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Abstract

In Evolutionary Robotics, simulators are used to speed up the lengthy process of
evolving control structures for real world robots. The downside of this approach is
that control structures evolved solely in simulation tend to perform not as good in the
real world as they did in the simulation. This drop in performance has come to be
known as the ‘reality gap’. Interleaving simulation with real world in the evolutionary
process is a newly proposed method which might help to bridge this gap, but it lacks
solid empirical proof. In this study, a systematical experiment was done in which the
same proportion of generations was differed in the amount of interleavement over three
conditions. Interleaving was found to have no significant effect on the final fitness values
of the control structures. However, the amount of consecutive real world generations
was found to have a positive effect on the final fitness. Unfortunately, it is hard to
reach definite conclusions because of time constraints involved with a Bachelor’s Thesis
and the stochasticity of the evolutionary algorithm.
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Chapter 1

Introduction

In this chapter, a brief introduction of evolutionary robotics is given. Next, the Reality Gap, one
of the major unsolved problems in this field of research, is explained, along with some proposed
solutions. One of such proposed solutions, dubbed the ‘Interleaving method’, is explained in more
detail since this thesis is based on that work. Finally, the research questions are addressed.

1.1 Evolutionary robotics

Evolutionary robotics is a field of robotics in which principles of Darwinian evolution are used to
develop autonomous robots automatically (Nolfi & Floreano, 2000). Evolutionary algorithms, first
proposed by Holland (1975), are generally used in this approach. These algoritms simulate the
process of selective reproduction of the individuals with the best behavior in a large population.

One aspect of this approach is that the behavior of every individual in the population needs to
be evaluated. This is by far the most time consuming step of the evolutionary process. Running
this step of the evolutionary process on a physical robot in real time is generally prohibitive
because of time constraints (Walker, Garrett, & Wildon, 2003). However, this approach has been
used (for example, Floreano and Mondada (1994)), and it lead to robust results. Unfortunately, it
took 10 consecutive days of training to evolve simple homing behavior for the robot in this study.
Evidently, this approach is very time consuming, and therefore there has been a trend towards
the use of simulators in evolutionary robotics.

There are two main advantages to using a simulator above a real world robot. First, a simulator
is faster than a robot in the real world. This way, the evaluation of the individuals, which is
the greatest bottleneck in this kind of research, can be sped up considerably. Second, it is not
necessary to have someone present during the evolutionary process since the process can be better
automatized in a simulator. A simulator can be set up to run a virtually unlimited number of
times consecutively, while in the real world, someone needs to place the robot at its starting point,
and depending on the hardware used, needs to upload a new control structure for every trial.

1



2 CHAPTER 1. INTRODUCTION

1.2 The reality gap

The main disadvantage when using a simulator for the evolutionary process is that a simulator
is only a model of the real world. Therefore, when a control structure evolved in a simulator is
directly ported to a real robot, a drop in performance should be expected. This ‘reality gap’ has
proven to be hard to bridge. A number of solutions have been proposed to solve this problem,
each of which yield acceptable results. However, the definite answer has not yet been found.

Nolfi, Floreano, Miglino, and Mondada (1994) reviewed studies in which robots were evolved.
Unfortunately, they do not present an objective way of comparing the different possible strategies
presented. One of the studies they described used the simulator only for the evolutionary phase of
the experiment (Miglino, Nafasi, & Taylor, 1994). Efficient wandering behavior for small robots
was evolved. The evolutionary process took about three hours to complete. Only three individuals
(each from different generations) were ‘embodied’ in a real robot and tested. The behavior in the
embodied phase was similar to that in simulation, although the higher noise of the real world
altered the expected trajectory of the robot somewhat. Overfitting of the behavior to the much
cleaner simulation environment also became a problem during later phases of development, which
led to a drop in performance. An other experiment, by Nolfi, Miglino, and Parisi (1994) suggest
a ‘fine tune’ phase in the evolutionary process to let the control structures get used to the real
world after evolution in simulation. The first 300 generations of the evolutionary process were
done in simulation, followed by another 30 generations of evolution in the real word. The first 300
generations took only one hour to complete, but the 30 real world generations must have taken
a significant amount of time, as noted by Walker et al. (2003). When tested in the real world,
straight-out-the-simulator control structures performed significantly worse than in the simulator.
After the fine tune phase, fitness levels in simulation and in the real world were of comparable
value. It should be noted that the simulator used in this study was created by sampling the real
environment with the sensors of the robot used, which led to a very accurate simulation of the
environment. This means the simulator was a very accurate model of the robot’s view of the world.
The authors did this to make the transition to the real world easier for the control structures, but
an initial performance drop of almost 50% was still reported.

