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Abstract

Shiwakoti et al. (2011) introduced a mathematical egress! model which represents collective
human crowd evacuation under panic conditions on a basic level. Helbing et al. (2000) and
Kelley et al. (1965) state characteristic features of egressing humans of which four features were
not applied to the model.

In this project the original model of Shiwakoti et al. is replicated and enhanced by sup-
plementing the features mentioned by Helbing et al.. The theory is that the outcome of the
simulation is more closely related to the reality if all characteristics of humans are included.

The results of replicating this model deviates from to the results stated in Shiwakoti et al.
(2011). To further improve and extend the replication, more information is required from the
authors. However a start has been made to extend the model stated in Shiwakoti et al. (2011)
with the characteristics given by Helbing et al..

!The behaviour of evacuating
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2 Introduction

Collective human behaviour enabled humans to survive and stand strong in life. However collective
behaviour in form of panic induced crowd stampede is disastrous. It often leads to fatalities when
people are crushed and trampled. Mainly life-threatening events, like fires and shootings, induce this
behaviour but sometimes a stampede arises seemingly lacking a cause. Radboud Rocks, an upcoming
festival' is an event that has the potential to generate such a disaster. Radboud University in the
Netherlands celebrated its 90 years existence by organising RR this May. Within 2 weeks the 7000
tickets were sold out but a month later another 1500 tickets were provided due to complaints. Given
the knowledge, that a stampede can arise so suddenly and the chance it occurs is increased by the
amount of attendees, Radboud Rocks can be in danger. This was the motivation to research the
mechanisms of such behaviour.

Egress is evacuation behaviour and its most prominent features are positive and negative taxis,
which is the guided movement of an animal towards or away from a stimulus. An example is moving
towards an exit (positive) and away from the fire (negative). Shiwakoti et al. (2011) introduced a
mathematical model to capture the basics of crowd egress. To create this model they conducted
experiments with ants in panic conditions and humans in non-panic conditions. The executed
simulations took place in a virtual world, see Figure 1, in which actors are bound by a set of rules.
If the actors (autonomous decision-making entities in a program) are equipped with the behaviours
of humans in panic, the result is the flow at which the pedestrians egress or exit their environment.
The actor flow is a prediction of what in reality occurs and allowed the authors to reason about the
underlying dynamics of crowd egress.

. partial obstruction

exit non-human actors

...... enclosure

Figure 1: Simulation models of ants

This model includes the basic features of an egressing human crowd while in panic, but Helbing
et al. discussed in ‘Simulating Dynamical Features of Escape’ four extra characteristic features.
These features are: firstly, measuring forces in the crowd; secondly, obstructions consisting of hu-
mans being pushed down; thirdly, multiple exits?; and finally, social contagion. As the model is a
representation of human crowd egress under panic conditions, it should contain all human features
(Helbing et al., 2000).

'"Which takes place at park Brakkestein (see Figure 2)
% Although another paper written by Shiwakoti et al. (2010) researched this issue



2.1 Research questions

The research questions focussed on in this project:
1. Repeatability Can the mathematical model by Shiwakoti et al. (2011) be replicated?
2. Reality Is it possible to extend the model with the following features?

(a) Measuring forces in the crowd

(b) Obstructions consisting of humans being pushed down
(¢) Multiple exits

(d) Social contagion

The previous chapter is a short tribute to the people that helped to make this project possible.
Chapter three consists of the background of collective crowd behaviour in panic conditions, the
existing research, developments, and simulations concerning this area. It also includes the reasoning
that artificial intelligence can be useful to this problem and how specifically Shiwakoti et al. created
a model to animate this behaviour. In Chapter four the conversion from the model stated in
Shiwakoti et al. (2011) to a simulator implementation, including some behavioural extensions, can
be found. Also the experiments and simulations to test the resemblance to the original model are
listed there. Chapter five states the result from these experiments. Chapter six concludes the
project by stating the conclusions of the replication and extension of the model by Shiwakoti et al..

g seeee enclosure

Figure 2: Model of park Brakkestein



3 Background

3.1 The problem of panic induced crowd stampede

Stampeding is a mass instinct of swarms, herds or crowds. The majority starts to run or flee with no
clear direction or purpose, and mostly inflicts injury to individuals of the mass. It is pure instinct
to flee when danger arises and being part of a large group makes individuals act like one organism.
Human stampeding mostly starts out rational as it is most often caused by some sort of danger,
like explosions or fire, and people flee towards safety or an exit. It can however also be caused by
a far less dangerous and less obvious event. An example is the Mecca Tunnel Disaster which was
caused by a broken ventilation system and a few pilgrims that reduced the flow of pedestrians by
lingering in the tunnel.

Some human stampedes killed thousands of people and are recorded over the centuries. The
most devastating was the ‘Ponte das Barcas disaster’ in Porto (1809). Here over 6,000 people died
because civilians fled from an advancing French army when crossing over a bridge which collapsed.
Another example is a Japanese bombing of Chongqging in 1941. A mass panic at air raid shelters
broke out, killing over 4,000 people of which most suffocated (see Figure 3). In the ‘Mecca Tunnel
Disaster’ (1990) 1,426 pilgrims died in a pedestrian tunnel partly caused by the heat. And the
‘Khodynka Tragedy’ in Moscow (1896), where 1,389 civilians died at the coronation of Nicholas
IT caused by people pushing in the effort of trying to witness the ceremony. This year alone 339
people have been killed and more than 400 were injured because of human stampedes. Although
this behaviour has been researched, the true underlying cause or a solution has not been established
and the frequency of these disasters increase with the number and size of mass events (Helbing
et al., 2000).

Figure 3: The Japanese bombing of Chongging (Fearn, 2012)

3.2 Existing research, developments

Since 1936 pedestrian traffic in evacuation situations has been studied, but human stampedes with
casualties still occur (Sherif, 1936). Even though a sophisticated level of behaviour has been taken
into account the focus of these studies is mainly non-panic pedestrian evacuation. The underlying
mechanisms including panic are not fully understood and the safety of emergency evacuations is
still to be enhanced.

Lately collective human crowd behaviour, also called pedestrian crowd dynamics, has been stud-
ied from three perspectives (Shiwakoti and Sarvi, 2013). Firstly, the initial papers about stampedes
described the research on the reasoning within the escaping crowd i.e. socio-psychological studies
(Kelley et al. (1965); Helbing et al., 2000). Secondly, research by simulating individuals by means



of agent-based models i.e. mathematical modelling (explained in depth in the next paragraph), is
increasingly popular (Helbing et al. (2000); Bonabeau (2002); Helbing et al. (2002); Shiwakoti et al.
(2011)). Finally, to confirm the results of the agents-based models experimental studies have been
performed on the egress of humans and non-humans under (non-)panic conditions (Shiwakoti et al.,
2011). All studies contribute to the insight of pedestrian crowd dynamics to create a complete
picture of this behaviour.

3.3 The multi-agent system

As mentioned before agent-based modelling is increasingly popular. It is easy to use as the individual
behaviour is replicated, and not the system as a whole. This way the underlying mechanism?, which
is complex and difficult the understand, is not needed to create the collective behaviour.

In agent-based modelling (ABM) a multi-agent system is created that is modelled as a group
of autonomous decision-making entities called agents (Bonabeau, 2002). Given a set of rules or
behaviours each agent (here representing an ant) makes decisions based on their situation. Recurring
interaction of agents is the most important aspect of agent-based modelling and is produced by
calculating the values of the properties of each individual based on the changed environment. These
behaviours are mathematically defined. In most simple cases the model consists of a collection of
agents and their interactions. Even though this can be set up very simplistic, complex behaviours
can emerge as the behaviours of one agent influence the others’. Bonabeau (2002) described ABM as
a mindset rather than a technology, as it is the method of describing a system from its components.
He stated that ABM is a synonym of microscopic modelling as a set of mathematical formulas
representing the behaviour of a unit which is part of the system.

