estimates.
5. Use pictures as stimuli instead of words.

6. Prevent ambiguity about categorization, make classes among stimuli very clear.

7. Optionally narrow down analysis to particular brain areas.

We believe that, when these criteria are met, reliable activation estimates corresponding to
different stimuli can be retrieved and a categorization of objects in the brain can be derived.
Maybe one day we can really read’ a mind. For now, we will have to do with these lessons.

48



Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

J. Ward, The Student’s Guide to Cognitive Neuroscience, 1sted. London, UK: Psychol-
ogy Press, 2006.

T. M. Mitchell, S. V. Shinkareva, A. Carlson, K.-M. Chang, V. L. Malave, R. A. Mason,
and M. A. Just, “Predicting human brain activity associated with the meanings of nouns,”
Science, vol. 320, no. 5880, pp. 1191-1195, May 2008.

D. D. Cox and R. L. Savoy, “Functional magnetic resonance imaging (fMRI) brain read-
ing: detecting and classifying distributed patterns of fMRI activity in human visual cor-
tex,” Neurolmage, vol. 19, no. 2, pp. 261-270, June 2003.

J. V. Haxby, I. M. Gobbini, M. L. Furey, A. Ishai, J. L. Schouten, and P. Pietrini, “Dis-
tributed and overlapping representations of faces and objects in ventral temporal cortex,”
Science, vol. 293, no. 5539, pp. 2425-2430, September 2001.

S. V. Shinkareva, R. A. Mason, V. L. Malave, W. Wang, T. M. Mitchell, and M. A. Just,
“Using fMRI brain activation to identify cognitive states associated with perception of
tools and dwellings,” PLoS ONE, vol. 3, no. 1, p. 1394, 01 2008.

C. Davatzikos, K. Ruparel, Y. Fan, D. Shen, M. Acharyya, J. Loughead, R. Gur, and
D. Langleben, “Classifying spatial patterns of brain activity with machine learning meth-
ods: Application to lie detection,” Neurolmage, vol. 28, no. 3, pp. 663 — 668, 2005.

S. Huettel, A. W. Song, and G. McCarthy, Functional Magnetic Resonance Imaging.
Sunderland, Massachusetss, USA: Sinauer Associates, Inc, 2004.

S.-A. A. Rueschemeyer, D. van Rooij, O. Lindemann, R. Willems, and H. Bekkering,
“The function of words: Distinct neural correlates for words denoting differently manip-
ulable objects.” Journal of cognitive neuroscience, July 2009.

C. Windischberger, C. Lamm, H. Bauer, and E. Moser, “Consistency of inter-trial acti-
vation using single-trial fMRI: assessment of regional differences,” Cognitive Brain Re-
search, vol. 13, no. 1, pp. 129 — 138, 2002.

R. Cabeza and L. Nyberg, “Imaging cognition II: An empirical review of 275 PET and
fMRI studies,” J. Cognitive Neuroscience, vol. 12, no. 1, pp. 1-47, 2000.

A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM Computer
Survey, vol. 31, no. 3, pp. 264-323, September 1999.

49



[12] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “On clustering validation techniques,”
Journal of Intelligent Information Systems, vol. 17, pp. 107-145, 2001.

[13] R. C. Dubes, “How many clusters are best? - an experiment,” Pattern Recognition, vol. 20,
no. 6, pp. 645-663, 1987.

[14] K. N. Kay, T. Naselaris, R. J. Prenger, and J. L. Gallant, “Identifying natural images from
human brain activity,” Nature, vol. 452, no. 7185, pp. 352-355, March 2008.

[15] F. Pereira, T. Mitchell, and M. Botvinick, “Machine learning classifiers and fMRI: a tuto-
rial overview.” Neurolmage, vol. 45, no. 1, March 2009.

[16] V. Della-Maggiore, W. Chau, P. R. Peres-Neto, and A. R. Mcintosh, “An empirical com-
parison of SPM preprocessing parameters to the analysis of fMRI data,” Neurolmage,
vol. 17, no. 1, pp. 19-28, September 2002.

[17] M. Dubin, “Brodmann areas in the human brain with an emphasis on vision and lan-
guage,” 2009, http://spot.colorado.edu/ dubin/talks/brodmann/.

[18] Wikipedia, “Brodmann area 4 — Wikipedia, the free encyclopedia,” 2010.

[19] J. A. Maldjian, P. J. Laurienti, R. A. Kraft, and J. H. Burdette, “An automated method for
neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets,” Neu-
rolmage, vol. 19, no. 3, pp. 1233 — 1239, 2003.