1.3 Interleaving

Goosen (2007) (see also: Goosen, van den Brule, Janssen, and Haselager (2007)) describes an
experiment which compares different ways of evolving the behavior of simple robots in simulation
and the real world. He used an evolutionary algorithm to develop control structures (an Artificial
Neural Network, or ANN) for simple Lego Mindstorms robots which had to perform a simple task.
In the case of this experiment, robots had to travel as far as possible without bumping into walls,
which were marked by a black area around them on the floor. The robots had two light sensors
mounted on them, pointing downwards, so the robots could detect light and dark areas on the
floor. A good control structure can avoid walls by using this information.

The experiment Goosen (2007) describes consisted of a between-subject design with two con-
ditions. The control, or fine tune condition lets control structures evolve for 55 generations in
simulation, after which the control structures were evolved for another five generations on a real
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world robot. The other condition used a different technique, which he called interleaving. In
this condition, the simulation is interrupted after 10 generations. The control structures thus far
evolved in simulations are then placed in a real world robot, and the control structures are evolved
for 5 generations in the real world. The resulting control structures are then placed in the simula-
tor again for further evolution. This process is repeated four times (for a graphical overview, see
Figure 1.1).

It is believed that interleaving real world trials with simulation, control structures are being
prepared for the real world in the early stages of their evolution. This allows them to perform
better than controls after evolution and prevents overfitting to the simulation.

Control condition

Interleaving condition

  Evolution in real world                                               Evolution in simulation

Figure 1.1: Conditions in the experiment conducted by Goosen (2007).

Goosen (2007) found that, although fitness improves over time in both conditions, the final
five generations of individuals in the interleaving condition perform better than those of the con-
trol condition. Unfortunately, because of the setup of this experiment, the higher fitness of the
individuals in the interleaving condition cannot be attributed solely to the effect of alternating
simulation with real world generations. Since the individuals of the interleaving condition are also
being exposed more to the real world, the difference in fitness could also be caused by this factor.

Another point is that Goosen (2007) based his conclusions on the analysis of fitness of the final
five generations of each condition. This might lead to errors since the control structures are still
evolving at this time. It is better to conduct special test trials of the best individuals of the final
generation of each condition, and base the analysis on those.

1.4 Problem statement

The experiment described in this Bachelor Thesis continues the work of Goosen (2007). Its setup
is designed to be similar to that of Goosen, while it tries to avoid the weak parts of the study.
The basic research question is how much of the effect found by Goosen (2007) can be attributed to
the real world exposure time, and how much of it is caused by interleaving real world generations
within the simulation phase of the experiment.

A second question is whether the control structures produce behaviour which is reliable (i.e.
produces the same behaviour every time). Because of the selected method for analysis, it is possible
to see whether this is the case or not.

In Section 2, the setup of this experiment is described in detail. Results are presented in
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Section 3, which are discussed in Section 4. Section 5 contains the conclusion and areas in which
further research can be undertaken.



Chapter 2

Method

The experimental setup of this research is described in this Chapter. The Task, environment and
robot are described in Section 2.1. An overview of the differences between the simulator and the
real world is given in Section 2.2. Section 2.3 explains the evolutionary process and the parameter
settings of the algorithm. In Section 2.4, the three conditions in the experiment are explained,
while Section 2.5 deals with the possible predicted outcomes of the experiment and what they
imply for the interleaving effect.

2.1 Task

To keep the experiment similar to that of Goosen (2007), most of the task and equipment were
unchanged from the experiment described in his thesis. The task the robot is given is to travel
as far as possible without bumping into the walls of the environment within a given number of
cycles. The robot is placed at the same starting position at each run.

