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Abstract

Artificial neural networks (ANNs) attempt to mimic human neural networks in order to

solve problems and carry out tasks. However, in contrast to their human counterparts ANNs

cannot generally learn to perform new tasks without forgetting everything they already know

due to a phenomenon called catastrophic interference. This paper discusses this phenomenon,

shows that it occurs in multi-layer perceptrons with arbitrary task representations and pro-

poses and discusses the static meaningful representation learning method that uses meaningful

task representations to circumvent this problem when learning to perform multiple tasks. The

technique is powerful enough to enable the learning of several simple tasks without changing

the weights of the network. It remains to be seen whether the technique scales to more inter-

esting task domains. The real potential of using meaningful task representations lies in their

combination with other techniques.

1 Introduction

For decades researchers have been trying to recreate intelligence in computers. One important

method of doing this is to imitate what we know about human and animal intelligence. Our brains

are networks of interconnected neurons that apparently allow us to think, learn, act and perceive

as we do. Inspired by this knowledge, artificial neural networks (ANNs) were created that are able

to learn to match patterns, perform tasks and solve problems [58, 60]. This paper focusses on a

subclass of ANNs called multi-layer perceptrons (MLPs). Using supervised learning MLPs can be

taught how to perform a task by merely showing them examples of inputs associated with desired

outputs called targets. After successfully training on these examples, MLPs are not only able to

recall the correct output for any of the example inputs, but can usually also generalize what was

learned fairly well to previously unseen input patterns. These are abilities that we attribute to

humans and other intelligent animals as well.

However, while humans can learn to perform new tasks without forgetting old ones, this is not

usually the case for artificial neural networks. When a network capable of performing one task

is trained on another, it will in general forget everything it ever knew about the first task very

quickly. This phenomenon is called “catastrophic interference” [23] and causes problems for both

the efficiency of ANNs as well as their psychological plausibility as models of the mind.

When asked to perform a task, people require a description of that task in order to know what

to do exactly. This is done using so-called action words, which are represented in the brain in
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2 Background 2

a way that is relevant to the task that they describe [29]. This paper presents a method called

static meaningful representation learning (SMRL) for determining task representations that are

meaningful in the context of existing knowledge without changing that knowledge. This enables

ANNs to sequentially learn new tasks without suffering from catastrophic interference.

The remainder of this paper is organized as follows: in Section 2 I will give a description of the

kind of ANNs used in this paper, describe how real world things may be represented in a manner

that ANNs understand, shortly talk about how the goal of this paper is describe what catastrophic

interference is exactly and explain why it occurs in these networks. in Section 2 I will provide

the essential background information that is needed in order to understand the ideas presented in

the rest of the paper. Section 2.1 will give a description of the kind of ANNs used in this paper

and Section 2.2 talks about how real world things may be represented in a manner that ANNs

understand. Technical details of the used ANNs are described in Appendix A. Section 2.3 gives

a short introduction to the issues related to learning multiple tasks in an ANN and is followed

by Section 2.4 and Section 2.5 that talk about the related areas of catastrophic interference and

transfer learning . The SMRL method for learning multiple tasks without suffering from catas-

trophic interference is defined in Section 3. Section 4 describes the experiments carried out to

show that catastrophic interference is indeed a big problem in regular MLPs and investigates how

SMRL can best be used to prevent that problem. The results will be presented and analyzed in

the subsections after each experiment and Appendix B contains a complete overview of the results

obtained for the experiments with SMRL. Section 5 will provide a final analysis and evaluation

of the results and is followed by Section 6 which contains ideas for future research. Section 7

summarizes the paper and concludes that using SMRL has a lot of potential for avoiding catas-

trophic interference, making ANNs more psychologically plausible and that the technique should

be researched further, especially in combination with other techniques.

2 Background

This section will first describe how the artificial neural networks used in this paper work. The

algoritms in this subsection are defined in more detail in A. Next, it is explained how ANNs might

be used to perform real world tasks by talking about how things in the real world can be represented

in ways that ANNs understand. This subsection is followed by a short introduction to multiple

task learning with ANNs. After that, it is explained exactly what catastrophic interference is,

why it occurs in ANNs and why it is a problem. Finally the related area of transfer learning is

reviewed.

2.1 Artificial neural networks

Artificial neural networks are networks of neurons or nodes. Each of these nodes has a certain

activation value that can either be set, or “clamped”, by the user (input nodes) or determined by

the nodes in the rest of the network (output and hidden nodes). When an ANN is used to perform

some task, the user clamps the activation values of the input units. This activation then spreads

throughout the network, eventually also affecting the output nodes’ activations. The activation

values of these output nodes encode the ANN’s solution to the presented task. The activation of

non-input nodes is determined by the activation of other nodes that they are connected to.
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Connections Nodes are connected to each other with directed and weighted connections or

“synapses”. Both these connections and their strengths are often referred to as weights. These

weights determine how a network reacts to inputs from the environment and it is therefore said

that they encode the network’s knowledge [39]. This paper uses a subclass of ANNs called multi-

layer perceptrons (MLPs) which are organized into different layers of nodes (L) (see Figure 1).

Activation flows from an input layer (L1), further downstream through any number of hidden

layers (L2. . . L|L|−1) until it finally reaches the output layer (L|L|), where |L| is the total number

of layers. The nodes in the hidden layers are usually not directly used by the user of the ANN, but

they allow the network to transform the input into something it ‘understands’ better. Most tasks

are fundamentally impossible to learn for a neural network without hidden nodes [42] (e.g. XOR

and IFF in Section 4). All of the used networks are non-recurrent, which means that a connection

may only go to a node in a layer that is further downstream. In a transfer of activation between

two nodes, the activation providing, upstream node is called the “presynaptic neuron” and the

receiving, downstream node is called the “postsynaptic neuron”. Usually there are connections

from every node in one layer Li to every node in the next layer Li+1.

Activation flow When the input nodes are clamped with values, their activation spreads

throughout the network to the output nodes. Each non-input node receives the sum of the acti-

vations of the nodes in previous layers scaled by the strength of the connection from that node

into this one as its net input . To this sum is added the node’s bias. For all intents and purposes,

the bias can be thought of as the strength of the incoming connection from some imaginary node

Figure 1: This multi-layer perceptron has two input nodes, two hidden nodes and one output node. All

non-input nodes have a bias value, which can be thought of as the weight between the node

and an imaginary bias node that always has activation 1. In the future the bias will be shown

by a small white circle. Weights in these figures are always shown as lines from the bottom,

presynaptic neuron to the top, postsynaptic neurons. Arrows are shown here to emphasize

this, but are omitted later.
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that always has the same value (i.e. is always fully activated).

netj =
∑

i∈Upstream(j)∪{bias}

weightji × activationi (1)

where Upstream(j) is the set of all nodes that are upstream from neuronj and weightji is the

strength of the connection from node neuroni into node neuronj . If no such connection exists,

the weight is simply 0.

After accumulating the net input, an activation function is applied to it to calculate the node’s

activation. The most commonly used activation function is the log sigmoid . Equation 2 and

Figure 9a) show the scaled version of the log sigmoid used in this paper. Section 4.3.2 also

introduces the arctangent and Gaussian activation functions as alternatives to the log sigmoid.

activationj = A(netj) =
2

1 + e−netj
− 1 (2)

Training In order for a network to learn a new task, it has to be trained. Training algorithms

usually adapt the network’s weights, because that is where most the network’s capability for

performing tasks is encoded. Algorithms that dynamically change the network’s structure [36] or

activation functions [18] are beyond the scope of this paper.

The supervised learning paradigm uses a set of input-target pairs to teach the network by

giving it examples. This set usually doesn’t contain every possible input, so it is important that

the network does not just learn the examples that it sees, but is also able to generalize what it

learned to unseen cases. To measure the network’s generalization ability, the example set is usually

divided into a train set and a test set. During training, the network is shown input examples from

the train set and its output is compared to the target output using an error function. After

training, the network’s performance is measured by using the test set.

This paper will employ the squared error function (Equation 3) to train networks using the

back propagation learning algorithm with the generalized delta rule [61] seen in Equations 4, 5 and

6.

E =
1

2

∑

i∈L|L|

(targeti − activationi)
2 (3)

The idea behind this method of learning is that the weights in the network are adjusted in the

direction of the steepest descent in the error function. How much a weight will change is determined

by the derivative of the error function with respect to that weight, the activation of the presynaptic

neuron and a parameter called the learn rate. To speed up the learning process, this paper makes

use of the momentum [47, 52] and variable learn rate [27, 70] techniques. More technical details

can be found in Appendix A.

δj =
∂E

∂netj

(4)

∆weightji
t = −learn rate × δj × activationj + momentum ×∆weightji

t−1 (5)

weightji
t =

{

random number ∈ [−1, 1] if t = 0

weightji
t−1 + ∆weightji

t otherwise
(6)
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Here weightji
t represents the weight from neuroni into node neuronj at a certain time t . Equa-

tion 7 shows how the δ of a node is calculated when the squared error function is used.

δj =











A′(netj)×−(targetj − activationj) if j ∈ L|L|

A′(netj)
∑

k∈Downstream(j)

weightkj × δk otherwise (7)

where A′ is the derivative of the activation function (e.g. −A(netj)(1 − A(netj)) for the log

sigmoid).

For each training epoch the network iterates over every example in the train set and adjusts

the weights to get closer to optimal performance. Using the variable learn rate technique requires

training in batches, which means that the weights are updated after every epoch and not after

every example within an epoch (see Appendix A for details). The network is trained until certain

criteria are met. Useful moments to stop are after a predetermined amount of time has passed

or number of epochs have been executed. However, it is also possible to train until the network’s

performance is satisfactory. The networks in this paper will either be trained until their squared

error is smaller than 0.001 or until they are correct . The tasks that are used all have target outputs

of either +1 and -1 (see Section 4) and a network is called “correct” when it always produces an

output with the correct sign (+ or −).

After successsful training the network is capable of classifying the example inputs from the

train set correctly. The true power of ANNs lies in their ability to generalize what they have

learned. If the training set was representative for the entire task, unseen input vectors can usually

be classified correctly as well, but obtaining such a representative train set can often be difficult.

Their generalizing power enables ANNs to deal with new situations without having to be explicitly

programmed for them, which is what makes them useful in fields like signal classification, image

recognition and speech synthesis.

2.2 Representation

ANNs are used to perform tasks, solve problems, find patterns, etc. There are neural networks

that learn aspects of languages [7, 62], play the saxophone [54] or play card games [11]. The inputs

for the last task could for instance be the cards that the ANN can see as well as information about

the actions of the other players. The output might be that the network lays a card or makes

some sort of bid. These are not things that neural networks, or software systems in general, are

capable of. The inputs for the real-life task need to be translated to something that the ANN

can understand and the output needs to be translated to something that makes sense in the real

world.

Thinking of a good representation for these inputs and outputs is in general a hard problem, so

in most cases fairly arbitrary representations are used [7, 11, 54, 62]. In general, neural networks

work fine with these arbitrary representations, presumably because they do not have the prior

knowledge to make use of more meaningful ones. It has been shown though, that representing

similar real situations with vectors that are close to each other and dissimilar situations with

orthogonal vectors can increase performance [20]. One might say that the representations in such

an approach are more meaningful.