An agent-based system is ideal for researching collective crowd behaviour. This is due to the
ethical issues of real-life experiments of reproducing dangerous events caused by collective crowds.
These are avoided when replicating an event with a computer program. The model stated in
Shiwakoti et al. (2011) is a representation of the individuals in the crowd. It explains three specific
behaviours in formula form which they used to create an agent-based system to simulate their
experiments with real-life ants.

3Synergy, the whole is greater than the sum of its parts
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Figure 4: An evacuation model in NetLogo by (Bromberger and Gla, 2010)

3.3.1 NetLogo basics

One of the environments in which a multi-agent system can be build is the program NetLogo (Wilen-
sky, 1999). The basic mechanism of the program and its programmable elements are explained given
Figure 4. This model simulates the evacuation of a lecture hall. The time of a complete evacuation
depends on the number of people present and the chance of lingering.

The program is controlled by two basic procedures ‘Setup’ and ‘Go’ (these are conceptual names)
and can be seen on the left side of Figure 4. ‘Setup’ has to be executed before starting the simulation,
because it resets the model from previous run simulations. ‘Go’ is the simulation which combines
all the calculations (behaviours of students and the possible change of environment). This is a set
of rules that is worked through, but does not stop at the end. NetLogo repeatedly runs the ‘Go™
procedure, unless either a stop-statement has been encountered or the button is pressed again (see
Listing 1). The stop-statement in the ‘Evacuation of a lecture hall’ model is amount of students that
still have to be evacuated. If everyone has evacuated, the repeated calling of ‘Go’ is stopped. The
‘tick’ stated in line 2 tracks the number of finished runs, and is frequently used for the representation
of time. In the lecture hall example, one tick equals one second.

to go ; start simulation if ‘Go’ is pressed
tick ; ticks are counted per ‘Go’ call
ask turtles [ if risen? = 0 [ rise | | ; if student has not risen, stand up

ask turtles [ if risen? = 1 & sideward? = 0 [ sideward | |
; if student rose but not go sideward, set sidewards

ask turtles [ if sideward? = 1 [ gohome | | ; has student ‘sideward?=1’, go home

evacuate ; if run through all stages, leave hall

if count turtles = 0 [ stop | ; stop simulation, when all have evacuated

do—plots ; a graphical overview of the simulation
end

Listing 1: Go

4The number of runs are represented by the number of ticks, see the Figure 4 ‘ticks: 8’
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Figure 5: The grid, patches of the model (Wilensky, 1999)

The switches and sliders are some of the direct settings of a model (others are concealed within
the code). By changing these settings, the model will be altered (see the green sliders at the left
side of the window of the viewed model). ‘number-of-students’ for example can be set from 0 to
147, which applies to the number of students. A setting corresponding to the properties of the
individuals can likewise be altered in the interface, take ‘chance-of-lingering’. This applies to the
probability of a student getting up from his/her seat.

The agents representing the students in this example are called turtles in NetLogo, this is seen
in Listing 1. ‘ask turtles’ results in going through the whole list of actors/agents/ants and executing
the procedures that are stated within the square brackets just after this command, for instance ‘|
set color = red |’. This way the properties (depending on the statement in the brackets) of all the
turtles/actors are calculated and updated.

The world in which the turtles act is a grid with a maximal number of patches in width and
height. The example grid world in Figure 5 has a height of 5 patches and width of 7 patches. The
center is (0,0), the left side decreases the x-coordinate and the right increases it. Moving to the top
raises the y-coordinate, moving down decreases it. ‘ask patches’, resembles ‘ask turtles’ in the way
that it runs through all the grid patches. It can ask its colour, if an turtles stands upon it etc.. By
means of changing the colours of the patches a simple environment can be replicated, this is the
reason that most models created in NetLogo look chequered.

3.3.2 NetLogo turtle properties

The ‘turtles-own’ | | sets the properties or characteristics of the turtles in NetLogo, which means that
every turtle (in this case student) has the same properties. These properties can be set randomly
in the ‘Setup’ procedure or in the interface but is often changed by the simulation itself, by means
of the calculations within ‘Go’. For example a student is about to stand up (thus the probability is
high enough, see line 2), the direction of the student is altered to the top of the view (see Listing
2). When none other student stands in front, its position is changed and the property ‘risen?’ is
set to true and its colour is altered to voilet.

to rise ; the students rise from and move forwards
if random—float 100 > chance—of—lingering gering, Tise
[ set heading = 0 tion of student to up
if not any? turtles—on patch—ahead 1 s in front
[ fd 1 > 1 g
set risen? =1 ; set the risen property to true
if section [ set color = violet | | | ; iof ‘section’ is on, set color to violet
end

Listing 2: Rise



Various values of the property are displays for turtle (student) 10, 17 and 19. The added
properties are ‘risen?’ and ‘sideward?’, which respectively represent if that student has risen and
is moving sidewards. The standard properties are ‘who’, ‘color’, ‘heading’, ‘xcor’, ‘ycor’, ‘shape’,
‘breed’, ‘hidden?’ and ‘size’. They respectively represent the number at which the turtles can be
differentiated, their colour, which way they face, their x and y-coordinate, the shape of the turtle,
the type of turtle (various groups can be created with this), if the turtle is set to invisible and its
size.

(a) Student 19 (b) Student 10 (c) Student 17

Figure 6: Turtle properties from a simulation (Wilensky, 1999)

For this project the formulas are implemented within NetLogo to compute and visualize the
behaviours of the individual ants (see Figure 7, version 5.0.4 (March 19, 2013) (Wilensky, 1999)).
The ‘Evacuation of a lecture hall’ model is basic, the turtles either do not move or move in steps
of one patch. As the model by Shiwakoti et al. is much more complex than the lecture hall model;
moving per patch is not possible. Therefore properties like speed, acceleration, mass and radius need
to be added. But identical to the lecture hall model the behaviours of every agent are repeatedly
computed and visualized in the modelling window.

3.4 Outlining the model by (Shiwakoti et al., 2011)

As Shiwakoti et al. (2011) specifically state the behaviours as formulas, this paper was chosen to
be the basis of this project. Below is explained on what assumptions the model is built and how it
works, and in the next part this is explained further as well as its conversion to a real simulation.

3.4.1 Platform of the model

The motion of animals and humans is defined by Newton’s law of Motion. Therefore collective
dynamic studies are based on this law. Shiwakoti et al. (2011) assume that Newtonian mechanics
are the platform for modelling collective dynamics. This means that the equation mqd, = F is the

10
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foundation of their model, with « representing an ant. The acceleration (and consequently velocity

‘511

and position) of an ant can be calculated with use of the function @, = . Here mass m,, is chosen

3

@

from a normal distribution (mean + s.d. = 4.8+ 10~% gm +1.4 « 10~ gm) and F represents forces
that influence ant o.

To create the model Shiwakoti et al. gained insight into human panic by experimenting with
Argentine ants in panic conditions. They justified using ants because they have been dealing with
congestions over millions of years and therefore is a valuable study population. These Argentine
ants in specific live in regularly flooding environments which suggests that the colony fitness is
effected by the dynamics of egress. The ants also produce evacuation trails similar to humans, are
social, and their society contains co-operation, conflicts, corruption, and cheating and the ants can
be selfish not unlike humans. In panic conditions of egress some features of collective behaviour of
humans and ants can be quite similar for in contrast to the large taxonomic differences.

3.4.2 The three basic behaviours

Three non-random behaviours were present in the experiment with panicking ants by Shiwakoti et al.
(2011). The first behaviour, taxis which is part of egress, was very pronounced in their experiments.
This is the behaviour of an animal moving towards or away from a stimulus. The second basic
behaviour is attraction and repellent zone behaviour. This was harder to detect but is proven to
be present in animal dynamics (Okubo, 1986) and collective pedestrian flow (Kholshevnikov and
Samoshin, 2008). In this behaviour ants or humans are attracted to the others when the inter-
individual distance is large (1 — 8 mm with ants) and repelled when this distance is small (=< 0.5
mm with ants). The final behaviour is the action of colliding into and pushing another. This occurs
in case of elevated density near the exit and fast moving ants and they tend to frequently collide
with others and push others when too close.