2.1.1 Environment

The environment in which the robot has to perform has a white floor and is walled off at all
sides. Some walls are also placed inside the environment (see Figure 2.1(a). The floor was made
of white tiles, which were covered with strips of black paper around the walls. The difference of
light intensity between the white and black parts of the floor is big enough to be picked up by
the light sensors used for the robot. The walls around the environment were made of the same
white-coated chipboard as the floor, and bricks were used for the interior walls. This environment
design makes it possible for a good control structure to predict whether it is close to a wall by
monitoring the light intensity, and avoid a wall by turning away.

2.1.2 Robot

For trials in the real world, the Lego Mindstorms robot created by Goosen (2007) was used (see
Figure 2.1(b). The robot has two light sensors mounted on the front of the robot, pointing to
the floor, and a front bumper. The light values measured by the light sensors are fed into the
control structure (see Section 2.1.4 for details on the control structure). The bumper is only used

5



6 CHAPTER 2. METHOD

(a) environment (b) robot

Figure 2.1: The layout of the environment, simulated view (a). The robot in its environment (b).
Adapted from Goosen (2007)

to detect a collision, and is not used by the control structure to drive the robot. A Lego motor
on each side of the robot powers a caterpillar track. If both tracks turn forward or backward at
the same time, the robot will travel in a straight line. If one of the tracks goes forward while the
other is turning backwards, the robot will make a turn.

2.1.3 Simulator

The Lego Mindstorms Simulator (LMS) (Künsting, 2004; Sträter, 2004), enhanced with a script
to allow for multiple runs needed for the evolutionary process created by Goosen (2007), was
used in this experiment. LMS can model both an environment and a Lego robot. It also has the
advantage that it can simulate the ‘brick’ controller using the LeJOS operating system, so that
programs (i.e. control structures) written in Java can be exchanged between the simulator and
the real world robot. The same virtual representation of the robot and the environment created
by Goosen (2007) were used for the simulator.

2.1.4 Control structure

The same artificial neural network (ANN) used in Goosen’s study (2007) was used. The 10 units
of this single layer network all have connections to every other unit in the network. Each unit also
has a bias weight. The values of the light sensors are added to the input of on two units, while
the output of two other units is used as control signals to the motors.

The activation of each unit is updated every cycle t of the run. A new value is first computed
by one of the two different formulae (one for units which receive input from a light sensor and one
for the ones who do not). The resulting values from these formulae are then scaled to a sigmoid
curve scaled between −.5 and .5 by the following function:

scaledActivationi,t =
1

1 + e−activationi,t
− .5

The activation function of units which do not use input from a light sensor directly is the
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following:
activationi,t = biasi +

∑
weighti,j × activationj,t−1

The two units that do use the input from a light sensor use a slightly different activation
function, defined as:

activationi,t = biasi +
∑

weighti,j × activationj,t−1 + sensori,t

In order to use an ANN in a genetic algorithm, it needs a representation which can be easily
manipulated by the evolutionary process (see Section 2.3). In other words, it needs a genetic code.
The structure of the network used is fixed (i.e., no connections are added or deleted during the
evolutionary process), so only the weights of the connection between units needs to be represented
by this code. This can be achieved by representing all weights and biases as an array of floating
point numbers, 110 in total.

2.2 Differences between simulator and real world

Because of the time constraints of this bachelor project, a few changes needed to be made to the
real world runs in respect to the simulator runs to complete the experiment in time. Since the real
world generations are the most time consuming and labour intensive of the experiment, it was the
most effective place to make changes.

First of all, like Goosen (2007), the number of cycles in each run for the simulator and the real
world are different. In the simulator, the robot gets 500 cycles to drive around in the environment.
In the real world, it only gets 300 cycles. Second, in the simulator, every control structure was
tested twice, and the fitness values of the two runs averaged. While this improved accuracy of the
reported fitness, it proved to be too time consuming to be applied in the real world. Note that
Goosen (2007) tested control structures only once, both in simulation and the real world.

This experimental setup does not allow for a direct comparison between fitness attained in the
simulator and fitness attained in the real world. As Goosen (2007) states: “...one should consider
‘real world fitness’ and ‘simulation fitness’ to be on independent and incompatible scales.”