[20] J. A. Maldjian, P. J. Laurienti, and J. H. Burdette, “Precentral gyrus discrepancy in elec-
tronic versions of the Talairach atlas,” Neurolmage, vol. 21, no. 1, pp. 450 — 455, 2004.

[21] C. H. Moritz, B. P. Rogers, and M. E. Meyer, “Power spectrum ranked independent com-
ponent analysis of a periodic fMRI complex motor paradigm,” Hum. Brain Mapp, vol. 18,
pp- 111-122, 2003.

[22] M. J. McKeown, “Detection of consistently task-related activations in fMRI data with
hybrid independent component analysis,” Neurolmage, vol. 11, pp. 24-35, 2000.

[23] D. Hu, L. Yan, Y. Liu, Z. Zhou, K. J. Friston, C. Tan, and D. Wu, “Unified SPM-ICA for
fMRI analysis,” Neurolmage, vol. 25, no. 3, pp. 746755, April 2005.

[24] J. Stone, J. Porril, C. Buchel, and K. Friston, “Spatial, temporal, and spatiotemporal inde-
pendent component analysis of fMRI data,” in Spatial temporal modelling and its appli-
cations, 1999.

[25] V. D. Calhoun, T. Adali, L. K. Hansen, J. Larsen, and J. J. Pekar, “ICA of functional MRI
data: An overview,’ in in Proceedings of the International Workshop on Independent
Component Analysis and Blind Signal Separation, 2003, pp. 281-288.

[26] A. L. Vazquez and D. C. Noll, “Nonlinear aspects of the BOLD response in functional
MRI.” Neuroimage, vol. 7, no. 2, pp. 108—118, February 1998.

[27] C. Buchel, A. Holmes, G. Rees, and K. Friston, “Characterizing stimulus-response func-
tions using nonlinear regressors in parametric fMRI experiments,” Neurolmage, vol. 8,
pp. 140-148, 1998.

50



[28] V. D. Calhoun, M. C. Stevens, G. D. Pearlson, and K. A. Kiehl, “fMRI analysis with
the general linear model: removal of latency-induced amplitude bias by incorporation of
hemodynamic derivative terms,” Neurolmage, vol. 22, no. 1, pp. 252 — 257, 2004.

[29] J. Hopfinger, C. Buchel, A. Holmes, and K. Friston, “A study of analysis parameters that
influence the sensitivity of event-related fMRI analyses,” Neurolmage, vol. 11, pp. 326—
333, 2000.

[30] M. A. Babyak, “What you see may not be what you get: A brief, nontechnical introduction
to overfitting in regression-type models,” Psychosomatic Medicine, vol. 66, no. 3, pp.
411-421, May 2004.

[31] J. H. Ward, “Hierarchical grouping to optimize an objective function,” Journal of the
American Statistical Association, vol. 58, no. 301, pp. 236244, 1963.

[32] V. V. Raghavan and K. Birchard, “A clustering strategy based on a formalism of the re-
productive process in natural systems,” SIGIR Forum, vol. 14, no. 2, pp. 10-22, 1979.

[33] U. Maulik, S. Bandyopadhyay, and S. B, “Genetic algorithm-based clustering technique,”
Pattern Recognition, vol. 33, pp. 1455-1465, 2000.

[34] U. von Luxburg, “A tutorial on spectral clustering,” Max Planck Institute for Biological
Cybernetics, Tech. Rep. 149, August 2006.

[35] A.Y.Ng, M. L. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an algorithm,”
in Advances in Neural Information Processing Systems 14. MIT Press, 2001, pp. 849—
856.

[36] R. C.Dubes and A. K. Jain, “Validity studies in clustering methodologies.” Pattern Recog-
nition, vol. 11, no. 4, pp. 235-254, 1979.

[37] J. C. Dunn, “Well separated clusters and optimal fuzzy-partitions,” Journal of Cybernet-
ics, vol. 4, pp. 95-104, 1974.

[38] C. Legany, S. Juhasz, and A. Babos, “Cluster validity measurement techniques,” in
AIKED’06: Proceedings of the 5th WSEAS International Conference on Artificial In-
telligence, Knowledge Engineering and Data Bases. Stevens Point, Wisconsin, USA:
World Scientific and Engineering Academy and Society (WSEAS), 2006, pp. 388-393.

[39] D. L. Davies and D. W. Bouldin, “A cluster separation measure,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. PAMI-1, no. 2, pp. 224-227, January
1979.

[40] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals Eugen-
ics, vol. 7, pp. 179-188, 1936.

[41] W. M. Rand, “Objective criteria for the evaluation of clustering methods,” Journal of the
American Statistical Association, vol. 66, no. 336, pp. 846850, 1971.

51