Creating useful representations is not only a problem for task status inputs however. Even

though most people are capable of performing more than one task, they do not always know what
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to do in each situation. This could happen for instance if one is dealt a hand of cards without

knowing the game, or when sitting down at a chess board without knowing which variant is played

[50]. In these cases you need to be told what to do; extra inputs are necessary. This is done using

so-called action words, which are represented in the brain in a way that is relevant to the task

that they describe [29, 32, 37, 51]. The question then is: how to represent which task to perform

in neural networks?

To the best of my knowledge, this question has hardly been researched. [74] gives an account

of how to recognize and manage what he calls contextual features, but does not talk about how

they might be specified. [66] use extra input nodes to represent the tasks it knows (and will

learn). One representation node is used for every task that the network knows. Every node is

turned off, except for the one associated with the task that should currently be performed. This

approach is called local , because a task is represented locally in one node. This approach requires

that N representation nodes are used, where N is the number of tasks that the network should be

able to learn.

Another approach, which is more distributed might only require log(N) representation nodes

(rounded up). So if the network needs to perform 7 different tasks, only 3 input nodes are necessary.

Each task representation is given by the binary number signifying how many tasks were learned

before it. For the first task (binary 000) all the nodes are turned off, for the third (binary 010)

the second node is on and for the fourth (binary 011) only the first node is off, etc.

Both of these methods assign fairly arbitrary representation vectors to each task. They do not

even contain any information about the tasks themselves, but rather about the order in which the

tasks were learned. In fact, these representation vectors are not so much representing tasks as

they are identifying them.

According to [8] “representations are the fruits of perception” and perception cannot be

separated from from learning and cognition. They also suggest that learning happens mostly by

making analogies between what we already know and the thing we are trying to learn. The way

things are perceived depends on the knowledge we have of it and vice-versa. It may very well be

the case then, that perceptions and by extension representations, are learned in tandem with task

content.

Parametric bias One way to obtain such meaningful task representations, is to treat the repre-

sentation nodes as regular input nodes and train their activation values using the back propagation

training algorithm. Tani et al. [71] have proposed a model called RNNPB (Recurrent Neural Net-

work with Parametric Bias) that can learn to predict multiple time series. It accomplishes this

by adding some parametric bias (PB) nodes to the input of the network. In the training phase,

the network learns all the required time series in an interleaved fashion while determining the PB

values for each of them. When the network is required to reproduce a certain time series, it should

be fed the corresponding PB values in addition to the regular input. Also, when a time series is

shown to the network without clamping the PB nodes, they will automatically converge towards

their trained values. In other words they ‘recognize’ the time series. Because of this, Tani et al.

compare these nodes to mirror neurons in human brains, which in turn have been linked to action

representation [32].

The activation of these PB nodes can be learned with back propagation in a similar fashion to

the weights in the network (see Equations 8 and 9). This is exactly what Tani et al.’s PB nodes

do.
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∆prvj
t = −learn rate ×





∑

k∈Downstream(j)

δk × weightkj
t−1



 + momentum ×∆prvj
t−1 (8)

prvj
t =

{

random number ∈ [−1, 1] if t = 0

prvj
t−1 + ∆prvj

t otherwise
(9)

While Tani et al. use these nodes to mimic mirror neurons, this paper will show that they can

also be used for learning meaningful task representations.

The name “parametric bias”, chosen by Tani et al. is suitable, because PB nodes do in some

sense alter the biases of the nodes in the first non-input layer L2. As mentioned earlier, a node’s

bias can be thought of as the weight between that node and an imaginary node that is always on,

regardless the input. One might say that the bias represents the part of the neuron that is always

there, that does not change with the task input. That is why using PB nodes can be thought of as

adjusting the biases of the connected nodes: once a task is chosen, their values do not change. In

other words: the network is parameterized by the values of the PB nodes so that it can perform

different tasks by adjusting these biases.

2.3 Multiple tasks

Most research on ANNs has focused on performing single tasks [69]. Multiple tasks are usually

encoded in multiple networks. In fact, sometimes multiple networks are used to perform one task

(see e.g. [14, 15, 75]). One reason for the use of multiple smaller networks is that training large

networks is very time consuming. Another reason is that catastrophic interference may occur

when multiple tasks are learned within one network.

Our brains do not seem to suffer from these problems however. Apparently there is a mecha-

nism that allows our natural neural networks to quickly learn new tasks without catastrophically

forgetting about the tasks that are already known. Being able to replicate the brain’s behavior in

this regard would greatly increase both the efficiency and the psychological validity of ANNs as

models of the mind and might provide interesting insights into this mechanism.

Earlier research in the field of learning multiple tasks has focused on two distinct topics:

avoiding or mitigating catastrophic interference and transfer learning. Transfer learning is about

taking advantage of previous knowledge when learning a new task that is related to that knowledge,

to learn faster, use less training examples or eventually generalize better. Catastrophic interference

is usually avoided by keeping backup copies of the networks that contain the previous knowledge.

Research into the avoidance of catastrophic interference is more often motivated by the idea of

creating more plausible models of the mind. Most of the time the focus is not on learning multiple

tasks, but on processing the training examples sequentially.

The next two subsections will give a more detailed overview of the respective fields of catas-

trophic interference and transfer learning research.

2.4 Catastrophic interference

Most people learned the skill of reading aloud in primary school. NETtalk is an MLP that can

do this as well [62]. A lot of people additionally learn a couple of foreign languages during their

education. When they do this, they do not suddenly forget everything about the language(s) that
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they already know. This is however, exactly what MLPs normally do, as Section 4.1 will show for

a simple task domain.

When an ANN is training, its weights are adjusted so that it can solve the problem or complete

the task (read a text aloud). Then, when it tries to learn something new, it will again start

adjusting those weights. It will not, however, take into account that it might want to leave those

weights intact in case it is ever required to perform the first task again. Catastrophic interference

or “catastrophic forgetting” is the disruptive effect that learning something new has on existing

knowledge. Catastrophic interference is related to the plasticity-stability problem in models of

memory, which states that they should be “simultaneously sensitive to, but not radically disrupted

by, new input” [23]. Both intuition and research [23] suggest that while some interference may

occur between different tasks, humans do not suffer from catastrophic interference. It would appear

that artificial neural networks, which are abstracted models of the brain, have failed to model

the characteristic of human neural networks that allows them to avoid catastrophic interference.

Building an ANN that does not suffer from catastrophic interference might therefore provide

insight into how this mechanism could work in humans.

The most common way to avoid catastrophic interference in ANNs is to interleave training

on the new information with training on the existing knowledge. There are two problems with

this: it is not how human learning works and it is terribly inefficient. The human equivalent of

this learning technique would be to also keep studying all of the already known languages when

learning a new one. This means, amongst others, that the more languages someone would learn,

the slower learning a new language would become. In fact, if Albert knows no languages at all and

Bart knows five languages, it would take Bart just as long to learn a new language as it would

take Albert to learn all of the six languages that Bart would know. [73] confirms the intuition

that having more relevant prior knowledge should make learning new tasks easier, not harder.

Actually, interleaving is not even really a solution to the problem. Catastrophic interference is

still happening, but the existing knowledge is simply overwritten with something that contains

that knowledge as well.

Nevertheless, it has been argued that the rehearsal of so-called pseudo-patterns may in fact be

more biologically plausible than previously thought [2, 56, 57]. [38] have discovered that learning

in the brain may happen in two Complementary Learning Systems. The neocortex contains long

term memories and is changed only very gradually. The hippocampus is used to quickly learn new

tasks with the aid of the knowledge from the neocortex. Eventually the newly learned knowledge

is transfered from the hippocampus to the neocortex. A number of dual models are based on these

findings [5, 6, 21, 22, 31, 46, 63, 64, 66]. In these models, the existing knowledge is retained by

letting the ‘neocortical’ network generate a train set that basically trains to continue performing

the way that it does. The examples in this set are called pseudo-patterns and are generated by

associating some input (either random or from the training set of the new task) with the output

generated by the network before the new knowledge is incorporated. Next, the network is trained

in an interleaved fashion on these pseudo-patterns as well as training examples for the new task.

This retention process has been linked back to human REM sleep. Problems with this approach

include that it does not account for the fact that we can learn multiple tasks on one day (i.e.

before going to sleep) and that it requires a (temporary) copy of the network to generate pseudo-

patterns. Furthermore, even though rehearsal of knowledge may happen during REM sleep, it is

hard to believe that we rehearse everything we know every night.

This last issue is more or less adressed by [20]. He proposed a method called “activation
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sharpening” that basically allowed the selection of a subnetwork that should be used to learn each

pattern, which precludes catastrophic interference from happening in the rest of the network. Per-

haps such a mechanism can be used to generate relevant pseudo-patterns in the earlier mentioned

approach. Although activation sharpening reduces catastrophic interference, it also reduces the

network’s performance and its ability to generalize. Also, the method stops working when two

or more patterns elect to use the same subnetwork. This happens when those patterns are too

similar to each other or when the number of hidden nodes to choose from is too small. Node

sharpening is actually a member of a family of techniques that attempt to cluster the hidden lay-

ers of feed forward networks in such a way that input vectors that should be classified differently

should show orthogonal activation in the hidden layers [19, 20, 34, 44, 48, 49]. Another slightly

different example comes from [40], who propose to pre-train networks with relevant knowledge.

This supposedly constrains the number of hidden nodes that are activated by each input pattern

as well as greatly speeds up learning [9, 25, 45], but requires that information to pre-train on is

available.

Another category of techniques for preventing catastrophic interference is that of constructive

neural networks [3, 30, 36, 44, 53, 76]. These networks add and remove nodes as new tasks

are presented for learning, which is not biologically plausible since there is already a definite

organization of the human brain at birth [4]. One notable and often used example is Grossberg

and Carpenter’s Adaptive Resonance Theory (ART) which was specifically developed to deal with

the plasticity-stability issue [30]. ART networks deal well with catastrophic interference, but they

are very complex, especially when they have to be adapted in order to support supervised learning

(i.e. learning from input-target examples).

[59] take a novel two stage approach to the problem: interference prevention and retroactive

interference minimization. In the first stage, the network is trained with initial knowledge in a

way as that minimizes future disruption by new knowledge. This is achieved by incorporating a

resistance to weight changes in the error function by using noise. In the second stage, the new

task is trained using an error function that is the combination of the errors for the old and new

tasks. This method helps to mitigate catastrophic interference of new with old tasks, but it is

unclear how it would prevent interference of two new tasks.

2.5 Transfer Learning

Another field related to learning multiple tasks is the field of transfer learning . Our brains enable

us to efficiently learn new things during our entire lives. People can often correctly generalize

from only one example [1]. It is believed that this ability is facilitated by the fact that our brains

already contain so much relevant knowledge about (most) new tasks. The idea behind transfer

learning and the Machine Life-Long Learning (ML3) framework is that a learning system should

take advantage of the knowledge it already possesses and use it as an inductive bias [43] when

learning new tasks [72]. It should also be able to continue learning for the rest of its ‘life’.

There are basically two distinct approaches to knowledge transfer: functional transfer and

representational transfer [67]. With representational transfer a new task is not trained in a network

with randomly initialized weights. With representational transfer the initialization of the weights

in the network for learning a new task is biased by the existing knowledge of the system rather

than random (see for instance [48, 49]. The main advantage of using this paradigm is that storing

representational knowledge requires little memory. A disadvantage can be that accuracy can
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decline over time, because the neural network representations are often not perfect.