2.3 Evolutionary Process

The evolutionary algorithm used in this study is the same as Goosen (2007), who in turn based his
approach on the work of Nolfi and Floreano (2000) on Evolutionary Robotics. Also used was the
work of Holland (1975) and Mitchell (1996) on evolutionary and genetic algorithms, and finally
Yao (1999) for application of these algorithms on neural networks.

2.3.1 Parameters

All parameters of the evolutionary algorithm used in this study are copied from the work of Goosen
(2007), and are summarized in Table 2.1. Every generation consists of 20 individuals. The ten
best individuals are selected for the next generation and their offspring replaces the ten worst
performing individuals of the previous generation. The new individuals are created by mutating



8 CHAPTER 2. METHOD

the ten best individuals. A gene has a chance of .05 to mutate. This results in an average of 5 to 6
mutations per genome.1 A gene is mutated by changing its value with a random number, selected
from a Gaussian distribution with µ = 0 and σ = .3. No crossover operator was used since Yao
(1999) states that “[the crossover operator] does not perform well in searching for near-optimal
ANN architecture” (pp. 1425).

Parameter name Parameter value

population size 20
number of offspring 10
mutation probability .05 per gene
crossover probability 0.00

Table 2.1: Settings of free parameters of the evolutionary algorithm used in this study, as chosen
by Goosen (2007) and used in this study.

2.3.2 Fitness function

Performance of a control structure is measured by a fitness value, which is a combination of both
distance traveled during the run and the number of bumps recorded by the front bumper. The
distance measure is calculated from the output of the control structure to the motors according
to the following formula:

outputleft < 0 ∧ outputright < 0⇒ ∆fitness = −
√
outputleft × outputright

outputleft > 0 ∧ outputright > 0⇒ ∆fitness =
√
outputleft × outputright

allothercases⇒ ∆fitness = 0

This set of formulas give the control structure an increase in overall fitness when it moves
forward, and a decrease in overall fitness when it moves backwards. When the robot makes a turn
or is standing still, it will not gain or lose any points.

The number of bumps during the run is counted. For each bump, a penalty of 50 points is
subtracted from the total fitness value. The formula for the total fitness is:

fitness =
ncycles∑

i=1

∆fitnessi − 50× nbumps

An important difference made to the fitness measure as used by Goosen (2007) is that negative
fitness values are allowed in this study. Goosen decided against negative fitness in his experiment,
and instead reported them as 0. Because of this, it is not possible to distinguish a control structure
which does not move the robot at all from a control structure which causes the robot to go

1Each gene in the genome of 110 genes has a probability of 0.05 of being mutated. The expected number of
mutations per genome therefore is 110× .05 = 5.5
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backwards in Goosen’s experiment. Although negative fitness values are not commonplace in
evolutionary algorithms, they are useful to distinguish bad control structures from the really bad
ones (i.e., that show behavior opposite to selective advantages). Therefore, the decision was made
to allow negative fitness values in this experiment.

2.4 Conditions

As a pilot study, a single run of 76 generations in simulation was conducted to see if this number
of generations is sufficient to reach a plateau in fitness, i.e. to see whether the fitness reaches a
maximum in the number of generations run in this experiment. Each robot was evaluated once.
The results of this pilot can be seen in Figure 2.2.

Two observations can be made after analyzing the data of this pilot experiment. First, a
positive correlation was found of average fitness over generations (r = 0.776, p < .0001). This
shows that the mean fitness of the population improves over time. Second, the maximum and
mean fitness of the population stops improving at around 40 generations. This indicates that a
maximum of fitness is reached. Thus, an evolutionary process of 52 generations, as used in the
experiment (see below), should also be sufficient to reach an optimum in fitness value.

Three conditions are used in the experiment. The number of generations in the real world
(12) and in simulation (40) is equal in all three conditions. The conditions only differ from each
other in the duration and position of the real world generations during the evolutionary process.
A graphical overview of this distribution per condition is presented in Figure 2.3.