Additionally some irregular movement was found consistent with other animal dynamic studies
(Okubo, 1980). Although Shiwakoti et al. (2011) presented a rationale for this randomness, they did
not use it in their simulation. Only the initialisation of the positions of the ants was set randomly.

11
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4 Methods

NetLogo and its basic course of operation was introduced in the previous chapter. With this program
in mind, the mathematical model and its parts which represent the turtles/ants are introduced and
explained in this chapter. It contains the creation of the program to simulate the ants evacuation
and stampede behaviour and the tests that need to answer the research questions stated in the
introduction.

4.1 Theoretical: from formula to NetLogo code

Explained in this paragraph is the conversion from the formulas stated in Shiwakoti et al. (2011) to
an implementation of these behaviours in NetLogo. First explained are the basic formula’s (position
and velocity) which describe the end product of the behaviours (per time step At) and are directly
used to update the view in the simulation. The three behaviours are the second formula’s and input
for the velocity. They calculate the acceleration for ‘egress’ behaviour and the forces for ‘swarm’
and ‘collision and pushing’ behaviour. Using acceleration for the egress in contrast to combining
all forces into an acceleration is caused by their difference in formula’s. The mass of the ant only
influences the ‘swarming’ and ‘collision and pushing’ behaviour and thus cannot be used to compute
the force of the ‘egress’ behaviour.

These formula’s are combined and used in a single procedure that is repeatedly run in NetLogo,
representing the simulation. In terms of what occurs in NetLogo; all formula’s, except for the
last one, are computed for each turtle/ant at each run. This is what happens in the combining
procedure, where for all ants the new position is computed.

After the combination of the behaviours the third or extension formula’s are addressed and the
represent the extensions that were implemented. A description of the resulted model concludes the
paragraph.

In the program the mass of the ants is the one thing that is created and is fixed after the
initialisation. Thus only the force ﬁ, which is the representation of the various influences upon an
ant, has to be computed to simulate the behaviour of the ants.

4.1.1 Basic formulas

Calculating the new position Z, Eq. (1), given ¢t + At. The displacement (given the present velocity
#i(t), acceleration 1@(t) and At) which corresponds to As, in the pseudo-code see Listing 3) is added
to the previous position Z(t) implemented at lines 6 and 7. Line 5 is added to stop the agent from
moving into walls or other obstacles and line 9 sets the viewing direction to the ant’s movement

direction. Therefore by adding the code in Listing 3 the new position of an ant is calculated.

" " - 1,
T(t+ At) = F(t) + 0(t) At + §a(t)At2 (1)
let As, = (vo * At) + (1 + az = At?)
let Asy = (vy * At) + (5 * ay * At?)
let Asgy = list Asg Asy
if —evacuated [ set xycor = (stop—to—wall As, Asy) ]
set xcor = xcor + item 0 Asgy
set ycor = ycor + item 1 Asgy
if speed != [0 0] [ set heading = (atan item 0 speed item 1 speed) |

Listing 3: The new position

12
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The new velocity U, Eq. (2), needed above given ¢ 4+ At is calculated by adding the derivative of
the changing acceleration to the old velocity #(t) (see Listing 4 lines 1 through 3). Lines 5 through
7 set the speed if higher than the maximal running speed of an ant to that maximum. This seems
complex, which is caused by the composition of x-speed and y-speed within velocity and represents
the direction of the velocity. Thus first the total velocity is computed. If this transcends the
maximal running speed, x and y-speed has to be proportionally reduced to the maximum velocity.
Therefore by adding the code in Listing 4 the new velocity of an ant needed for computing the new
position of an ant is calculated.

Tt + At) = T(t) + %[d’(t) +a(t + At)|At (2)

let v, = item 0 v + (
let vy = item 1 v + (
set v = list vy vy

let length—v = /v2 +v3
if length—v > vf
[ set v = list (vy * vf / length—v) (vy * vf / length—v) |

¢ (old—a, + agz) * At)
# (old—ay + ay) = At)

[NIE IR

Listing 4: The new velocity

13




4.1.2 Three behaviours

The three behaviours stated in Shiwakoti et al. (2011) and in specific the behaviour of ants with
the walls is converted into NetLogo code in this paragraph.

1. Egressing

The behaviour of egress @;°, Eq. (3), is the acceleration towards the exit. It is represented as the
normalized vector of the ant towards the exit (see pseudo-code lines 2,3, 5-7 of Listing 5) multiplied
by the flight velocity vy (lines 8 and 9). Shiwakoti et al. multiplied this with a relaxation time to

obtain an accelerative equilibrium taxis which is represented by o~ 1.

dosl "\\ [_.l:]y ................ Soasesrsiaig E
77 — \‘ : New df __—=" Gl
d t) — t M . direction_. — =
ar = O’flvf _,( ) _‘x( ) (3) = - ) s
||d(t) — Pz (t)]| pe(t) Pl

Figure 8: Schema egress behaviour

Line 10 represents the limit of noticing the exit (egressing behaviour is absent if the exit is too
distant). The code at lines 4 and 22-24 represents the impulsive acceleration for leaving the room,
for example exiting is true if the ant is standing in front of the exit until outside. From that point
on the exit has to be avoided (line 4), so it leaves the room and does not linger at the exit. Line 25
returns the acceleration which represents the behaviour of egress.

The rules above also apply for negative egress (lines 12-21). Shiwakoti et al. (2011) explains
that negative egress was found, the behaviour of ants moving away from the danger. But equation
7 in their paper (and Eq. 3 in this paper) only represents positive egress, which is the behaviour
guided movement towards the exit. If always and only positive egress is present (thus every ants
knows where the exit is), a non-realistic simulation would arise. This is evident in the figures of the
experiment and simulation, see respectively Figure 9(a) and 9(b). Therefore negative egress was
added to the simulation, as well as a limit for when the exit and danger is noticed.

(a) Experiment of ants (b) Simulation of humans

Figure 9: Figures from (Shiwakoti et al., 2011)

5The ‘I’ represents the impulsive forces, also called the egress behaviour

14



O ~J O U W

11
12
13
14

15

16
17
18
19
20
21
22
23
24
25
26

to—report impulsive—acceleration

let & = Texit — Ta
let ¥ = Yezit — Ya
if a = exiting [ set & = ((Teat — 3 — Ta)* — 1) |
let SexitB — \/3_;2"1‘372
let Zn = 7 / Sezits
let :'jN - ?j / Sexit3
let @, = vf « Zny * (oY)
let dr, = vf * gyn * (071)
if sexitp >= Observing—r [ set dr, = dr, = 0 |
if —Egress — true
[ let fdanger = Tdanger — T«
let gdanger = Ydanger — Ya

— 72 =2
let Sdangerp — \/ wdange'r +ydange'r‘

if Sdangerp <— 4.75
[ set dr, = dr, + vf * (Zaanger / Sdangers) * —2(c7 ")
set 619 — C_ily + vl x (gdanger / Sdangerﬁ) * _2(0_1)
I
I
if a = (-evacuated & exiting) & (Ta >= Tewit |
[ set a = evacuated
set Nevacuatad — Nevacuated + 1 ]
report list (dr,) (dr,)

end

; store vector from ant to exit

; if anta is trying to exit, move from exit
; store length of exitvector

; store normalised exitvector

; impulsive acceleration vector

; exit not noticed at

= Observing-r

; if negative egress is on
; store vector from ant to danger

; store length of dangervector

; danger is not noticed at >= 4.75 mm

; impulsive acceleration dangervector

;if at exit:

(Square—r & Other—c & Yo >= Yewit))

;ante 18 evacuated
; increase number of evacuated ants
; return the calculated vector

Listing 5: Impulsive acceleration/egress
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2. Swarming

The swarming behaviour FL, Eq. (4), consists of local interactive forces and Shiwakoti et al. as-
sume that local forces are inversely proportional to the distance between individuals (see Listings
6 line 21). The second part of the equation represents an increasingly negative fracture when the
interpersonal-distance (S,3 — ropg) is smaller than the repel parameter Agr. However it yields an
increasingly positive fracture when the interpersonal-distance is larger than that A (see lines 14-
16). The normal unit vector 7i,g is multiplied to give the force its direction (see lines 22 and 23).

a [(SW/B 7 ra—l—ﬁ) — )‘R] — P N Repulsion
Fr, = 004 a & i’.-‘ ran clk
L ¢W( 5) <[(Sa6 — Ta+ﬂ) _ AR]Z + )\AQA Nag £ ‘92 . E—.