In the functional transfer paradigm, existing knowledge is used to pressure the new network

to share a similar encoding [5, 6, 63–65, 68]. The easiest way to do this is to just remember

all training examples of previous tasks and use them in addition to the train set for a new task

when learning something new. Storing all training examples takes up a lot of space however. An

alternative might be to store neural networks for all of the previously learned tasks and use them

to (re-)generate training examples when required. This is similar to the pseudo-pattern based

approaches that were mentioned in the previous subsection. This can save storage space, but

becomes inaccurate if an input vector from the train set for the new task is not valid for one of

the already known tasks.

In Caruana’s multitask learning (MTL) approach a network learns to perform multiple related

tasks at once, even though the actual goal is to learn just one of those tasks [5]. The network

accomplishes this by connecting the output nodes of each task to the same hidden layer. This

causes them to build a shared encoding of the input space in that hidden layer which may help with

generalization, training speed and the number of resources required for learning (if few training

examples are available for one task, the network can still train the others). The fact that these

networks must always perform all tasks at once and have no way of knowing what task they

are supposed to carry out at any one time is obviously not very plausible from a psychological

standpoint. Tasks are usually stored in their own networks or consolidated in a neocortical network

from McClelland et al.’s Complementary Learning Systems framework [38]. When a new task is

trained, it will be done in a network that also attempts to re-learn all previously known knowledge.

Despite these issues, the idea has a lot of merit, because it seems very intuitive that we get better

at multiple tasks at a time and that learning one might help in learning another. The approach

also results in networks that generalize really well.

3 Learning multiple tasks

Section 2.3 already mentioned that most research about ANNs focused on learning single tasks.

People are however capable of easily learning multiple tasks. A lot of research has also been done

to mimic this behavior (see Section 2.4 and Section 2.5).

Sequential learning of multiple tasks is desirable both because it can potentially be more

efficient and because it more closely resembles how people supposedly learn than rehearsed, in-

terleaved training. In one of the first articles about catastrophic interference [53] tried several

different strategies for learning a list of words. He argued that there are cases where people in

fact do rehearse multiple elements in their minds when learning lists like these. He simulated

this by letting a network learn buffers of four words until he knew those words (by interleaved

reheasal training). At this point, the network would drop the oldest word from the buffer and

add a new one. An approach that performed even better was proposed by [55]. He suggests that

new items should be learned in addition to randomly chosen known items (instead of the three

previously learned ones). [5] has also suggested that some tasks are indeed learned in parallel

(e.g. tennis, running, hand-eye coordination and ball trajectory estimation). However, it is rarely

the case that two such tasks are completely new. These accounts suggest that our brain does

not learn everything in a sequential manner. The learning method proposed next therefore uses

a hybrid philisophy on this topic: tasks are learned in a sequential manner, but the learning of a
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task happens by interleaved rehearsal of the training set.

Static Meaningful Representation Learning Static Meaningful Representation Learning

(SRML) lets networks learn new tasks in the context of existing knowledge without changing

the weights in the network. The network only needs to learn a meaningful representation vector

for these tasks. One might say that an analogy is learned between the new task and the existing

knowledge encoded in the network [24, 33]. The learning of these representations is enabled by the

use of parametric bias nodes in the input layer (see Section 2.2). Because the knowledge within

the network is unaffected, catastrophic interference is completely avoided. The challenge is to give

the representation nodes enough influence over the behavior of the network to actually make it

perform a new task.

Like the framework of [59] SMRL consists of two phases. In the initial knowledge acquisition

(IKA) phase the network’s weights are determined. After that, the network becomes static and

its weights are fixed. The IKA phase is followed by the novelty learning (NL) phase in which the

network learns novel tasks by constructing representation vectors. Since these vectors are very

small, they can be stored very efficiently for future reference. Although it could be said that this

approach uses representational transfer of the initial knowledge, it should not be expected that

new tasks are learned faster than with training algorithms like back propagation that are allowed

to change all the weights.

SMRL may be viewed as a very extreme form of pre-training the network to avoid catastrophic

interference, as is done in [9, 25, 36, 45], or of prohibiting the change of some weights as in [53].

Also, in an analogy with the complementary learning systems of [38] the network’s weights may

be considered as the neocortical structure and the PB nodes as the hippocampal structure. Like in

most MTL approaches, knowledge of previous tasks (the representation vectors) somehow needs to

be stored. No satisfactory method is available as of yet, but at least storage of small representation

vectors is a lot more efficient than storage of entire neural networks.

The main advantages of the SMRL technique are that it is extremely simple and that it com-

pletely avoids catastrophic interference while sequentially learning multiple tasks. It is computa-

tionally much more efficient than approaches that have to interleave training on a new task with

training on already known tasks and storage of acquired task knowledge is also extremely efficient.

The representations that SMRL learns have real meaning in the context of the network and can

be viewed as analogies with the existing knowledge. A disadvantage of SMRL is that it is not

very biologically plausible that new things are learned without changes in the network’s weights.

What is learned, is essentially an analogy for the existing knowledge [24, 33]. This suggests that

the relation between the initial knowledge and new task is important for the success of learning.

Choosing the wrong initial knowledge might prohibit the accurate representation of some tasks.

The goal of this paper is to present a a proof of concept for this very simple novel method

for learning multiple tasks without suffering from catastrophic interference. The experiments in

Section 4.2 aim to test whether the idea has merit and if so, what the relation between existing

and new knowledge is and this information might be used to mitigate the disadvantage of being

at the mercy of the chosen initial knowledge.
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4 Experiments and results

The experiments in this paper will use one of the simplest sets of tasks: all tasks with two Boolean

inputs and one Boolean output that are fully specified, which means that the training set contains

every possible input combination. These ‘tasks’ include logical operations such as AND, OR and XOR

and are described in Table 1. It is important to note that since every legal combination of inputs

is in the training set, there is no way to test the generalizability of the networks.

Inputs NONE AND NIF 1st Just2 2nd XOR OR NOR IFF ¬2nd ¬Just2 ¬1st IF NAND ALL

- - - - - - - - - - + + + + + + + +

- + - - - - + + + + - - - - + + + +

+ - - - + + - - + + - - + + - - + +

+ + - + - + - + - + - + - + - + - +

binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 1: Here the 16 tasks with two Boolean inputs and one Boolean output are listed. The tasks are

given names for easy reference, some of which are fairly well known (e.g. AND, IF and XOR).

For each of the four possible combinations of inputs, the target output for each task is listed.

Inputs and target outputs are all either +1 or −1. The tasks can also be numbered from 0 to

15 when their outputs are first translated to binary by changing −’s into 0’s and +’s into 1’s

and concatenating the four target outputs of the task.

The first experiment (Section 4.1) will show that catastrophic interference is indeed a problem

when learning two tasks sequentially using arbitrary task representation vectors that merely iden-

tify the tasks. In the next experiment (Section 4.2), it will be tested if SMRL can prevent this

problem. Section 4.3 describes some attempts to improve the performance of the networks in that

experiment.

4.1 Catastrophic interference in MLPs using arbitrary task representa-

tions

The first experiment presented here will look at how catastrophic interference affects multi-layer

perceptrons learning multiple tasks with arbitrary task representations. Two measures of catas-

trophic interference are frequently used in the literature: exact error and relearn rate [23], which

are explained below.

MLPs in this experiment are first initialized with random weights after which they are trained

on one task until the squared error is under 0.001. Next, the network is trained on a second task.

The exact error is obtained by measuring the squared error that the network now makes on the

first task. The relearn rate is obtained by counting the number of epochs necessary to train the

network until it performs correctly on the initial task again (see Section 2.1).

These measures tell us how bad the network now performs on the initial task and how hard

it is to regain that performance, but this does not necessarily say a lot about what the network

has remembered. In order to test if the MLP benefitted at all from having known the initial task

before training on the second, two new measures are introduced: error benefit and relearn benefit .

To obtain these numbers, a second network is trained on the second task. This network however,

does not start with knowledge of the first task, but starts with random weights. The error benefit
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is obtained by subtracting the exact error from the error that this second network makes on the

initial task and the relearn benefit is the relearn rate minus the number of epochs this network

needs to learn that task.

The experiment will be conducted for MLPs with different architectures. Both of the methods

for determining (arbitrary) representation vectors described in Section 2.2 are tried with networks

using either two or four hidden nodes. The rationale behind this is that the most difficult tasks

(XOR and IFF) require two hidden nodes to be learned [42] and that a network with four hidden

nodes is exactly twice as large. Since the network has to learn two tasks, it could potentially

divide such a larger network in two smaller ones, learn both tasks and switch the correct half of

the network on with the RV. The results of this experiment are given in Table 2.

Size Learn Relearn Initial Exact Relearn Error Relearn

of L2 Method Success Success Epochs Error Rate Benefit Benefit

2 distributed 92.1% 86.1% 13.5 2.68 49.3 0.86 -3.48

4 distributed 96.7% 89.5% 10.2 2.68 37.8 0.97 -4.53

2 local 90.3% 81.2% 14.9 2.37 57.6 1.09 -4.68

4 local 95.6% 86.0% 11.7 2.36 46.9 1.24 -8.24

Table 2: This table shows training statistics for a number of MLPs with different numbers of hidden

nodes and representation strategies averaged over 25600 trials with all combinations of tasks

from Table 1. The learn success indicates the percentage of cases where the second task could be

learned after the first and the relearn success indicates how often the first task could be relearned

after successfully training on the second. Other statistics include the number of epochs required

to learn the first task (initial epochs), the error on that task after successfully learning another

task (exact error) and the number of epochs needed to relearn the first task after that (relearn

rate). The error benefit and relearn benefit were obtained by subtracting the exact error and

relearn rate for the cases where the network was not trained on the initial task first from those

numbers for the cases where it was.

Table 2 clearly indicates that catastrophic interference occurs in the tested MLPs. If this had

not been the case, the relearn rates would have been smaller than the initial epochs. It is rather

surprising that the relearn rates are actually a lot higher, because the first time the network was

trained until it had an error under 0.001 whereas the second time it only needed to be correct,

which is much easier and can theoretically be accomplished with an error of slightly less than

2. The relearn rate also does not appear to benefit at all from the network having known about

the original task after another task is learned on top of it. Adding more hidden nodes to the

network seems to have a beneficial effect on the number of training epochs, whereas adding more

representation nodes by using the solo RV generation method instead of the binary approach seems

to make training slower.

If no interference had occurred, the exact errors would have remained below 0.001. Table 2

shows that this is clearly not the case. However, it does appear that the networks did not forget

everything they knew about the task that they learned first, since the error benefit is positive.

For a network without representation nodes, the exact error should be 4 (because two tasks have

on average two different targets). Using RNs – even arbitrary ones – decreases this number,

because they have connections that will move performance towards their associated task. The

more of these nodes are used, the smaller the error becomes. The number of hidden nodes does
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not appear to affect the exact error much. However, networks with more hidden nodes do benefit

more from having learned the initial task first. Although the network does not appear to have

forgotten everything it knew about the first task, it did not remember much either, so catastrophic

interference is definitely occurring.

The next step is to see if using SMRL can prevent this.