In the no-interleaving condition, the robots are evolved in the simulator for 40 generations and
are then further evolved in the real world for another 12 generations. One could say this condition
has a 40/12 structure. In the one-interleaving condition, the simulation and real world generations
are split in two. Now, the robots will be evolved for 6 generations in the real world after just 20
generations in the simulator (which makes the structure 20/6). This is repeated twice. In effect,
this results in a condition which has 6 real world generations interleaved within 40 generations
in simulation, completed by another 6 generations in the real world. For the three-interleaving
condition, the 20/6 structure is divided again as described above, leading to two 10/3 structures.
Four 10/3 structures are ran after each other, which in effect gives this condition three real world
interleavings of 3 generations each, at a quarter, halfway and three quarters in the simulation
training, followed by an additional 3 generations in the real world.

This design eliminates the effect more real world generations may have on the fitness level of
the final generation, something Goosen (2007) did not keep constant in his research, since the
number of real world and simulated generations are the same in each condition.

After the evolutionary process is completed, the best 10 individuals will be selected from the
final generation of each condition. This is done because the mutation operator might have caused
mutations that result in bad control structures. These are normally filtered out and overwritten
by offspring of the best 10 individuals by the evolutionary process. Thus, for comparing the
different conditions, only the best 10 control structures need to be tested. These individuals will
be run once more in the real world to make sure the fitness of these individuals was not subject
to (un)lucky runs.
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Figure 2.2: Results of the test run to validate the number of generations used in the real experi-
ment.

2.5 Number of runs

Because of time constraints associated with a Bachelor Thesis, there was only time to perform a
single run of the experiment. Because evolutionary algorithms are stochastic in nature, an element
of chance has influence on the results. This limits the conclusions that can be drawn upon this
work. The most ideal situation would be to do enough runs to make a T-test possible (a sample
size of approximately 20). This t-test should be done on the best individual of each generation,
and would provide solid statistical evidence despite the stochastic nature of the algorithm.

Since running the experiment 20 times was not possible due to time limitations, the decision
was made to base the analysis of the results on the mean of the best 10 individuals of each
generation. An analysis on only one individual per generation of one run would bias the results
too much. Taking the individuals which are selected for reproduction is an adequate measure of
the ‘goodness’ of a generation, because only the improved mutations are selected for the analysis,
and bad mutations are left out since they will not perform better than their parents.
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Three interleaving

One interleaving

No interleaving

Generations in real worldGenerations in simulation

Figure 2.3: Distribution of generations in simulation and the real world in different conditions of
the experiment.

2.6 Predictions

There are several possible outcomes of the experiment, depending on the mechanisms involved in
the interleaving effect. As noted before, the effect found by Goosen (2007) might be caused by
interleaving, total real world exposure time, or both. Five different outcomes of the experiment
are possible, listed below. The first four predictions deal with the ways interleaving or real world
exposure contribute to the difference in mean fitness of the final generations, while the fifth
prediction has to do with the duration of the real world exposure time.

1. Effect of interleaving, no effect of total real world exposure. If there is only an effect of
interleaving on the final fitness, and no effect of the real world exposure, the effect of the
three interleaving condition will be the largest, followed by the one interleaving condition,
and finally the no interleaving condition. In short, the result of the experiment will be:

µno interleaving < µone interleaving < µthree interleaving

2. No effect of interleaving, effect of total real world exposure. If this is the case, the mean fitness
of the conditions in this experiment should all be equal to each other, since all conditions
have the same number of generations in simulation and the real world evolution. In short:

µno interleaving = µone interleaving = µthree interleaving

3. Effect of interleaving, effect of total exposure. If both variables play a part in the effect, the
results of the experiment will be similar to the results when only interleaving has an effect on
mean fitness, but the difference of mean final fitness between the conditions will be smaller.
This is a bit of a problematic point, since there would be no way to compare this difference.
A follow-up experiment will be required to distinguish between these possible outcomes, but
a comparison to the results of Goosen (2007) could also shed some light on the results. The
difference in mean average fitness can be described as:
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µno interleaving < µone interleaving < µthree interleaving

4. No effect of interleaving, no effect of total real world exposure. It is possible that the effect
measured by Goosen (2007) was coincidental, and none of the factors were of influence on
the final fitness. An unknown variable, not controlled in the experiment, might be the cause
of the measured effect.