(4) :"g ﬁ _- —---;_’aﬁ Direction of @
’- S@ N\ movem:mt v

1= cos O, 2 £ O P
W(gaﬂ) =1 (C;)Saﬁ) k r ’f range/‘lA

¢ = ¢r when (Sap < Ar, repulsive forces) (6) Figure 10: Schema warm behaviour
¢ = ¢4 when (So3 > AR, attractive forces) (7)

The constant ¢ depends on if the ant has to be repelled or attracted by means of that repelling
forces have a higher importance than attractive ones and thus ¢p is larger than ¢ 4.

The weighing factor W (6,3) makes the local interactive forces proportional to the angle at which
the ant is facing the other ant. For example when the ant is facing away from another it need not
avoid or be attracted to it. This is in contrast with the ant facing the other ant head on (line 19
and 20). Line 26 returns the forces.

to—report local—interactive—force

let x = 2, - store © and y of ant,
let v = ya

let pl = rq  store circular representation of anta
let Z1 = heading ; store heading of ant,
letﬁLz:ﬁLyZO F ANt ? local interact (

ask normals - looping through all other ants

[ let zap = 25 — x - distance in T and y from ants to anta

let yop = ys — y

let sap = V(Zap)? + (Yap)? - distance from ants to ants

let ¢) =0 - rep Isive or attractive force-weight

let royg = 18 + pl combined circular representation

ifelse sap — Tayp < AR - if ants are too close:

[ set ¢ = ¢T ] r set e ,’-///» e weight

[ if Sap — Tap > Aa [ set ¢ = ¢a | | if ants are too far: set attractive weight

if ¢ ': 0 B /! the "/',"[rf s not z¢ :

[ let 0.5 = distance—angle(Z£1 (atan zag Yap)) angle of ant, heading and (Tos,Yas)
let Wy, =1 — ((1 — cos 6ap)/2)? - weight, high when facing the othe
let dist :4((Sa(;§§a:;;f;R;RHi)
set liLm = liLm + ¢ x Wo,, * dist * (Tag / Sap) - calculate and add the repulsive
set Fr, = Fr, + ¢ * Wy, » dist * (Yap / Sap) © attractive for

|

] — -
report list (Fr,)(FL,) - return all repulsive/attractive forces
end

Listing 6: Local interactive force
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3a. Collision and pushing

The collision and pushing behaviours ﬁp, Eq. (8), are represented by a normal force v,, (the speed
of the ant perpendicular to the surface of an obstacle inverted to avoid collision see Schema 11 and
lines 18-20) and a shear force v} (retaining the direction the ant wanted to go, see Schema 11 and
lines 21-23). 7 and  respectively represent the normalized versions of v, and 0;. Overlap e adds
the importance of avoiding the obstacle and the constants aq, ae, u1 and s add specific avoidance
and pushing behaviour, for were specified by Shiwakoti et al. (see line 14).

Original ?\ =
direction 1 \ v New
: I direction
\,
_UNL

ﬁp = Q1 Upp + Qe + P10 + M2€F (8)

overlap

Figure 11: Schema collision/pushing

At the moment of overlap with another ant these forces are calculated, see line 13. Lines 25 and
26 repeatedly (for every interaction with another ant) add the forces and line 29 returns the forces.
For the specific code of Eq. (8) see Appendix A.1.2 and A.1.3, called at lines 18 and 21.

to—report collision pushing ant_ force - collision and pushing force
let x = z. and y of ant,
let y = yao
let pl = 7o . store circular representation of anta
let Fp, = Fp, = 0 - initialise collisions and pushing force
ask normals : looping through all other ants:
[ let zag,,. = 3 — x - distance 1 / fro ¢ anta
let TaBspe — YaBror — YB — Y
let Yag,,. = TaBpor * —1 : turn plane 90° for sh force
let sap = (ap)? + (yap)? - distance from ants to antg
if ((Tﬁ + pl) — Sag) > 0 ; set overlap to zero when its less. else:
[ let ¢ = (7‘5 + pl) — SapB - calculate overl: p of two ants
let Fi,,. = Fy,or. = Fo,,. = Fy,,. = 0 - initialise temp normal and shear forces
if not (zapn., = 0 & Yapu,, = 0) ;if not on other ant
[ let Fhor = normalF (zag,,.,. YaBne. U €) - calculating the normal force
set Fxnor = Fnorm - store the © and y of the nor )T CE
set Fynor = Fnory
let Fope = shearF (zag,,. YaB.,, U €) - calculating the shear
set Fi,,., = Fihe, ; store the x and vy of the ree
set Fy,. = Fsne,
set ﬁpm = ﬁpm + ﬁxnw + F;;Sha - calculate and add the normal
set Fp, = Fp, + Fy,,. + Fy,. and shea TCe
]
report list (ﬁpz) (ﬁpy) - return added collision and pushing force
end

Listing 7: Collision and pushing force method
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3b. Collision with walls

“An expression similar to those for local interactive forces and collision/pushing holds true for interactive
forces from stationary obstacles such as walls and columns as specified in Eq. (12). Here a1, ag, p1, us2
can be chosen to match experimental data or manually tuned to produce the desired response. Helbing
et al. (2000) proposed a similar approach for modeling pushing forces, however there are some differences
between Helbing’s approach and that reflected in Eq. (8) in this paper, primarily due to the addition

of terms a1 @ and poet in Eq. (8)

”

(Sh

iwakoti et al., 2011)

This theory of Shiwakoti et al. has been implemented and tested (see Eq. (9) and appendix A.3
for the code and explanation), but as four parameters are unknown and an experiment with real ants
is unobtainable no representative behaviour can be obtained. Therefore the equation in Helbing et al.
(2000) is used. The equation originally was created for modelling human behaviour (see Eq. (10)),
however the scaling equation described in Shiwakoti et al. (2011), Eq. (11), can scale the parameters

down to ant dimensions. For example A, = 1.58%100 is scaled by means of Apuman = ¥ (Mpuman)

and Agnt = (Mant)?38. Ay = (2% 109N/(70 % 103g7)0-38) % (4.8 x 10~ 4gr)0-38.

The pseudo-code until line 19 represent the same calculations from the previously explained
implementation Listing 7. Lines 20-26 describe the equation of Helbing et al. with use of the
distance dow, Taw, Yaw, and the overlap. Line 27 reports the calculated forces.