4.2 Using SMRL

The basic idea of SMRL is that after the initial knowledge acquisition (IKA) phase, the weights are

fixed. In the subsequent novelty learning (NL) phase new tasks are learned by finding appropriate

representations for them in the context of that knowledge. Because the network itself cannot

change anymore, catastrophic interference cannot occur. The real question is whether it is possible

to learn representations for new tasks that are capable of changing the network’s behavior in such

a way that these new tasks can actually be performed. This clearly depends both on the initial

knowledge and on the new task(s) and the relation between them.

To keep things simple, the initial knowledge acquisition phase will consist of training the

network on one of the tasks in the task domain using back propagation. That task is given an

initially meaningless (random) task representation vector which is trained, along with the rest

of the network, on the task. After initial training, the weights of the network are fixed. Next,

the network attempts to learn representations for all of the defined tasks in the context of its

knowledge of the task that it was initially trained on. The learning of a task representation is

considered successful if the network behaves correctly for that task.

Subsequent subsections will discuss several different IKA approaches that differ in the way

that the meaningful representation nodes (MRNs) are attached to the network. Differences in

the number of hidden layers, hidden nodes and MMRNs are tested as well as different ways of

connecting the MRNs to the network. Since having more MRNs means that the hidden nodes

can be manipulated more flexibly, it is expected that having more MRNs will result in better

performance. Having more hidden nodes also increases the number of weights between the hidden

layer and the MRNs, so they are expected to have a positive effect on performance as well. Adding

more layers to the network makes the transformation from input into output more gradual and

it could be that the meaningful representation vector (MRV) can manipulate network behavior

better at an earlier stage of this transformation.

4.2.1 Implicit parametric bias network

The first network architecture employing SMRL idea that is tested is simply a regular MLP that

uses PB nodes for task representation (see Figure 2). It is called the “implicit parametric bias

(IPB) network” because the PB nodes that it uses can be thought of as indirectly adjusting the

biases of the nodes in the first non-input layer L2 (see Section 2.2).

Results of this experiment will be presented in Section 4.2.4. It turns out that some task

combinations can only simetimes be learned by an IPB network. Visual analysis of networks that

failed to learn these combinations revealed that they usually had very small weights between the

representation nodes and the hidden layer. These weights will be referred to as representation

weights (RWs). It is actually not surprising that this happens, because technically the PR nodes

are completely unnecessary for learning the initial task. If these weights approach zero, the network

will still be able to function fine because these nodes are only necessary for learning multiple tasks,
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Figure 2: This implicit parametric bias network uses two parametric bias nodes (the squares) to learn to

represent different tasks. The thick lines represent the representation weights. For the regular

IPB network they are no different than any of the other weights. For the FWIPB network they

are semi-randomly initiated to significant values and are not altered by any training otherwise.

and initially the network is only learning one. The next section introduces a variation of the IPB

network that addresses this issue.

4.2.2 Fixed weight implicit parametric bias network

The simplest way of ensuring that the MRV is not ignored, is to just set the RWs to significantly

large values and then not allow them to change during training. That way, the MRV will always be

able to have an effect on the network. These networks will be called “fixed weight IPB (FWIPB)

networks” (see Figure 2).

It is however very hard to determine what to use as values for these weights because the

importance and role of the hidden nodes (and MRNs for that matter) cannot be known in advance.

It may be desirable for one MRN to have a positive effect on one hidden node and a negative effect

that is twice as large on another hidden node, but that kind of information is not available before

training.

Because of this, a simple normal distribution with average 2 and standard deviation 1 was used

to randomly generate numbers for the weights that were multiplied by -1 with a chance of 50%.

This yielded connections that should be strong enough to enable the MRVs to have a significant

effect.

The results in Section 4.2.4 will show that this often helped to improve performance. Funda-

mentally however, these networks suffer from the same problem as the IPB networks with trainable

RWs: it is still very hard to determine optimal values for those RWs. Training does not yield good

values and using random, fixed weights is a poor man’s solution. The next section will provide a

better solution to this problem.
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4.2.3 Explicit parametric bias network

Instead of indirectly adjusting the bias of the nodes in L2, it is also possible to do it more directly

with an explicit parametric bias (EPB) network (see Figure 3). The simplest way to think about

it is that we eliminate the MRNs from the network and that the MRV for a task just replaces the

biases of the nodes in L2. This is equivalent to a special case of the fixed weights IPB network from

the previous section, where each node in L2 gets its own dedicated MRN (that is not connected

to other nodes). The weight between a MRN and the node that it is paired with is 1, while all

other RWs are 0. The downside is that this means that in most cases the MRV will need to be

larger than before.

EPB networks should perform at least as well as (FW)IPB networks with the same number

of hidden nodes, because they can mimic them. For (FW)IPB networks, each node receives the

dot product of the MRV and that node’s RWs as task representation information. EPB networks

can mimic (FW)IPB networks by setting the activation of each MRN to the dot product that the

corresponding node would receive in an (FW)IPB network.

4.2.4 Results

This section will now present and analyze the results that were obtained from the experiment with

the various networks using SMRL. Some results will be omitted for brevity and are only presented

in Appendix B.

Table 3 shows the percentages of cases that the networks were able to learn the representation

for a new task in the context of some existing knowledge.

Figure 3: Explicit parametric bias networks use one dedicated parametric bias node for each non-input

node that the MRV should directly affect. Each PB node is only connected to one other node

with a fixed weight of 1.
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# Hidden Nodes # MRNs IPB FWIPB EPB

2 1 24.9% 26.4% n/a

4 1 25.6% 26.0% n/a

2 2 30.4% 31.6% 32.2%

4 2 36.3% 36.7% n/a

6 2 38.6% 40.5% n/a

6 6 - - 54.9%

2+4 2 30.8% 31.6% 32.2%

4+4 2 34.0% 35.7% n/a

4+4 4 - - 38.7%

4 4 41.8% 42.3% 42.1%

Table 3: This table shows the percentages of the times that new task representations could be learned in

the context of existing knowledge for several different types of networks with different numbers

of hidden nodes and MRNs. The sizes of multiple hidden layers are seperated by +-signs, so

‘2+4’ means that there were two hidden nodes in L2 and four in L3. For the EPB networks, the

number of MRNs has to be equal to the size of L2, so some of the tested (FW)IPB networks

have no real EPB equivalent. Not all of the equivalents of EPB networks were tried either (e.g.

the network with six MRNs), because I believe that the strength of the (FW)IPB networks

vis-a-vis the EPB networks lies in the fact that they do not need to use as many MRNs.

Performance increases with the number of MRNs, and to a lesser extent the size of the first

hidden layer, and decreases when multiple hidden layers are used. As expected, the IPB networks

are outperformed by the others, but only slightly. The EPB networks seem to have performed

the best, although this might be caused simply by the larger number of MRNs in some cases.

When there were four MRNs, the FWIPB network performed a little better. This is surprising,

since an EPB network should be able to mimic FWIPB networks. The fact that this does not

always happen indicates that EPB networks are more vulnerable to local optima. Further analysis

of the data confirms this and indicates that with enough restarts from random representation

vectors, FWIPB networks can never outperform EPB networks. Perhaps the potential of the EPB

networks can be realized more fully by adjusting the training algorithm or parameters.

Clearly the EPB network with six hidden nodes performs the best. One might argue though,

that if that many values are stored, we might just as well store all of the weights of the smallest

ANN that could perform each task (which requires seven weights for the hardest tasks and just

three or even one for the simpler ones). The disadvantages of such an approach are that it has

no psychological foundation and that it will not scale to larger task domains, since the number

of weights is a quadratic function of the number of nodes in the network. Storing the four target

outputs will not scale either, because the number of target outputs is exponential in the sizes of

the input and output layers. Although it needs to be tested if the SMRL approach will work for

more interesting tasks, scaling should not be a problem, because even in an EPB network the

number of required MRNs increases only linearly with the size of L2.

Overall the results indicate that sometimes new task representations can be learned in the

context of existing knowledge, but that this is definitely not always the case. The rest of this

section investigates what distinguishes the situations where sequential learning was effectively

achieved from situations where it was not.
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Figure 4: These graphs show the percentages of times that an explicit parametric bias network succeeded

in learning the representation for a new task (columns) in the context of initial knowledge of

another task (rows).
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Figure 4 depicts the success distribution over combinations of tasks for the EPB network with

four hidden nodes. Distributions for the other tested networks (see Table 3) are roughly the

same (see Appendix B) and clearly show that the combination between initial knowledge (the

tasks on the vertical axis) and new tasks (layed out horizontally) matters greatly. There are a

lot of combinations of tasks that will succeed or fail almost every time. To use this approach in

practical applications it is necessary to be able to predict whether the required (type of) tasks

can be learned. Imagine that a system requires six tasks to be learned sequentially and the first

five succeed, but the sixth fails. If learning all of the tasks is truly required, the network would

now have to start over from scratch (with different initial knowledge) and learn all of those tasks

again. This can be very expensive. Also, it is interesting from a theoretical perspective to see if

correlations between initial knowledge and new tasks can be found and explained.

Difficulty Figure 4 shows that networks initially trained on NONE and ALL perform rather poorly

and networks initially trained on XOR and IFF seem to have the potential to learn all other tasks.

The other way around, it seems that learning NONE and ALL as second tasks is easy, but learning

XOR and IFF is almost impossible. This makes sense intuitively, as NONE and ALL are much easier

tasks than XOR and IFF, because they are both input independent; the output should always give

the same value, regardless the input. Networks trained on one of these tasks usually just learn to

ignore the inputs (and MRV) and just make the output node always turn on or off. Learning NONE

and ALL in a network trained on another task on the other hand, is generally pretty easy because

if the MRV’s values are large enough they can overcome the actual task inputs to again make the

network relatively independent of those inputs and always have the output node turn on or off.

The other way around it appears that having initial knowledge of hard problems like XOR and IFF

is a much better starting point.

For most other tasks, the output can be viewed as a monotonic function of the inputs, which

means that the derivative of that function is either always positive or always negative. They are

linearly separable, which means that when represented in two dimensions (like is done for the

other tasks in Figure 6) the positive points cannot be separated from the negative points by a

NONE AND XOR

ALL 1st IFF

Figure 5: Shows how different (groups of) tasks can be visualized with different numbers of output

regions in 2-D input space.
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single straight line [26]. The outputs of the linearly inseparable tasks XOR and IFF, on the other

hand, depend on their inputs non-monotonically. When visualized in two dimensions, linearly

inseparable tasks need at least three output regions to correctly classify all points in input space

(see Figure 5). Linear inseparability generally makes learning these tasks a lot harder for ANNs.

In fact, these tasks are the only ones in the set that can not be completed without using a hidden

layer [42].

Figure 4 shows that knowledge of difficult tasks enables the network to learn representations

for the other (easier) tasks most of the time. Table 4 defines the difficulty of each task for this

purpose.

Input Linearly

Difficulty Dependence # Regions Separable Tasks

1 none 1 yes NONE, ALL

2 monotonic 2 yes
AND, NIF, 1st, Just2, 2nd, OR, NOR,

¬2nd, ¬Just2, ¬1st, IF, NAND

3 non-monotonic 3 no XOR, IFF

Table 4: This table shows the different difficulty classes that occur in the task domain. The higher the

difficulty, the harder the tasks are to learn.