5. The duration of continuous real world exposure time could also have an effect on the mean
final fitness. In that case, the mean final fitness of the condition with no interleaving will be
the highest, because it has twelve consecutive generations in the real world. This condition is
followed by the one-interleaving condition, and finally the three-interleaving condition since
it has the fewest consecutive number of real world generations. Hence, the outcome of the
experiment will be:

µno interleaving > µone interleaving > µthree interleaving

In Section 4, the outcome of the experiment is discussed in relation to these predictions.



Chapter 3

Results

In this section, the results of the experiment are discussed. Section 3.1 deals with the evolution
over time in every condition separately. The conditions themselves are compared in Section 3.2.

3.1 Evolution in conditions

Figures 3.1, 3.2 and 3.3 show the fitness values of both the generations in simulation (subfigures
a) and real world (subfigures b). As mentioned in Section 2.5, the analysis of all results are based
on the best ten individuals of each generation. Each figure shows the fitness of the best individual
as a red line. The blue line is the average of the ten best individual of the generation. When the
condition is switched to the real world and back, two vertical black lines are shown to indicate
this break. This is done because the fitness levels between the real word and the simulator are not
to be compared, so it was not possible to present both simulation and real world fitness results in
one figure.

A linear fit of the data shows that there is a positive correlation between mean fitness and
generations in most of the conditions in simulation and the real world (Table 3.1), with the
exception of the real world generations of the three-interleaving condition (r2 = .4151, p < .0001).

It can clearly be seen that, after each time control structures are taken out of the simulator,
their performance drops considerably, in some cases even below 0. Fitness values in simulation
are clearly much higher than those observed in the real world.

13
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Figure 3.1: Fitness development in simulation (a) and real world (b) generations for the no-
interleaving condition.



3.1. EVOLUTION IN CONDITIONS 15

(a) simulation

(b) real world

Figure 3.2: Fitness development in simulation (a) and real world (b) generations for the one-
interleaving condition. The vertical dotted lines indicate where the chain of generations in the
simulator or real world have been interrupted by an interleaving.
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(a) simulation

(b) real world

Figure 3.3: Fitness development in simulation (a) and real world (b) generations for the three-
interleaving condition. The vertical dotted lines indicate where the chain of generations in the
simulator or real world have been interrupted by an interleaving.



3.2. COMPARISON OF FINAL FITNESS 17

condition a b r2 p

simulation
no interleaving 213.79 538.52 .8443 < .0001
one interleaving 167.75 5260.5 .4870 < .0001
three interleaving 161.08 6144.8 .4699 < .0001

real world
no interleaving -17.54 582.93 .1289 .0229
one interleaving -7.87 225.25 .1547 .0120
three interleaving 73.716 -2123.7 .4151 < .0001

Table 3.1: Regression line coefficients (a and b) of line y = ax+b, proportion of explained variance
(r2), and p-value for the regression line for each condition.

Condition Measurement 1 Measurement 2

Mean Std. Deviation Mean Std. Deviation N

no interleaving 2040.60 595.77 1511.70 1335.96 10
one interleaving 2.00 6.33 4.60 10.224 10
three interleaving -189.80 281.82 -331.20 581.73 10

total 617.60 1085.70 395.03 1150.37 30

Table 3.2: Mean and Standard Deviation of both measurements in each condition. See also Figure
3.4

3.2 Comparison of final fitness

A repeated measures multivariate analysis of variance (repeated measures MANOVA) over the ten
best individuals of each condition showed that there is a significant difference between average
fitness of the final generation in each condition (F (2, 28) = 44.953, p < .001, η2 = .769). Sum-
marized data can be found in Table 3.2. On further examination, pairwise comparisons showed
that only the mean fitness of the no-interleaving condition differed significantly from the one-
interleaving (p < .001) and three-interleaving conditions (p < .001). The difference of the mean
fitness of the one interleaving and three interleaving condition was not significant (p = .269). See
also Figure 3.4. The three groups of bars each represent a condition. The two bars each group
consists of are the two measurements.

The difference in fitness between the two runs of each robot was not significant (F (1, 28) =
2.508, p = .125). This means that control structures in the final generation are able to reproduce
their fitness scores (i.e. their behavior) over different runs.
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Figure 3.4: Difference in mean fitness of the best ten subjects of each condition. There is a
significant difference between the no interleaving condition and the one and three interleaving
conditions, but not between the one interleaving and three interleaving conditions (see text).