Fp,, = aw1Ur, + awoen + w19 + pwoet

ﬁPW = —F_:aW = {Aae[(raidaW)/Ba] + kg(roz - daW)}ﬁaW - Kg(ra - daW)(Ua * (taW)z)

0.38

S :¢M0'38

to—report collision walls_ force

let A, = 1.58%10°

let B, = 0.0632

let k = 9.48x10"

let x = 189.6

if atExit [ set exiting = tru

let overlapL = exceedWall

let ﬁpwz = ﬁpwy =0

if (item 2 o

verlapL) > 0

e |

[ let zaw,,. = item 0 overlapL
let zaw.,. = YaBn.. = item 1 overlapL
let yaw,,. = Tapno, * —1
let ¢ = item 2 overlapL
let dow = 2r — ¢
let ﬁznOT = ﬁynOT = ﬁlshe = ﬁyshc =0
if Zaghor = 0 & Yapn,,. = 0

[ set zag,,

= Tq

r

set Yappor = Yo |

set F, . = {Agetew/Ba 4k dow } —Lnor
set Fy,,, = {Aae®ew/Bo &k i daw}Yebuer
set ﬁzshe = =K x daw * Uz * zafis}w

set }iyshe = —K * daW_‘* Uy * yaf%

set lipwm = EPWQ + }i‘xnor + F:jxsh,e

set Fpw, = Frw, + Fy,,. + Fy,.

]

report list
end

(Fpw,) (Fpw,)

s mm Jrc

)
: ’(/.\‘ -

Helt

g*xmm/s® was
n 0.08m

rom 1.2
g(mm x s)

2 % l[)';,'«' 0

% 10%kgs >

2.4 % 10°kg(m * s

Listing 8: interaction of ants with walls method
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4.1.3 The combining loop

This part consists of combining these behaviours and designed extensions, as well as the overview of
the program. When pushing the evacuate button in the interface of the program the ‘move’ method
is repeatedly called until the right amount of ants have evacuated. In ‘move’, see pseudo-code Listing
9, every ant of the group (line 2) is controlled. First is checked whether it is outside the borders

of the room, at which time the ant takes no further part in the program. If this is not

the case

the forces acting on the ant are calculated and saved; lines 10-15 call the implemented behaviour
methods, as in the chapter above. Then the combining equation, Eq. (12) and lines 20-27, is used
to compute the new acceleration which alters the direction and speed of the ant. This change is
computed by calling the velocity and position function, Eq. (2) and (1). The last part of the code,
see line 30, is to add the extensions. In this version the extensions forces and obstacles made from

ants are included.

Ny Nw
o =dr+— | > (FL+Fp)+ > Fpw|+¢ (12)
© | B=1(8#q) 1
Others ants Walls
to move - start the behaviours of Sh
ask normals loop over all ants
[ if health > 0 if health is ok
[ ifelse evacuated & distance—to—exit > 1.9 - else if evacuated and fi
[ die ] clear out ant
[ let egress—a = swarms—f = [0 0] - initialize the behavic

let avoida—f = avoidw—f = | |
- cal ate the Jorce h JoTk upo th ¢
if Egress | set egress—a = impulsive—accel | ; sel egress forces, dy, see J.1.2.1
if Swarm | set swarms—f = local—inter—force | ; set swc orces, Fr, see 4.1.2.2
if Avoid set avoidance fo
[ set avoida—f = collAnt—force Fp, see 4.1.2.8

set avoidw—f = collWall—force - Fpw, see 4.1.2.31
I
let Axold = item 0 accel save old velocit
let Ayold = item 1 accel

lirection of new accele cceleration t X (forces teractio mass
let @, = item 0(egress—a + —— (swarms—f + avoida—f + swarms—f + avoidw—f))
let @, = item 1(egress—a + ——(swarms—f + avoida—f + swarms—f + avoidw—f))
let length—a = /a2 + a3 - the length of the new accele ;
if length—a > dmaa if the acceleration is bigger than Amaa
[ set @z = (dz * @mae / length—a) set acceleration to Gmas

set dy = (dy * Gmee / length—a)

set accel list (dy)(dy) save the new acceleration
.. - - the new speed + ¢t headi g of ant, se Listi g2

calculate and save the new position, see Listing
Extras(egress—a swarms—f avoida—f avoidw—f) set extras/extension:

end

Listing 9: combining of behaviours method
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4.1.4 Extensions

The extensions were firstly, measuring the forces in the crowd; secondly, obstructions consisting of
individuals being pushed down; thirdly, multiple exits; and finally, social contagion. The first two
are added quite easily. These extensions do not alter the behaviour of the ants in a complicated way.
‘Multiple exits’ and ‘social contagion’ however have to be built into the behaviour of an ant. The
extension ‘multiple exits’ for example needs to evaluate which exit an ant will take. This depends
on the way the rest is acting (social contagion), what its state is (rational or panicked) and what
exits the ant can see. This difference in complexity results in the implementation of the extensions
in the NetLogo program at two different. The first two are added at the end of the inner loop of
the combining loop (see line 30 in Listing 9). However ‘social contagion’ is set in the start of this
inner loop along with ‘multiple exits’. This is run before the ant is calculating its new position, so
it can move towards the chosen exit.

Previously it was stated that four extensions would be created. However two extension: ‘multiple
exits’ and ‘social contagion’ have not been developed because of reproducibility problems of the wall
interactions. This caused delay in the schedule which resulted in the development of just two of the
four extensions. Nonetheless a short description of the workings of the not implemented extensions
can be found in Appendix A.2.

The first two are implemented and added to the program at the end of the inner loop of the
combining loop. This means that the equations calculate the building pressure for each ant indi-
vidually. It also keeps track of the maximum pressure over all ants (max_N) and if an ant died as
the result of the pressure.

1. Display of building pressures

The pushing and collision forces are perfectly fit for monitoring the building pressure. The pressures
are computed in the following way. The calculated forces of pushing and collision behaviour working
upon an ant is converted to one force P,, the size of these combined forces. This force is converted
to Newtons by dividing it by 1 105 and represented by Eq. (13). If the size transcends (a portion
of) the tolerance of an antPr;,,, it’s health drops and the color is adjusted incrementally from lime
(healthy) to (green - yellow - brown - orange - red) gray (dead). By displaying the colors representing
the forces acting upon the ants the pressures can be observed. The critical points in the model are
the places ants are coloured closest to gray. See pseudo-code Listing 15 in Appendix A.

Over all ants the maximum of all these constantly changing forces is tracked (see Eq. (14))
and displayed in the interface (see the pseudo-code Listing 13 in Appendix A). A next step is the
possibility of the recovery of an ant. If no force acts upon an ant its health returns.

Py =\/F} +F3 [/ 1%10° (13)

maz_ N = max(P,, max_N) (14)

2. Deaths and ant-obstacles by increasing pressures

The factor health described above is used to determine the state of the ant. When this is 0, the
ant dies. An ant that dies, is not able to move, has a gray colour and is scaled down to 20% of its
body-size and weight. See pseudo-code Listing 15 and Eq. 14 in Appendix A.

Apart from the colour alterations of the ants, depending on the percentage of discomfort (see
(15)), Listings 15 in Appendix A implements the deterioration of the health of an ant. The compu-
tations representing these deteriorations are firstly, the portion of pressure pressed upon an ant (see
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Eq. (15)). In the first 40% of discomfort health is not deteriorated. Secondly, the health associated
with that portion (see Eq. (16)). From 50% on health deteriorates exponential. Finally, the health
given the previous state of health the ant was in (see Eq. (17)). The cases represent the update of
health. When the new health H,,,, is lower than the current health it is replaced. However when
the pressure is constant the health of an ant as well deteriorates, which is represented by the second
case. The last condition occurs when the pressure is at least 10% less than what resulted the last
health drop. At which point health is not reduced.

Py, = max(0.4, Fa ) —0.4 (15)
PLim
Hnew — 10— % " 2(10*r0und(P%,1)) (16)
Hyew if H > Hyey
H = Hx(1- Py) if H=<Hpew & H > 10 — % x 9(1+10xround(Py,,1)) (17)
H otherwise

This renders the simulation the ability to create small obstacles of ants that have died, as was
stated in Helbing et al. (2000) as their seventh characteristic feature of escape panics. A simulation
should test if this obstacle behaviour is elicited by these implementations.
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Figure 12: Activities in the simulation proposed by Shiwakoti et al., Helbing et al. and Speckens

4.1.5 The new model

The replication with addition of the alterations of the wall interactions and extensions discussed
in respectively paragraph 4.1.2 and 4.1.4 results in a model of combined perspectives of Shiwakoti
et al., Helbing et al. and Speckens on panic evacuation. Figure 12 shows the current activity of the
ants, which demonstrates the combination of these researchers.