The EPB network in Figure 4 was able to learn new tasks in 42.1% of all of the cases. That

percentage was 86.7% for cases where the first task was more difficult than the second and 11.7%

when the first task was easier. Similar results were obtained for all of the other networks. This

can be interpreted as meaning that in order to learn a representation for a new task, the network

has to be ‘smart’ enough (i.e. trained on a hard(er) task).

Similarity Intuitively it seems that it is easier to learn something that is similar to what you

already know, than it is to learn something totally different. This is especially the case for the

used neural networks, because the new task has to be learned in terms of the existing knowledge.

Furthermore, that existing knowledge is highly specialized, because it is the knowledge used to

perform one task. Unfortunately, similarity is in the eye of the beholder, which makes it hard to

define [28, 35].

For an ANN “similarity” can be defined as the similarity between the weight distribution of the

network and the weight distributions that a network trained on the new task might have [63]. The

likely rate of success is defined by the portion of the possible weight distributions for the initial

task that look sufficiently like a weight distribution that could encode the second task. However,

this is not a very clear and useful definition, because it does not deal with the tasks directly and it

is normally not feasible to try and find every possible weight distribution for a task. A similarity

measure for the tasks themselves is therefore defined next.

First of all, it should be clear that tasks are similar to themselves. Secondly, each task has an

exact opposite to which it should intuitively be dissimilar. Furthermore, the output of the used

MLPs is a monotonic function of the inputs for every task except NONE, XOR, IFF and ALL. Each of

these monotonic tasks has another task associated with it whose inputs have the exact same effect

on the output. For instance, for the AND and OR tasks both inputs have a positive effect on the

output, which is simply larger for OR. Table 5 shows the effects of the two inputs on the output.

Tasks for which these effects are the same are considered parallel , except for NONE and ALL which
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are each other’s opposites. Tasks for which at most one input effect differs and is zero for one of

the tasks are considered similar .

Inputs AND NIF 1st Just2 2nd OR NOR ¬2nd ¬Just2 ¬1st IF NAND

I1 + + + - 0 + - 0 + - - -

I2 + - 0 + + + - - - 0 + -

Table 5: This table shows the correlations between the input nodes and the target output for all mono-

tonic tasks (i.e. all tasks except NONE, ALL, XOR and IFF). Positive and negative correlations are

indicated by +’s and −’s, while a 0 signifies the absence of any correlation.

Another way to look at it is to visualize the input space in two dimensions like in Figure 6.

The corners of the grey square represent the different inputs and the black lines divide areas of the

input space where the output should be positive and negative for each task. The arrows point in

the direction of the positive area and represent the effects that the input values have on the target

output for the associated task. If the arrows of two tasks point in the exact same direction they

are parallel and they are similar if their directions are roughly the same (i.e. there is less than 90◦

difference). The tasks not shown in Figure 6 —NONE, ALL, XOR and IFF— are only parallel and

similar to themselves.

The EPB network from Figure 4 could learn new representations for tasks in 100% of the cases

if they were parallel to the initially learned task and in 62.9% of the cases where they were similar

but not parallel. Table 3 indicates that the expected success percentage for any combination of

tasks is only 42.1%, so it appears that it is indeed easier to learn representations for tasks that

−,+ +,+

+,−−,−

NAND
2nd

AND

¬Just2

Just2 ¬1st

OR
¬2nd 1st

NOR

IF

NIF

Figure 6: Visualization of all monotonic tasks defined in Table 1 (i.e. all tasks except NONE, ALL, XOR and

IFF). The corners of the grey square represent the different inputs. The black lines separate

the input space into a part where the output should be positive (the side where the arrow

points) and a part where it should be negative.



4 Experiments and results 22

are similar to the existing knowledge. Similar results were obtained for the rest of the networks

as well.

Initial knowledge It might be said that the percentage of correctly learned task representations

is not a good measure of success, because it should be attempted to use a network with the best

initial knowledge for the job. If a network architecture increases performance for networks with

initial knowledge of NONE or ALL from 10% to 20% it is going to improve in the overall performance

of that architecture, but it is not going to matter, since these are still low percentages and NONE and

ALL should quite simply not be used as initial knowledge in any practical application. It appears

to be just as, if not more, important to use good initial knowledge for the target application as it

is to optimize the network architecture. The only performance measure that counts is the one for

the combination of network architecture and initial knowledge that optimizes performance for the

set of tasks that a system needs to learn. For instance, if the goal for some application is to read

germanic languages aloud, then performance on roman languages is irrelevant. Furthermore, when

comparing different networks and different initial knowledge sets, it is the maximal performance

using a combination of the two that is important, not a network’s average performance for all

initial knowledge sets.

The networks in this paper are not meant to perform just a subset of the possible tasks, but

all of them, so a good performance measure might be to look at the success rate of the network

using the best initial knowledge. I will refer to this measure as the prodigy measure. Figure 7

shows the success rates for each task used as initial knowledge. Basically, the harder the task, the

higher the success rate. Apparently, the XOR network scores the highest, so its performance will

be used in the prodigy measure.

Some cognitive scientists argue that we need to assume a lot of innate cognitive structure

in order to explain the speed and efficacy of human learning [10]. Analogously, it may be that

humans are able to encode multiple tasks on the same neural substrate by having the right kind

of inborn structure in place. If this is true, networks using poorly structured initial knowledge can

be expected to have trouble learning. It is of interest, then, to study the performance of networks

with well structured initial knowledge. The results show that ANNs that encode in their initial

weights knowledge of XOR and IFF, learn best. The knowledge encoded by these networks may in

a sense be analogous to the inborn knowledge that facilitates human learning according to some

cognitive scientists.

Figure 7: Success percentages of learning all tasks in the context of each individual task as initial knowl-

edge for an EPB network with four hidden nodes.
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Measuring performance Table 6 shows the performance of several networks using different

measures. Each measure takes into account only a number of task combinations and calculates in

how many percent of those cases a new task representation could be learned:

Difficulty combinations where the initial task is more difficult than the second

Parallel all task pairs for which the inputs affect the output in exactly the same way

Similar all task pairs for which the inputs affect the output in roughly the same way

Prodigy combinations between the best initial knowledge and all tasks

Overall all task combinations

Network # Hidden PRV

Type Nodes Size Difficulty Parallel Similarity Prodigy Overall

IPB 4 2 77 98 72 66 36

IPB 4 4 88 100 79 79 42

FWIPB 4 2 81 98 72 69 37

FWIPB 4 4 91 100 79 88 42

EPB 2 2 73 100 68 51 32

EPB 4 4 87 100 80 75 42

Table 6: This table shows the success rates of the best network architectures using several performance

measures.

Table 6 shows that the presented notions of similarity and difficulty really do apply to these

networks, because the scores on those measures are much higher than the overall scores. It appears

that the difficulty notion affects FWIPB networks the most, whereas EPB networks might be the

most sensitive to the similarity notion.

The IPB networks seem to be outperformed by the FWIPB networks almost uniformly as

expected. On the similarity measures EPB networks score the best, but they perform relatively

bad on the difficulty and prodigy measures of success compared to IPB and FWIPB networks with

the same number of MRNs.

Depending on the goal of letting an MLP learn multiple tasks, it might be prudent to optimize

different measures of success. For instance, if good initial knowledge is available, the network

should be able to take advantage of that and performance for cases where the initial knowledge

was worse is irrelevant. In that case, the prodigy measure of success can be used.

Finding out that task difficulty and similarity affect success can help to find initial knowledge

that works well. For instance, the difficulty measure indicated that the XOR and IFF tasks would

provide the best initial knowledge. The network’s initial knowledge does not necessarily have to

be defined by (just) one of the tasks. In fact, it can be any weight distribution. Such a weight

distribution could for instance be created by training the network on two tasks in the normal,

interleaved way. This might be beneficial, because the network might then be less specialized and

behave ‘similarly’ to more tasks. Alternatively, an MTL learning approach could be taken in order

to construct a hidden layer that is at least an intersection of the weight distributions for the tasks

it was trained with [6]. Even in this simple domain, there are 240 combinations of two different
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tasks that could be tried. The difficulty and similarity measure could help to narrow down the

search by suggesting that it will probably be most beneficial to combine hard or dissimilar tasks

(since the combination might be similar to more other tasks).

In some other cases it might be prudent to optimize a network to take advantage of similarity

between the initial knowledge and tasks that the network should be able to learn. For instance,

this method could be made to work together with French’s activation sharpening technique [20].

Node sharpening does not perform so well on similar patterns, so if MRNs can be used in a way

that optimizes for similarity, the techniques could negate each other’s weak spots.

New measures can also be devised to suit different goals. For instance, when the network only

needs to be able to perform certain tasks, a suitable measure of success should take only those

tasks into account. Another interesting thing would be to research which tasks are difficult for

humans to learn consecutively and optimizing an ANN to mimic that behavior.

These are all interesting topics for future work.

4.3 Optimizations

In an effort to further increase performance, a number of optimizations were tried that led to in-

teresting results that require future research. Results of these optimizations are directly compared

to the results of corresponding networks that do not use them. More detailed results can be found

in Appendix B.

4.3.1 Multi-layer spanning connections

Networks with fewer nodes are more efficient than networks with more nodes, because they are

faster and require less memory. Normally when an MLP has to learn one of the linearly inseparable

tasks XOR or IFF it needs a hidden layer with at least two nodes. If connections are allowed that

span more than one layer, only one hidden node is needed. This suggests that allowing such

connections might enable the network to use the nodes that it has more effectively.

When multi-layer spanning connections are allowed, every non-input node can be connected to

the MRNs (see Figure 8). For EPB networks, this means that the number of MRNs must increase

to the number of non-input nodes.

Network # Hidden PRV

Type Nodes Size Difficulty Parallel Similarity Prodigy Overall

IPB 4 2 83 (+6) 100 (+2) 70 (-2) 74 (+8) 39 (+3)

IPB 4+4 2 81 (+6) 99 (0) 71 (-3) 74 (+16) 39 (+5)

IPB 4 4 94 (+6) 100 (0) 74 (-5) 90 (+11) 43 (+1)

FWIPB 4 2 83 (+3) 100 (+1) 73 (+2) 73 (+4) 40 (+3)

FWIPB 4+4 2 85 (+5) 99 (+0) 76 (+0) 78 (+13) 41 (+5)

FWIPB 4 4 96 (+5) 100 (+0) 80 (+1) 93 (+5) 44 (+2)

EPB 2 3 84 (+11) 100 (0) 69 (+1) 70 (+19) 38 (+6)

EPB 4 5 91 (+4) 100 (0) 73 (-7) 85 (+10) 43 (+1)

EPB 4+4 9 95 (+9) 100 (0) 80 (-1) 91 (+19) 47 (+8)

Table 7: This table shows the increase in success rates for networks where each node had connections to

every node downstream from it.
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Figure 8: Two FWIPB networks with multi-layer spanning connections. The right network only allows

connections from the MRNs to span multiple layers.

Table 7 shows the performance increase of using connections from each node to every other

node downstream from it. Overall, difficulty and maximal scores are all increased compared to

the case where connections were only allowed to go from one layer to the next, while the similarity

score is often decreased. The EPB network with four hidden nodes is the only one that barely

benefits from these extra connections overall, which allows IPB and FWIPB networks that even

have a MRN less to overtake it in terms of performance. As mentioned before, this is very odd

since the EPB networks should be able to mimic IPB and FWIPB networks.