Chapter 4

Conclusion and discussion

In this chapter, the conclusions which can be drawn on basis of the results are discussed. Section
4.1 presents the conclusions, while the effect of real world exposure length is described in section
4.2. The performance difference of the control structures in simulation and the real world is
discussed in secion 4.3.

4.1 Conclusions

Both the experiment in this thesis and the experiment of Goosen (2007) were only run once (see
Section 4.5). All conclusions drawn from the results presented is tentative, but despite this, a
number of interesting observations can be made.

After analysis of the mean fitness of the best 10 individuals of the final generation in each
condition, the following can be concluded. Both interleaved conditions performed worse than the
condition in which no interleaving was used. The no interleaving condition performs significantly
better than both interleaving conditions. Fitness levels of the one interleaving and three interleav-
ing condition do not significantly differ from each other. We can now use these results to evaluate
the predictions we made of the possible outcomes of the experiment from Section 2.6.

The first and third predictions, which state that interleaving real world generations with sim-
ulation generations should cause an improvement in fitness, are not supported by the empirical
evidence gathered in this study. Also, the second possibility, which states the effect Goosen (2007)
measured might have solely to do with the real world exposure time in his interleaving condition, is
not supported by the data. The fifth prediction fits the data pattern best, since the no-interleaving
condition performs best, followed by the one-interleaving and third-interleaving conditions, albeit
that this last difference is not significant. This means that there is an effect of real world exposure
duration. This conclusion are discussed in depth in Sections 4.2 and 4.3.

Performance of control structures was bad compared to their fitness scores in simulation.
Although fitness values in simulation and real world cannot be compared, as mentioned before,
the difference is striking. Possible explanations are a bad simulator, or the effect of embodiment
of control structures in general. This is discussed further in Section 4.4.

As already stated in Section 3.2, a control structure reached roughly the same fitness level
every time it was tested. The evolutionary process used resulted in the selection of individuals
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that produced reliable behavior.

4.2 Influence of interleaving

The results from this experiment did not confirm that the effect described by Goosen (2007) was
caused by interleaving real world generations with simulator generations. The present experiment
did produce a significant difference in the average fitness levels of the final generations. This, in
turn could have been caused by different continuous real world exposure lengths (see Section 4.3).

The results in this study indicate that bridging the reality gap is not as straightforward as it
may look at first glance. The large drop in performance which occurs after the control structures
are placed in the real world can be contributed partially to the different scales in fitness. However,
it may also be an indication that the current simulator is not well suited for the evolution of
control structures. in the way presented in this study as well as Goosen (2007). Perhaps the role
of embodiment and embeddedness of a control structure is underestimated in general. Simulators
will never be able to simulate every unique detail of a given robot. The real robot, with its unique
sensors and motors, is always its best own representation.

4.3 Effect of real world exposure duration

When looking closer to the real world evolution of all three conditions, only the no-interleaving con-
dition shows a sustained increase in both maximum and mean fitness values. The one-interleaving
condition does show some improvement in the maximum fitness, but this improvement disappears
after a few generations. For both blocks of evolution in the real world, the average fitness level
stays close to zero. The average fitness of the three-interleaving condition does increase, especially
in the last three blocks of real world evolution, but the maximum fitness value stays at the level
it begins at.

Since the no-interleaving condition has twelve uninterrupted generations of evolution in the
real world, the high fitness levels of the final generation of this condition might be caused by the
fact that the evolutionary process is able to work better when it is not interrupted by simulation
generations. This indicates that the simulation is not compatible with the real world, and moving
control structures between the simulator and the real world might do the evolutionary process
more harm than good.

4.4 Performance in real world and simulation

As can be seen in Figures 3.1, 3.2 and 3.3, there is a drop in performance every time a generation
is placed in the real world. The population of control structures is able to reach an average fitness
score of about 6000-7000, but initial performance in the real world is around 0 at best. The
average fitness score of the three-interleaving condition is even below zero. Drops in performance
can also be observed when the control structures are placed back in the simulator, but these are
only marginal.