The colours represent the category of behaviour (egress: white, swarming: blue, collision and
pushing: red) which is predominantly present in the behaviour of an ant. Number one in Figure 12
is egress, the white arrow of the ant clearly points towards the exit (behaviour stated in Shiwakoti
et al. (2011)). The forces behind the arrow make the ant turn and follow that direction. Number
two is likewise egress, however this is the negative version (behaviour proposed in Shiwakoti et al.
(2011) and by Speckens). The ant is moving away from the dangerous spot of citronella. The ant
in circle number three is busy with swarming (behaviour stated in Shiwakoti et al. (2011)). It is
too far from the rest and tries to get closer to the center of the majority of the group. The ants at
number four and five are trying to avoid collision, in specific respectively with each other and the
column (behaviour stated respectively in Shiwakoti et al. (2011) and Helbing et al. (2000)). The
last number, six, is the death of an ant which received too much pressure (proposed behaviour by
Speckens).
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4.2 Practical: from Netlogo code to prediction of behaviour

This second part of the chapter Methods deals with the parameters entered into the experiments/sim-
ulations. The original parameters like the shape of the rooms (round or squared) and the state of
the exit (respectively obstructed or a corner exit) are experimented with first. This experiment tests
the effect of situation stated in Shiwakoti et al. (2011). This effect holds that a corner exit and an
obstructed exit produces faster evacuations than a middle-wall exit and an unobstructed exit. To
explicitly test the replication to its origin, the distribution of the first experiments are compared
to the times stated in Shiwakoti et al. (2011). As third part of the experiments, the settings used
in the first experiments are altered to check if their function is justified. The last experiments are
the check for the function of the added extensions. All statistical tests are executed in SPSS (IBM,
Released 2012). The next chapter states the analysis of the output of these experiments.

4.2.1 Test-methods for the effect replication

The original parameters are tested first and as an equation was used from another paper (Helbing
et al., 2000) there is the possibility that the wall interactions cause deviations from the original
experiments.

Shiwakoti et al. experimented firstly on a round room with or without an obstructed (column
in front of) exit. Both situations are tested within the simulation for a minimum of 30® times. The
time at which 50 ants have evacuated is the outcome of one test. Dependent on the distribution of
these times an independent-samples T-test (normal distribution) or Mann-Whitney U (non normal
distribution) is used to check whether a obstructed exit creates a significantly faster evacuation.
These specific statistical tests are chosen as they will state whether the situation (exit state) has
an effect on the evacuation time. More simply stated, it will indicate whether one situation creates
a statistically significant faster evacuation than the other situation. In statistical terms: this is
a between group analysis with qualitative independent variables (with/without obstruction) and
quantitative dependent variables (time of 50 first evacuated ants).

Secondly they tested a square room with an exit in the corner or in the middle of the wall. Again
both situations are tested for a minimum of 30 times, with the output of the time when the first
50 ants have evacuated. An independent-samples T-test or a Mann-Whitney U analyses (MWU) is
used dependent on the kind of distribution. The effect tested here is that a corner exit produces a
significantly faster evacuation. In statistical terms: this is the same between group analyses except
the qualitative independent variables are corner exit versus middle wall exit.

The rest of the parameters (seen in figures 13 through 16) are set according to the original exper-
iments. The original setting are firstly, speed and velocity is calculated in time steps of milliseconds;
secondly, the starting number of ants is 200; and finally, the behaviours of egress, avoidance and
swarming are included. Negative egress was not stated clearly in Shiwakoti et al. (2011), but is
assumed to be included in their model. The parameters for panic are set and the observing radius
is maximal which means the exit will not be ignored.

530 samples (stated by the central limit theory) is a enough to assume the population is normally distributed if
the group-sample is normally distributed
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4.2.2 Test-methods for the time replication

In contrast with the previous test, this test is more specific. It does not answer anything about the
reproducibility of the overall effect. It states whether the specific time associated with the specific
settings are similar.

Statistical test cannot be used in this case as more than one parameter is tested. This is
supported by comparing the data presented in Shiwakoti et al. (2011) for the experiments on real
ants and the simulations of their model. They are statistically different. Although it was not stated
that these two result are similar enough, that impression was given. They never explain that their
model has to be improved because of insufficient similarity.

The actual data samples are not obtainable, only the mean and standard deviation of the exper-
iments an simulations situations are stated in Shiwakoti et al. (2011). This is why the distributions
are compared using the mean and standard deviation. However, a representing dataset can be made
based on these distributions with use of Matlab (MATLAB, 2011). A way to compare these results
with the new data is by visual inspection of the histograms. The test is executed in the following
way.

A dataset with the distributions of (mean + s.d = 18.48 +4.09), (mean + s.d = 11.18 + 2.61),
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(mean + s.d =21.6£9.9) and (mean + s.d = 16 £4.3) are created and represent the data obtained
by experimenting on real ants. A second dataset is created with the distributions of (mean + s.d
= 19.02 £ 2.89), (mean £ s.d = 12.98 + 1.11), (mean + s.d = 18.9 £ 2.6) and (mean + s.d =
13.9 + 1.9) and represent the data obtained by simulating the model created by Shiwakoti et al..
These distributions are respectively for the square room situations ‘middle exit’ and ‘corner exit’
and for the round room situations ‘clear exit’ and ‘impeded exit’. Histograms of these datasets
and the histograms of the data from the replicated simulation are put together per situation. If
the distribution lies within the distribution of the samples of the real ant experiment, and similar
to the results of the simulation stated in Shiwakoti et al. (2011) it can be assumed it is a correct
replication.

If the previous experiments concluded that the distributions are not normal distributed, a com-
promise has to be made. If they clearly do not have a normal distribution it has to be stated
that they cannot be compared and the replication was not similar enough. However, if the data is
(closely) normally distributed the means and standard deviations can be compared.

4.2.3 Exploration of the parameters

Eight of the settings (blue switches and sliders) seen in the interface Figure 13 are explicitly described
(of which six proposed in Shiwakoti et al. (2011)). They are set given the situation it is representing.
These parameters (excluding the environment settings) work as follows and are tested on their
influence on the simulation. A reduced number of tests is required as an exploration of a function
is tested and not the confirmation of an effect. This is the reason for executing the test at a visual
inspection level. The parameters are testes with settings for which is assumed it will show its
function clearly.

1. deltaT
The time step at which the speed and position are calculated. This ranges from 0.001 (exact)
to 1 second (crude). Original setting: 0.001. New setting: 1. Expected is a slower evacuation
caused by obstructions that arise from less time for an ant to react to the environment. If
the time step has no influence on the outcome, a bigger time step can be used as it decreases
the number of calculations which in turn results in a decrease of time needed to complete the
simulation.

2. num-ants
The number of ants in the room at the start of the simulations. This ranges from 5 (small
group) to 250 ants (big crowd). Original setting: 200. New setting: 50. This number was
chosen as more ants will cause the evacuation to slow. What impact has a lower amount of
ants? Additionally, 50 ants in the minimum in order to receive the times it takes for the first
50 ants to evacuate. Expected is a faster evacuations as the concentration of ants near the
exit is lower.

3. Egress
The inclusion of the behaviour of fleeing towards the exit. Original setting: on. New Setting:
off. Expected is that the evacuation takes very long, as the ants only leave the room by chance.

4. Avoid
The inclusion of the behaviour of collision and pushing to other ants and obstacles. Original
setting: on. New Setting off. Evacuation is very fast, as the ants walk over one another and
obstacles.
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5. Swarm
The inclusion of swarm behaviour. Original setting: on. New Setting: off. The expectation is
a faster evacuation caused by less mimicry, or running towards others.