Networks with more than two layers were tested, because this approach was expected to be

very dependent on the connections between layers. This did not turn out to be the case however.

The only conclusion I can draw is that performance appears to increase with the number of MRNs.

Allowing connections to span multiple layers increases the effect that a presynaptic node can

have on a postsynaptic node that it normally would not be connected to. However, since these

weights do not change after the initial knowledge acquisition phase, they can also increase the

rigidity of the network. The MRNs can use all the power over the output node that they can get,

so the increased rigidity might be outweighed by that extra power for them, but the regular task

inputs only need to enable the network to differentiate between task states. Because of this it was

tried to only connect the MRNs to every non-input node and let other nodes only connect to the

nodes in the next layer.
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Network # Hidden PRV

Type Nodes Size Difficulty Parallel Similarity Prodigy Overall

IPB 4 2 85 (+8) 98 (+0) 74 (+2) 78 (+12) 41 (+5)

IPB 4+4 2 80 (+5) 99 (-1) 74 (0) 70 (+12) 39 (+5)

IPB 4 4 97 (+9) 100 (0) 87 (+8) 97 (+18) 53 (+11)

FWIPB 4 2 84 (+4) 99 (+1) 77 (+5) 77 (+8) 41 (+5)

FWIPB 4+4 2 83 (+3) 99 (0) 78 (+3) 72 (+7) 40 (+5)

FWIPB 4 4 95 (+4) 100 (0) 90 (+11) 93 (+5) 49 (+7)

EPB 2 3 84 (+11) 100 (0) 74 (+6) 74 (+23) 41 (+9)

EPB 4 5 93 (+7) 100 (0) 89 (+9) 89 (+14) 53 (+11)

EPB 4+4 9 96 (+11) 100 (0) 92 (+11) 92 (+20) 59 (+20)

Table 8: This table shows the performance increase for networks where each MRN had connections to

every node downstream from it. All other nodes were only connected to the nodes in the next

layer.

Table 8 shows that just allowing the MRNs to have connections that span multiple layers

further increases performance – this time on virtually every measure of success. FWIPB networks

seem to benefit the least, indicating that the added weights are more sensitive and should not be

randomly defined. Contrary to the case where every representation node was given multi-layer

spanning connections, EPB networks benefit from this change a lot. It should be noted that while

these networks perform better than the other overall, IPB and FWIPB networks perform better on

most of the defined measures of success. This indicates that the notions of difficulty and similarity

apply better to those networks.

One especially spectacular result is that the IPB network with four hidden nodes with initial

knowledge of the XOR task learned on average 15.5 of the 16 tasks in the task domain. In the

experiment using arbitrary task representations in Section 4.1 the networks also occasionally failed

to learn the second task on top of the first. Even though these networks were allowed to change

all of their weights, only in 4 of the tested 64 combinations of initial task and network architecture

could the network learn 15.6 or 15.7 of the 16 new tasks. In these cases the network of course

suffered from catastrophic interference. The network using meaningful task representations on the

other hand, was able to learn all of the tasks together in 70% of the cases, without suffering from

catastrophic interference at all. It might be suggested that these networks are capable of lifelong

learning, because after the IKA phase, they can sequentially learn every possible (legal) task in

the domain.

4.3.2 Activation functions

In order to determine the activation of a postsynaptic neuron, the dot product of the activations

(the net input) of the presynaptic neurons and the weights between the two is fed into an activation

function (see Equations 1 and 2). The activation function often bounds the activation of the node

between two values (in our case between −1 and +1). So far all networks have used a scaled

version of the commonly used log sigmoid function (as given in Figure 9a). This monotonically

ascending function is S-shaped and is −1 if the input is −∞, 0 if the input is 0 and +1 for an

input of +∞.

The used activation function deeply affects the way a network works. This subsection aims to
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investigate how the use of two other common activation functions can affect the performance of

the most interesting network architectures from Section 4.2.

Arctangent Another sigmoid function is the arctangent (Figure 9b). The main differences are

that the log sigmoid is saturated much faster (i.e. output values near -1 and +1 are reached

earlier) and that the arctangent generally has a steeper slope for large (positive or negative)

inputs. Because of this, networks using the arctangent are easier to change and learn slower than

those trained with the log sigmoid.

Network # Hidden PRV

Type Nodes Size Difficulty Parallel Similarity Prodigy Overall

IPB 4 2 83 (+6) 100 (+2) 70 (-2) 73 (+7) 37 (+1)

IPB 4 4 90 (+2) 100 (0) 75 (-4) 83 (+4) 40 (-1)

FWIPB 4 2 87 (+6) 100 (+1) 72 (0) 80 (+11) 38 (+1)

FWIPB 4 4 96 (+5) 100 (+0) 78 (-1) 93 (+5) 43 (+0)

EPB 2 2 77 (+4) 100 (0) 64 (-4) 57 (+6) 32 (0)

EPB 4 4 96 (+9) 100 (0) 80 (-1) 93 (+18) 44 (+2)

Table 9: This table compares the success rates of several network architectures using the arctangent

activation function with equivalent networks using the log sigmoid.

Table 9 shows that using the arctangent activation function seems to increase the effect that

task difficulty has on performance. This also has the effect of dramatically increasing the network’s

scores on the maximal measure of success. Performance on similar tasks is decreased on the other

hand. It appears that some networks can take advantage of the arctangent activation function,

but others cannot. Future research should answer the question about in which circumstances the

arctangent should be used.

Another thing about these networks should be noted though: training is an order of magnitude

slower. The distribution of success across task combinations is very similar to when the log sigmoid

was used, so all of the observations made in Section 4.2.4 apply here as well. If a situation arises

where use of the arctangent could be beneficial, it might therefore be a good idea to optimize

A(netj) = 2
1+e−netj

− 1 A(netj) = 2
π
arctan(netj) A(netj) = 2e(−πnetj

2) − 1

(a) (b) (c)

Figure 9: Three activation functions: (a) the log sigmoid function, (b) the arctangent and (c) the Gaus-

sian function.
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parameters using the log sigmoid function and use the arctangent in the final application.

Gaussian Unlike the other two activation functions, the Gaussian function is not a sigmoid,

but it is bell-shaped like the normal distribution (see Figure 9c). The output is −1 for both +∞

and −∞ and increases to +1 when the input gets closer to 0. Networks using this non-monotonic

activation function are called “value unit networks” [12]. The Gaussian is more powerful than the

other activation functions because it has both ascending and descending parts [41]. Value unit

networks for instance do not need a hidden layer to perform the XOR task.

[13] observed that Gaussian using neural networks tend to settle in a local optimum where

the output will always be false, because for large (positive or negative) net inputs, the derivative

of the Gaussian is close to 0. They proposed to use an augmented error function to deal with

this problem. [17] argues that it would be even better to augment each derivative separately (see

Equation 10), which is the approach that is taken in this paper.

δj =
∂E

∂netj

− 0.1× sign(netj) (10)

Network # Hidden PRV

Type Nodes Size Difficulty Parallel Similarity Prodigy Overall

IPB 4 2 74 (-3) 86 (-11) 78 (+6) 88 (+22) 73 (+37)

IPB 4 4 87 (-1) 90 (-10) 89 (+9) 97 (+18) 84 (+42)

FWIPB 4 2 74 (-6) 85 (-14) 78 (+6) 86 (+16) 74 (+37)

FWIPB 4 4 82 (-9) 91 (-9) 86 (+7) 92 (+4) 81 (+39)

EPB 2 2 65 (-8) 83 (-17) 69 (+1) 76 (+25) 60 (+28)

EPB 4 4 88 (+1) 95 (-5) 94 (+14) 97 (+22) 89 (+47)

Table 10: This table compares the success rates of several network architectures using the Gaussian

activation function with equivalent networks using the log sigmoid.

Table 10 shows that using the Gaussian function greatly increases overall and prodigy perfor-

mance. The fact that performance on the similarity and difficulty notions is not really that much

higher than the overall performance suggests that these notions defined in Section 4.2.4 are a lot

less applicable to value unit networks.

Figure 10 shows the success distribution for an explicit parametric bias value unit network with

four hidden units. Both the scores in Table 10 and the success distribution in this figure confirm

that the concepts of task difficulty and similarity are either very different from those concepts in

the networks that use sigmoids or that they do not apply at all. Since value unit networks ignore

task monotonicity, it is difficult to devise a difficulty and similarity measure in the same way that

was done for sigmoid using networks.

The Gaussian activation function has a lot of potential, but needs to be researched further in

order to better understand relations between task combinations and chance of successful learning

so that it can be utilized even more effectively.
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Figure 10: These graphs show the percentages of times that an EPB value unit network with four hidden

nodes succeeded in learning the representation for a new task (columns) in the context of

initial knowledge of another task (rows). Note that the success distribution is very different

from the one in Figure 4.
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5 Evaluation

In Section 4.1 the first set of experiments clearly concluded that catastrophic interference occurs

in normal MLPs when they attempt to learn even as few as two tasks sequentially. When humans

are faced with the challenge of learning multiple similar tasks, they have no such trouble. If neural

networks are to be psychologically valid, they should be able to learn multiple tasks just as easily.

The goal of this paper was then to devise a method where using meaningful rather than arbitrary

task representations would facilitate learning multiple tasks without suffering from catastrophic

interference.

In order to accomplish that goal several architectures were tested that made use of SMRL in

Section 4.2. The implicit parametric bias network was based on work by Tani et al. [71] and in

general performed pretty well on the predicted task combinations. By fixing the weights from the

parametric bias nodes to the hidden layer to significantly large values, performance was increased.

The explicit parametric bias networks went one step further by having exactly one dedicated

representation node for each hidden unit. This more flexible approach eliminates the problem of

having to set the representation weights appropriately, but surprisingly did not always increase

performance.

Allowing connections to span multiple layers appears to have great potential for increasing

performance. Using the arctangent activation function instead of the log sigmoid does, but also

makes training a lot slower. Networks employing the Gaussian function behave very differently

from networks using a sigmoid. Overall performance is increased, but notions like similarity and

difficulty as defined in Section 4.2.4 for sigmoid using networks do not seem to be applicable in the

same way. Researching if and how these notions might be defined for value unit networks might

give valuable insights and make it possible to benefit from the Gaussian function even more.

Although there is still a lot of room for improvement, the experiments in this paper have

clearly shown that SMRL can be very powerful. In many cases it enables a neural network

to learn additional new tasks without changing its weight distribution. By letting ANNs avoid

catastrophic interference SMRL increases their plausibility as models of the human mind. It is

not suggested however that humans learn in the same way as the networks in the paper. Humans

are making, strengthening and weakening connections in their brain all the time. Because of this,

using meaningful representations is just a start and it will probably be beneficial to use this idea

in addition to other methods of sequentially learning. Suggestions for future research on this topic

are presented in the next section.

6 Future work

Although the final performance of SMRL in the used task domain is fairly satisfactory, there is

still room for improvement. A number of ways in which performance may be improved will be

presented in this section. Also, some questions are raised that might be interesting topics of future

research.

One thing that should definitely be looked into is why EPB networks can sometimes be out-

performed by IPB and FWIPB networks. As mentioned before, this should not happen, because

they should be able to mimic them. Overcoming this quirk would make EPB networks use the

best of the (FW)IPB networks as a baseline and in some occasions improve from there. This could

lead to some very promising results.
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Generalizability The networks in this study were trained using training sets that contained

every legal input vector. This means that there was no way to see how the networks generalized

with respect to unseen inputs. Future research should look into the generalizability of SMRL.