The severe drop in performance when the control structures where moved from the simulation
to the real world was not observed by Goosen (2007). In his experiment, control structures
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were able to use the experience that was gained in the simulation in the real world, especially in
the interleaving condition. Perhaps this effect caused by different lighting conditions between this
experiment and that of Goosen (2007). It is clear that even the slightest change to light conditions
can have a profound effect on the values returned by the light sensors of the robot.

There is also a difference in maximum and mean fitness between the no-interleaving and one-
interleaving condition (which are both around 0) and the three-interleaving condition (which is
below zero) at the start of the first block of real world generations. This can be caused by different
local maxima being reached in the different conditions.

Also, there is a difference in the way conditions react to the real world. For instance, generation
20 of the one-interleaving condition and generation 10 of the three interleaving condition both have
an average fitness around 12000 just before they are placed in the real world. In the next gener-
ation, which takes place in the real world for both conditions, the average in the one-interleaving
average is 0, while the average of the three-interleaving condition is -5000. Such differences also
suggest that different maxima are reached in each condition due to the stochasticity of the evo-
lutionary algorithm. When more runs of this experiment are made, this effect will probably be
averaged out.

In all, even though it is not possible to compare the fitness values of generations in simulation
and the real world, the difficulty of reaching an acceptable performance in the real world after
a number of evolved generations in simulation make claims made in this experiment and that of
Goosen dubious. It is clear that the Lego Mindstorms Simulator is not well suited for experiments
in which the simulator prepares robot behavior for the real world. This problem might be caused
by differences in the way the control unit is represented simulator and the way it really works.
Also, different reported light values between simulated and real world light sensors possibly play
a part. Further investigation is needed to validate this claim, however.

4.5 Validity

Because of the time limitations concerned with a Bachelor thesis, decisions were made that affected
the validity of the results of this thesis. The main reason for this is that only one single run was
performed, and each control structure could only be tested once or twice in each generation. As
stated in Section 2.5, the experiments should ideally be performed 16 to 20 times so it is possible
to do a T-test on the results. Also, every control structure should be tested multiple times.

Repeating the experiment in its current form is very time consuming, but a number of improve-
ments can be made to reduce the time needed for a single run. First, the speed of the simulator
can be improved by eliminating graphic output. Second, more than one session of the real world
trials can be performed in parallel by different groups. Alternatively, an entirely new paradigm
could be chosen that is simpler and faster to run than the task, simulator and robot presently
used.

To see whether the drop in performance is persistent in every generation, or if the results in
this study are based on bad luck, future research could be done by placing the best individual
from every simulation generation in the real world, like done in the research by Nolfi, Miglino, and
Parisi (1994).
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Chapter 5

Future research

This section describes some regions of interest where future projects in line with this thesis could
focus on.

5.1 Multi-objective optimization

The task in this experiment has two parts. First, the robot needs to maximize the distance traveled
in the environment. Second, the robot needs to minimize the number of bumps. That means the
task used is multiobjective. The fitness function, however, only consists of a single value for its
total performance. This value is based on the traveled distance, from which an arbitrary penalty
is subtracted for every collision registered by the bumper. It is therefore not possible to see the
difference in a robot which goes nowhere and a robot which only goes straight and gets stuck in a
wall. While the first robot is arguably better in avoiding walls, the other robot clearly outperforms
the first robot in the traveled distance. Such a distinction is important, especially in the early
stages of the evolutionary process where the majority of the robots go nowhere and early robots
get stuck in the walls easily.

Special evolutionary algorithms have been developed for multiobjective tasks. These algorithms
are usually based upon the use of a Pareto optimal front to order the multiple fitness values for
each individual, a method proposed by Goldberg (1989). With a Pareto front, solutions which
excel in one or more areas get selected, even though their performance is not great in other areas.

5.2 Crossover operator for ANNs

The exclusion of the crossover operator in the evolutionary process kept the setup for this and its
preceding experiment (Goosen, 2007) simple. Also, the classic crossover operator is not beneficial
when evolving ANNs due to the permutation problem (Yao, 1998, 1999). However, it is possible
to implement one if the right heuristics are used. Such implementations have been made (e.g.,
Spronck, Sprinkhuizen-Kuyper, and Postma (2001)). It would be an interesting project to compare
different crossover strategies for ANNs and see how the crossover operator can be best implemented
for control structures that have to perform similar tasks as presented in this study.
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