6. Panic
The inclusion of a panic in the behaviour of ants. Original setting: on. New Setting: off.
This check is interesting for the future extension ‘social contagion’, in a way that if it has no
impact, panic cannot be increased by means of the used equation. The expectations is a faster
evacuation, as panic induces more obstructions.

The other two (negative egress and observing radius) of the ten settings (blue switches and
sliders) were added as they are assumed to be included in the original model.

7. -Egress
The inclusion of the behaviour of fleeing away from the citronella. Original setting: on. New
Setting: off. Expected is that the evacuation takes longer, as the danger speeds up the fleeing
speed close by the danger. In contrast these ants have to make a detour to get to the exit.

8. Observing
The maximal distance an ant can be in order to see the exit. This radius ranges from 10
(little overview) to 40 mm (maximum overview). Original setting: 40. New setting: 17
(approximately the radius of the room). Expected is a faster evacuation as the concentration
of ants near the exit is kept lower ans thus decreasing obstructions.

4.2.4 Test-methods for the extensions

The functions of displaying the building pressures is providing information about the safety of the
situation. Creating ant-obstacles by deaths caused by the increasing pressures is the extension that
adds an extra characteristic of a panic induced stampede. If the maximum pressure displayed in
the interface by the first extension exceeds the pressure an ant can tolerate, the situation is not safe
as individuals die/get hurt. Both extensions are included in the following experiments.

Instead of observing only the evacuation time of the first 50 ants as in Shiwakoti et al. (2011)
the safety is additionally tested by observing the maximum pressure in the simulation created by
collision and pushing behaviour. Firstly a round room with or without an obstructed (column in
front of) exit is simulated. Both situations are tested within the simulation for a minimum of 30
times. The maximum pressure (tracked until the first 50 ants were evacuated) is the outcome of
one test. Dependent on the distribution of these pressures an independent-samples T-test (nor-
mal distribution) or MWU (non normal distribution) is used to check whether an obstructed exit
creates a significantly safer evacuation. This is a between group analysis with qualitative indepen-
dent variables (with/without obstruction) and quantitative dependent variables (maximum pressure
recorded).

Secondly the square room with an exit in the corner or in the middle of the wall is tested. Again
both situations are tested for a minimum of 30 times, resulting in the maximum pressure felt by the
evacuating ants. An independent-samples T-test or a MWU analyses is used dependent on the kind
of distribution. Now is tested whether a corner exit produces a significantly safer evacuation than
an exit in the middle of the wall. This is the same between group analyses except the qualitative
independent variables are corner exit versus middle wall exit.
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5 Results

This chapter includes the data produced by the model implemented in NetLogo based on Shiwakoti
et al. (2011) given the tests cited in the previous chapter.

Introduction

The tests executed as explained in the previous chapter are firstly, the effect replication test per
room-shape. Secondly, the time replication test per situation. Thirdly, the parameter function tests,
and finally, an extensions test. These tests answer questions concerning various aspects of the model
by Shiwakoti et al. (2011), the combination of the input for the replication and the added extension.
Using the right statistical tests for these questions is crucial for a correct result. Some statistical
tests require a set of properties from a dataset. In contrast to other assumptions, normality7 cannot
be determined in advance. This is the reason for testing all datasets on normality. The questions
that are answered by means of these tests:

1. Replication tests
Produces the replicated model the same results as the model by Shiwakoti et al. (2011)?7

(a) Effect replication test
Produces the replicated model the same effect as the model created by Shiwakoti et al.
(2011)? Wherein the effect: a corner exit and an obstructed exit produce a faster evac-
uation than respectively a middle exit and an unobstructed exit.

(b) Time replication test
Produces the replicated model a similar set of data (the time at which the 50 first ants
have evacuated) to the data from experiments with real ants and simulations? The data
from the experiments and simulations are randomly generated given the distribution
stated in Shiwakoti et al. (2011).

2. Parameter function exploration
Are the influences of the parameters on the simulation what is expected?

3. Extension test
Given the time of evacuation (of the first 50 ants that evacuate) and maximum pressure
recorded, is a corner exit and an obstructed exit safer than respectively a middle exit and an
unobstructed exit? (Are the results found by Shiwakoti et al. (2011) supported/confirmed by
the extensions?)

5.1 Testing the replication

The created simulation was run for 60 times for each condition: square room with a middle exit,
square room with a corner exit, round room with a clear exit and a round room with an obstructed
exit. As indicated, a normality test was performed on these datasets. If a dataset is normally
distributed a histogram of the data is symmetric (its shape is not skewed to one side), mesokurtic
(its shape is not very peaked or rounded). In addition the correlation (Shapiro-Wilk test) and largest
departure (Lillifors test) between the dataset and what is expected for a normal distribution has to
respectively approximate one and zero. These properties are tested by considering the descriptives
(this includes mean, median, variance etc.) of the dataset and output of the two normality tests.

"Normality: the extent in which the dataset and its population is normally distributed
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The first condition ‘square room with middle exit’ produces a dataset which has a skewness of
1.52 (SE — 0.31), kurtosis of 3.89 (SE — 0.61), the Shapiro-Wilk tests states 0.12 (Sign. — 0.04)
and the Lillifors test states 0.89 (Sign. = 0.00) (see Appendix B.1 for the complete descriptive data
and output of the normality tests). The values of skewness and kurtosis indicate the extend of non
normality by the size of the statistic. This is significant if the standard error (SE) is half the size of
that statistic. The values of the first condition state that the dataset is not a normal distribution.
It has a longer right tail (the skewness is significantly positive) and is very peaked (the kurtosis
is significantly positive). Additionally the correlation (Shapire-Wilk test) and largest departure
(Lillifors test) between a normal distribution and the dataset is respectively significantly dissimilar
to zero and one. That this dataset is not normally distributed is supported by the histogram,
see Figure 17, as the skewness and peakedness is evident. Given that the dataset is not normally
divided, data analyses showed no extreme outliers®.

Histogram
Shape= Square. for Exit= Middle

20+
Mean = 14.936
Std. Dev. = 3817
M =60

o
1
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g
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Figure 17: Distribution of condition "Square room, middle exit"

Figure 18 shows the evacuation time for the evacuation of the first 50 ants. This resulted from
running the replicated simulation 60 times per condition with the settings used in Shiwakoti et al.
(2011). Given the descriptive data and normality tests only the condition square room with corner
exit produced a normal distributed dataset (see Appendix B.1). Because of that both conditions
per room shape have to be normally distributed for a T-test, the MWU test was executed for both
rooms. This test is less sensitive to deviations from a normal distribution as it uses the median of
the data instead of its mean.

5.1.1 The effect reproducibility

Tables 1 and 2, respectively square and round rooms setting, state the descriptives of the data. The
data in the tables represent the following computation: the datasets are combined and ordered on
their value, its rank is given to the samples. The mean rank is the mean of these ranks after the
group is again split to their exit setting. The sum of ranks is the summation of these ranks per
condition. What can be observed from these descriptives, is that the corner exit in the square room
is on average a faster evacuation situation than the middle-wall exit. The impeded exit in the round
room is on average a slower evacuation situation than the clear exit.

However a MWU test, which uses this data, conducted upon the square and round room data
produces the confidence of these differences. The null-hypotheses that are tested:

8Qutliers in a not normal distribution transcends 4 * IQR + 75th quartile
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Figure 18: Distributions of the simulation

General group descriptives

Table 1: Samples of square room simulations

Buesixg

Table 2: Samples of round room simulations

Ranks Ranks
Mean Sum of Mean Sum of
Exit N Rank Ranks Exit N Rank Ranks
Middle 60 78.68 4720.5 Time Clear 62 60.23 3734
Time Corner 60 42.33 2539.5 Impeded 60 62.82 3769
Total 120 Total 122

Note: Shape = Square

1. Hy of square room condition
The time when the first 50 ants have evacuated the square room with a middle wall exit is

equal to the square room with a corner exit.