Scalability Another interesting question is whether the results for this simple task domain will

scale to more interesting tasks. This paper attempted to provide a proof of concept for SMRL,

so it used one of the simplest task domains in existence: fully specified tasks with two Boolean

inputs and one Boolean output. The task representations were usually able to transform the

behavior of a network in such a way that it would compute the right output for these simple tasks.

However, things might quickly get more complex when a task requires multiple outputs, because

that would put a lot of extra constraints on each representation value. Also, in this study tasks

were considered to be learned when the network would be correct (see Section 4.1) and always

give a positive output when the target was +1 and a negative output when the target was -1. If

the network needs to be able to produce an output that resembles a target value exactly, the fact

that this new method uses only one input independent vector may prove to be too inflexible.

Similarity and difficulty A related issue is that of the similarity and difficulty notions. These

notions are either not applicable to networks using the Gaussian activation function or should be

defined differently. It could very well be the case that these notions do not apply to other networks

in the way that they were defined here. And even if they are, similarity and difficulty might be a

lot harder to define for more interesting task domains. If it turns out that the similarity notion is

indeed applicable in those domains, it may be the case that the number of similar tasks for any

given task is very small, because the percentage of linearly separable tasks quickly decreases as the

dimensions of the tasks increase [26]. This does not bode well for the scalability of this concept.

Psychological validity It will also be necessary to investigate the psychological plausibility of

neural networks that learn multiple tasks in the way that was used in this paper. The approach

avoided some common pitfalls: the use of arbitrary task representations, catastrophic interference

and interleaved learning. The pitfall of the presented approach is that no weights changed in the

network when it was learning new tasks. Every new task was learned as just a variation on what

the network already knew. It seems unlikely that this is how humans learn.

Another thing that might be worth investigating is whether networks can be created that

have the same behavior as humans with respect to which things can easily be learned together

and whether the order in which these are learned matters. The paper introduced the notions

of similarity and difficulty, but although it seems likely that these notions play a part in human

learning as well, it is unclear if these notions should be defined in the same way. For instance, the

human notion of similarity is probably different from an MLP’s notion.

Meaningful RWs In both implicit parametric bias networks (both the one with fixed weights

and the one with variable weights) there was a problem with determining useful values for the

weights between the MRV and the hidden layer. It was discussed that this is a hard problem, but

solving it might yield great performance increases. One possible solution might be to interleave the

training of just the MRV with the training of the entire network for the initial training run. That

way the MRV always has a meaningful value when the network is training, whereas normally in the

beginning the MRV does not mean anything yet. Another way to create meaningful connections
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might be to add one or more output nodes to the network that really do depend on the values of

the MRNs. For instance, it might be a good idea to use one output node for every MRN with the

goal to reproduce that MRN’s value. Every once in a while a bogus MRV should be used that

would need to be reproduced (but that does not require anything from the regular outputs) to

prevent that the network learns to ignore the MRV when it has converged (because then it can

always output the same values). The extra output nodes can be removed or ignored after the

network has finished training on the initial task.

Initial knowledge An issue related to determining good RW values is the issue of determining

good connection strengths in general, or in other words: good initial knowledge. Essentially what

we are looking for is some initial knowledge that allows a network to arbitrarily change its behavior

based on the values of the MRV. One idea for obtaining this knowledge is to ‘cheat’ and train

on all 16 tasks interleaved, or using MTL. Analyzing the differences between these more optimal

networks and others might give valuable insight into how to train an initial network without

cheating.

Another suggestion is to initially train the network on two different tasks in an interleaved

fashion. Such a network would then be less specialized for just one task and it could even be the

case that such a network would learn task independent skills that might enable it to more easily

learn other tasks as well.

Variations One of the big ideas behind SMRL is that it always performs perfectly on traditional

catastrophic interference measures like relearn rate and exact error because the original network

does not really change after it is done learning to perform an initial task. It might be possible to

invent a way to slightly change a network’s weights to make learning new tasks easier (maybe in

addition to changing the initial task’s representation vector) without compromising performance

on the initial task.

One issue with the explicit PB network was that it used a large representation vector. It might

be worthwhile to look into smart ways to determine which nodes (or connections) in the network

should contribute to the MRV. This paper simply used one value for each node in the first hidden

layer, but maybe it would be sufficient to only have values for the N nodes with, for instance, the

largest biases. Another problem for the EPB network was the big influence that the initial values

of the untrained MRV had on whether a task could be learned or not, which caused it to perform

worse than similar (FW)IPB networks on some occasions. It is not clear how this problem can be

remedied but it is obvious that solving this problem would increase EPB network performance.

Also, there are other ways of using a MRV in a network [74]. In the networks in this paper the

activation of a MRN was simply multiplied by a weight and added to the net input for a node it

connected to. By allowing a MRN to multiply the net input rather than just add some value to it,

it might be able to complete certain tasks more easily. For instance, in the performed experiments

the network usually had some trouble to learn two tasks that were each other’s opposites. With

multiplication however, the MRV of one could simply be the negation of the other, which should

be fairly simple to learn.

It may also be possible to make the MRV’s effect dependent on the regular task inputs. Maybe

some task inputs could turn some MRNs on or off and thereby increase flexibility and specialization

within the MRV.
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Combination Both for increasing performance and accounting for even more phenomena in

the human brain it may be beneficial to combine the approach taken in this paper with others.

According to French [20] catastrophic interference can be greatly reduced by making sure that

the network is sparsely connected using a method called “activation sharpening”. Activation

sharpening does not work very well with similar input patterns, while this is one of the strengths

of using meaningful representations, so it stands to reason that both methods will work well

together.

Activation functions Section 4.3.2 showed that using activation functions other than the log

sigmoid might also yield some benefits (see also [16]). Using the arctangent was a lot slower than

using the log sigmoid, but it did increase the ultimate learning performance. By tweaking some

parameters, the tangents slope can for instance be made steeper, which would hopefully allow it to

increase training speed while retaining its benefits. The Gaussian activation function, even more

so than the arctangent, showed a lot of potential. Research in how to better utilize this function

is required. One other idea to explore is to have a heterogeneous network with several different

activation functions. This might increase flexibility, which is key in empowering the MRVs.

Parameter optimization Finally, all of the networks and training algorithms depended on

parameters such as momentum, learn rate and the range of initial random values for the weights

in the network. This paper has mostly used either the default values found in the literature

or stopped looking for better values after something satisfactory was found. It is likely that

performance can be increased by tweaking these parameters.

7 Conclusion

Artificial neural networks are inspired by the human brain and can be taught to match patterns,

solve problems and perform tasks. Catastrophic interference is the phenomenon that occurs in

ANNs when they attempt to sequentially learn more than one task. Training on any task com-

pletely overwrites all of the network’s weights, which results in the forgetting of everything the

network could previously do. Since people do not seem to have this problem, this phenomenon

makes ANNs less psychologically valid as models of human intelligence. Furthermore, it is obvi-

ously very inefficient.

Letting an ANN learn multiple tasks can be accomplished by adding an arbitrary representation

vector to the input in order to identify each task. This paper showed that catastrophic interference

occurs in multi-layer perceptrons using this paradigm if the tasks are learned sequentially. The

underlying idea of static meaningful representation learning (SMRL) is that it would be a lot

better if the network would use representations that are meaningful in the context of the knowledge

that it already possesses. Learn such representations would not affect the existing knowledge so

catastrophic interference would be avoided.

It was shown that this approach can successfully enable networks to learn multiple tasks from

a very simple task domain. This approach avoids some of the flaws of MLPs as models of the

mind, because it uses meaningful representations, avoids catastrophic interference and facilitates

sequential learning. Other aspects of the model are less psychologically plausible, such as the fact

that it learns new things without changing its weight distribution. A lot more research needs to
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be done to further optimize the method, find out whether it can scale to more interesting task

domains and combine the method with others to create more plausible models of the mind.
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Appendix

A Algorithms

This appendix describes some of the algorithms used in the paper, as well as the parameters that

they were used with. Java program code and documentation are available upon request. The

following definitions were used:

Upstream(i) all the neurons that are upstream from neuroni (i.e. in layers closer to

the input layer)

Downstream(i) all the neurons that are downstream from neuroni (i.e. in layers closer to

the output layer)

A(netinputi) the used activation function (by default the log sigmoid from Equation 2)

E(network) the error function (by default the squared error function from Equation 3)

A′(netinputi) the derivative of the activation function

E′(activationi) the derivative of the error function with respect to the activation of output

neuroni

Algorithm 1 shows how the activation for a neuron is determined. It assumes that activationi

is clamped for all input nodes neuroni.

Algorithm 1 Get the activation value for a node

function get activation(i)

if neuroni /∈ L1 then

netinputi := 0

for each neuronj ∈ Upstream(i) ∪ {bias} do

netinputi ← netinputi + weightji × get activation(j)

end for

activationi := A(netinputi)

end if

return activationi

Algorithms 2, 3, 4 and 5 show the back propagation training algorithm using a momentum

term and the variable learn rate algorithm. The train algorithm trains the network until either

some goal is reached (i.e. the network makes a squared error of 0.001 or is correct as defined in

Section 2.1), or until it has trained for a specified number of epochs. If the latter happens, then

the training algorithm tries to restart a specified number of times with different starting values

for the weights and PB nodes.
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Algorithm 2 The back propagation training algorithm

function train(goal, epochs, restarts)

epoch := epochs

while restarts ≥ 0 and epoch = epochs do

epoch← 0

while goal not satisfied and epoch < epochs do

initialize

trainepoch

epoch← epoch + 1

end while

restarts← restarts− 1

reset each non-fixed weight and PB node to new random values

end while

function initialize

momentum := 0.9

learnrate := 0.7

min learnrate := 0.001

max learnrate := 5000

decrement learnrate := 0.7

increment learnrate := 1.05

max error increase := 1.04

min error decrease := 1

for each weightji in the network do

∆ji := 0

end for

for each neuroni ∈ PB nodes do

∆i := 0

end for

Algorithm 3 Train one epoch

function trainepoch

for each inputsi in the training set do

clamp input nodes to inputsi

traincase

end for

learn

The traincase function ‘trains’ the network for one example, but because batch mode was

used, the weights and PB nodes are not actually changed yet until the learn function is called.

The traincase function just prepares the network for change by adjusting a ∆ parameter for each

trainable value (weights and PB nodes). This is done by calculating δ values for every non-input

node and differentiating the error function towards that node’s activation.
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Algorithm 4 Train one example from the training set

function traincase

for each neuronj ∈ L|L| do

δj := E’(get activation(j))×A’(netinputj)

end for

for l ← [2 . . . |L | − 1] do

for each neuronj ∈ Ll do

error := 0

for neuronj ∈ Downstream(i) do

error ← error + weightji × δi

end for

δj := error ×A’(netinputj)

end for

end for

for weightji in the network do

∆ji ← ∆ji + activationi × δj

end for

for each neuroni ∈ PB nodes do

for each neuronj ∈ Downstream(i) do

∆i ← ∆i + weightji × δj

end for

end for

Without the variable learn rate algorithm, the learn function would just be the trylearn

function from Algorithm 5, but since it is used, the function is a lot more complicated. First, a

backup is created of the current state of the network so that any changes can be undone. Then the

network is changed with the trylearn function. Because the weights and activations of PB nodes

are moved in the direction of the error gradient, the error can never increase if no momentum

is used and the move is small enough. If the error did increase by a large enough margin, the

back up of the network is restored and the learn rate and momentum are decreased (the learn

rate permanently and the momentum momentarily). Next, learning is tried again and this cycle

repeats until either the network’s error is small enough or the learn rate can not decrease anymore.

If, on the other hand, the error decreased immediately and sufficiently, the learn rate is increased

so that learning in the next epoch may be faster.
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Algorithm 5 Perform the actual learning using the variable learn rate algorithm

function learn

backup := backup of the network state

old error := E(network, trainset)

trylearn(learnrate , momentum)

new error := E(network, trainset)

multiplier := 1

while new error > max error increase × old error do

multiplier ← multiplier × decrement learnrate

network ← backup

learnrate ← learnrate × decrement learnrate

if learnrate < min learnrate then

learnrate ← min learnrate

trylearn(learnrate , 0)

return

end if

trylearn(learnrate , momentum × multiplier )

new error ← E(network, trainset)

end while

if multiplier = 1 and new error < min error decrease × old error then

learnrate ← max(max learnrate , learnrate × increment learnrate)

end if

function trylearn(learnrate , momentum)

for weightji in the network do

weightji ← learnrate ×∆ji + momentum × weightji

∆ji ← 0

end for

for each neuroni ∈ PB nodes do

activationi ← learnrate ×∆i + momentum × activationi

∆i ← 0

end for
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B Raw results

This appendix will list all of the results that were obtained while doing the experiments in Sec-

tions 4.2 and 4.3. Some of these results in the paper were omitted for brevity or presented in a

comparative way to support the narrative. Here they are presented in a more complete and raw

form.

The Figures show the performance of several networks for each combination of problems. Each

bar represents the percentage of times that a new problem (on the horizontal axis) could be learned

in the context of the knowledge of the problem on the vertical axis.

The Tables each show the performance of several networks on the measures of success that

were defined in Section 4.2.4. Each measure defines a set of problem combinations that it will take

into account to determine the score. The percentages represent how many of these combinations

the network could successfully learn on average.

Initial setup

This subsection contains the results of the experiments with meaningful problem representation

vectors using the initial setup. This means that the networks here used the log sigmoid function

and only had connections between adjacent layers.
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IPB network

# Hidden Nodes PRV Size Difficulty Parallel Similarity Prodigy Overall

2 1 54 93 56 32 25

4 1 56 91 53 39 25

2 2 68 100 67 44 31

4 2 77 98 72 66 36

6 2 79 99 73 66 38

2+4 2 70 100 67 47 31

4+4 2 75 99 74 58 34

4 4 88 100 79 79 42

Table B-1: This table shows the performance of several IPB networks (see Section 4.2.1) using the log sig-

moid activation function (see Section 2.1) on the measures of success defined in Section 4.2.4.

from left to right

# Hidden nodes 2 4 2 4 6 2+4 4+4 4

# PR nodes 1 1 2 2 2 2 2 4

Figure B-1: This figure shows the performance of some IPB networks (see Section 4.2.1) split out across

problem representations.
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FWIPB network

# Hidden Nodes PRV Size Difficulty Parallel Similarity Prodigy Overall

2 1 59 94 57 34 26

4 1 60 91 54 41 26

2 2 73 100 67 50 32

4 2 81 98 72 69 37

6 2 84 99 77 75 41

2+4 2 74 100 66 54 32

4+4 2 80 99 75 65 36

4 4 91 100 79 88 42

Table B-2: This table shows the performance of several FWIPB networks (see Section 4.2.2) using the

log sigmoid activation function (see Section 2.1) on the measures of success defined in Sec-

tion 4.2.4.

from left to right

# Hidden nodes 2 4 2 4 6 2+4 4+4 4

# PR nodes 1 1 2 2 2 2 2 4

Figure B-2: This figure shows the performance of some FWIPB networks (see Section 4.2.2) split out

across problem representations.
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EPB network

# Hidden Nodes PRV Size Difficulty Parallel Similarity Prodigy Overall

2 2 73 100 68 51 32

4 4 87 100 80 75 42

6 6 93 100 89 88 55

2+4 2 74 100 69 52 32

4+4 4 85 100 81 72 39

Table B-3: This table shows the performance of several EPB networks (see Section 4.2.3) using the

log sigmoid activation function (see Section 2.1) on the measures of success defined in Sec-

tion 4.2.4.

from left to right

# Hidden nodes 2 4 6 2+4 4+4

# PR nodes 2 4 6 2 4

Figure B-3: This figure shows the performance of some EPB networks (see Section 4.2.3) split out across

problem representations.
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Arctangent activation function

This subsection* lists the results for the case where the arctangent activation function was used.

IPB network

# Hidden Nodes PRV Size Difficulty Parallel Similarity Prodigy Overall

4 1 63 97 57 43 28

4 2 83 100 70 73 37

6 2 87 100 74 80 41

2+4 2 68 99 63 44 30

4+4 2 80 100 69 67 34

4 4 90 100 75 83 40

Table B-4: This table shows the performance of several IPB networks (see Section 4.2.1) using the

arctangent activation function (see Section 4.3.2) on the measures of success defined in Sec-

tion 4.2.4.

from left to right

# Hidden nodes 4 4 6 2+4 4+4 4

# PR nodes 1 2 2 2 2 4

Figure B-4: This figure shows the performance of some IPB networks (see Section 4.2.1) using the

arctangent activation function split out across problem representations.
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FWIPB network

# Hidden Nodes PRV Size Difficulty Parallel Similarity Prodigy Overall

4 1 63 94 57 46 28

4 2 87 100 72 80 38

6 2 89 99 76 85 41

2+4 2 76 100 64 60 31

4+4 2 84 100 70 73 35

4 4 96 100 78 93 43

Table B-5: This table shows the performance of several FWIPB networks (see Section 4.2.2) using the

arctangent activation function (see Section 4.3.2) on the measures of success defined in Sec-

tion 4.2.4.

from left to right

# Hidden nodes 4 4 6 2+4 4+4 4

# PR nodes 1 2 2 2 2 4

Figure B-5: This figure shows the performance of some FWIPB networks (see Section 4.2.2) using the

arctangent activation function split out across problem representations.
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EPB network

# Hidden Nodes PRV Size Difficulty Parallel Similarity Prodigy Overall

2 2 77 100 64 57 32

4 4 96 100 80 93 44

2+4 2 80 100 64 63 32

4+4 4 90 100 77 80 39

Table B-6: This table shows the performance of several EPB networks (see Section 4.2.3) using the

arctangent activation function (see Section 4.3.2) on the measures of success defined in Sec-

tion 4.2.4.

from left to right

# Hidden nodes 2 4 2+4 4+4

# PR nodes 2 4 2 4

Figure B-6: This figure shows the performance of some EPB networks (see Section 4.2.3) using the

arctangent activation function split out across problem representations.



B Raw results xii

Gaussian activation function

The next couple of results were obtained from ANNs using the Gaussian activation function.

IPB network

# Hidden Nodes PRV Size Difficulty Parallel Similarity Prodigy Overall

4 1 47 78 56 51 42

4 2 74 86 78 88 73

6 2 78 88 83 93 78

2+4 2 68 86 75 78 66

4+4 2 78 88 85 87 77

4 4 87 90 89 97 84

Table B-7: This table shows the performance of several IPB networks (see Section 4.2.1) using the Gaus-

sian activation function (see Section 4.3.2) on the measures of success defined in Section 4.2.4.

from left to right

# Hidden nodes 4 4 6 2+4 4+4 4

# PR nodes 1 2 2 2 2 4

Figure B-7: This figure shows the performance of some IPB networks (see Section 4.2.1) using the

Gaussian activation function split out across problem representations.
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FWIPB network

# Hidden Nodes PRV Size Difficulty Parallel Similarity Prodigy Overall

4 1 58 81 59 60 51

4 2 74 85 78 86 74

6 2 77 89 84 91 78

2+4 2 63 82 70 75 63

4+4 2 80 90 82 85 74

4 4 82 91 86 92 81

Table B-8: This table shows the performance of several FWIPB networks (see Section 4.2.1) using the

Gaussian activation function (see Section 4.3.2) on the measures of success defined in Sec-

tion 4.2.4.

from left to right

# Hidden nodes 4 4 6 2+4 4+4 4

# PR nodes 1 2 2 2 2 4

Figure B-8: This figure shows the performance of some FWIPB networks (see Section 4.2.2) using the

Gaussian activation function split out across problem representations.
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EPB network

# Hidden Nodes PRV Size Difficulty Parallel Similarity Prodigy Overall

2 2 65 83 69 76 60

4 4 88 95 94 97 89

2+4 2 72 83 79 83 71

4+4 4 89 95 95 98 89

Table B-9: This table shows the performance of several EPB networks (see Section 4.2.1) using the

Gaussian activation function (see Section 4.3.2) on the measures of success defined in Sec-

tion 4.2.4.

from left to right

# Hidden nodes 2 4 2+4 4+4

# PR nodes 2 4 2 4

Figure B-9: This figure shows the performance of some EPB networks (see Section 4.2.3) using the

Gaussian activation function split out across problem representations.

Multi-layer spanning connections

Next the results are presented for the case where connections between non-adjacent layers were

allowed (see Section 4.3.1). These networks again used the log sigmoid activation function.
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Completely connected

Network # Hidden PRV

Type Nodes Size Difficulty Parallel Similarity Prodigy Overall

IPB 4 2 83 100 70 74 39

IPB 4+4 2 81 99 71 74 39

IPB 4 4 94 100 74 90 43

FWIPB 4 2 83 100 73 73 40

FWIPB 4+4 2 85 99 76 78 41

FWIPB 4 4 96 100 80 93 44

EPB 2 3 84 100 69 70 38

EPB 4 5 91 100 73 85 43

EPB 4+4 9 95 100 80 91 47

Table B-10: This table shows the performance of several networks where each node was connected to all

of the nodes that are further downstream.

from left to right

# Hidden nodes 4 4+4 4 4 4+4 4 2 4 4+4

# PR nodes 2 2 2 2 2 2 3 5 9

Figure B-10: This figure shows the performance of some networks that allowed multi-layer spanning

connections.
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Extra PRWs

Network # Hidden PRV

Type Nodes Size Difficulty Parallel Similarity Prodigy Overall

IPB 4 2 85 98 74 78 41

IPB 4+4 2 80 99 74 70 39

IPB 4 4 97 100 87 97 53

FWIPB 4 2 84 99 77 77 41

FWIPB 4+4 2 83 99 78 72 40

FWIPB 4 4 95 100 90 93 49

EPB 2 3 84 100 74 74 41

EPB 4 5 93 100 89 89 53

EPB 4+4 9 96 100 92 92 59

Table B-11: This table shows the performance of several networks that allowed connections between

problem representation nodes and every other node, even in non-adjacent layers.

from left to right

# Hidden nodes 4 4+4 4 4 4+4 4 2 4 4+4

# PR nodes 2 2 2 2 2 2 3 5 9

Figure B-11: This figure shows the performance of some networks that connected the PRNs to every

non-input node.
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