2. Hy ofrRound room condition
The time when the first 50 ants have evacuated the round room with a clear wall exit is equal

to the round room with an impeded exit.

Note: Shape = Round

Table 3 states that Hy of square room condition is rejected. The probability that a middle exit
produces an evacuation time equal to a corner exit is smaller than 0.05. The mean rank for the
corner exit evacuation is statistically significantly lower than the middle-wall exit in a square room
(a 1-tailed test (2922) p < 0.05). Table 4 concludes that Hy ofrRound room condition is not rejected.
The probability that the evacuation time of the first 50 evacuated ants is equal for both clear and
impeded exit is higher than 0.05. This is in contrast to the effect results found by Shiwakoti et al.
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Test results Mann-Whitney U

Table 3: Result of the test on square room data, Table 4: Result of the test on round room data,
middle-wall exit versus corner exit setting. clear versus impeded exit setting.
Test Statistics Test Statistics
Time Time
Mann-Whitney U 709.5 Mann-Whitney U 1781
Wilcoxon W 2539.5 Wilcoxon W 3734
Z -5.724 Z -.405
Asymp. Sig. (2-tailed) .000 Asymp. Sig. (2-tailed) .686
Note: Shape = Square Note: Shape = Round
Grouping Variable: Exit Grouping Variable: Exit

5.1.2 The time reproducibility

The previous test does not answer if the evacuation time per condition is similar to the evacua-
tion time stated in Shiwakoti et al. (2011). Statistical tests cannot be performed because of the
unavailability of the actual samples from the simulations that resulted in the mean and standard
deviations given in their paper.

Figure 19 shows the distributions of the evacuation time samples per condition. The histograms
with orange bins represent the datasets (previously used) from the replicated model. The bottom
histograms with the yellow coloured bins are the experiments with real ants and the top ones
represent the simulations executed by Shiwakoti et al.. The datasets of the yellow histograms were
created with the use of MatLab (MATLAB, 2011) and are a representation of the mean and standard
deviations stated in Shiwakoti et al. (2011). If the replicated simulation is correctly replicated the
orange binned histograms are similar to the yellow binned histograms. A visual inspection of the
histograms per sources and condition is done. For clarity the various histograms per condition are
called respectively the replication, simulation and experiment dataset.

Figure 19(a) shows that the replication dataset has two data samples that are placed at the edge
of the normal distribution of the experiment dataset. Apart from those two samples, the replication
distribution is similar to the experiments. However, the simulation dataset is more similar to the
experiment dataset considering the means. The problem now lies within the clear difference of the
replication and simulation.

The replication seen in Figure 19(b) dataset is more similar, than the simulation dataset, to the
experiment dataset. The most clear statistic that proves this difference in similarity is the mean.
The replicated simulation produces 11.89, which lies closer to the mean of the experiments (11.18)
than the simulation (12.98).

Figure 19(c) displays the same disposition as 19(a), apart from outlier data samples. However
the contrast between the replication and simulation is more evident. Thus, although the replication
is in range of the experiment, it cannot be counted as a representable relpication for this condition.

Figure 19(d) is very similar to the outcome of the simulation and within the range of the
experiment dataset. The range of the replication corresponds better to the experiments than the
simulation dataset to the experiments.
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Figure 19: Distributions of real ant experiments (bottom yellow binned histograms), simulations
(top yellow binned histograms)(Shiwakoti et al., 2011) and simulations of the replication of the
model by Shiwakoti et al.
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5.2 The parameters/ elements of the simulation

The range of situations the simulation can represent is due to the values the parameters can be set
with. The function of these parameters was tested by comparing the simulation of changed settings
with simulations with the original settings (baseline simulation).

0. The baseline

The simulation with the original settings was run and snap-shots were taken at the times of 0, 2, 6,
10, 16, 20 and 24 seconds, see Figure 20.

) start situation ) 2s, 11 evacuees ) 6s, 27 evacuees ) 10s, 38 evacuees

Figure 20: Simulation of baseline

1. Parameter: deltaT

Reset the time step at which the speed and position are calculated, from 0.001 to 0.1 seconds. The
expectation was a slower evacuation caused by obstructions that arise from less time for an ant to
react to the environment. None of the ants escaped because they obstructed the exit completely
(see Figures 21).

) start situation ) 2s, 0 evacuees ) 6s, 0 evacuees ) 10s, 0 evacuees

Figure 21: Simulation deltaT: 1 second

2. Parameter: num-ants

Decrease the number or ants in the room from 200 to 50. Expected was a faster evacuation as the
concentration of ants near the exit is lower. However, unexpectedly the evacuation was slower as
can be seen in Figure 22. The assumption is that with a higher density of ants in the simulation, a
higher number of ants is closer to the exit. A percentage of num-ants, instead of the standard 50
ants, could give more representable insight.
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) start situation ) 2s, 7 evacuees ) 6s, 21 evacuees ) 10s, 29 evacuees

Figure 22: Simulation num-Ants: 50 ants

3. Parameter: egress

Excluding the behaviour of fleeing towards the exit was predicted to increase the evacuation time,
as the ants only leave the room by chance. This is confirmed by the Figure 23.

) start situation , 1 evacuees , 1 evacuees ) 10s, 4 evacuees

Figure 23: Simulation egress: off

4. Parameter: avoid

Excluding the behaviour of colliding and pushing against and to other ants and obstacles was
predicted to decrease the time of the evacuation. Even though the ants walk over one another and
obstacles (without restriction of movement), exiting is implemented in the method which avoid the
walls surrounding the exit. So leaving the room is excluded as well. This means no evacuees as
Figure 24 shows.

) start situation ) 2s, 0 evacuees ) 6s, 0 evacuees ) 10s, 0 evacuees

Figure 24: Simulation avoid: off
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5. Parameter: swarm

Excluding swarm behaviour was expected to produce a faster evacuation caused by less mimicry,
or running towards others but the time. On the contrary it starts slower, but after 10 seconds
approximately the same amount of ants is evacuated (see Figure 25). Striking is that some ants
completely walk away from the exit, this can be due to the excluding of the part of swarm behaviour
in which they try to stay close to one another.

) start situation ) 2s, 7 evacuees ) 6s, 18 evacuees ) 10s, 37 evacuees

Figure 25: Simulation swarm: off

6. Parameter: panic

Turning off the panic in the behaviour of ants was supposed to accelerate the evacuation, as panic
induces more obstructions. In contrast the simulation does not seem to be different from the baseline
(see Figure 26).

) start situation ) 2s, 10 evacuees ) 6s, 28 evacuees ) 10s, 36 evacuees

Figure 26: Simulation panic: off

7. Parameter: -egress

Excluding the behaviour of fleeing from the citronella was expected to decelerate the evacuation.
This is supported in Figure 27, given the number of evacuees.

8. Observing

Reset the maximum distance an ant still notices the exit from 40 to 17mm (approximately the
radius of the room). Expected was an increased evacuation as the concentration of ants near the
exit is kept lower and thus decreases obstructions, see Figure 28.
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) start situation ) 2s, 9 evacuees ) 6s, 26 evacuees ) 10s, 30 evacuees

Figure 27: Simulation negative egress: off

) start situation ) 2s, 8 evacuees ) 6s, 19 evacuees ) 10s, 35 evacuees
Figure 28: Simulation observing radius: 17 mm

5.3 The extensions and Shiwakoti et al. (2011)

Figure 29 shows the distributions of the time at which the first 50 ants have evacuated and Figure
30 shows the maximum pressure released in that time. Three of the four time distributions are
not normally distributed (see Appendix B.2 for the descriptive data and output of the normality
tests). This is evident; the square room with middle exit and the round rooms are all skewed with a
longer right tail. The round room with clear exit has a higher peakedness, however the square room
with corner exit is normally distributed. No outliers are present in the samples, thus the normality
cannot be improved. The normality tests state that the square room with middle exit and the
round rooms are not normally distributed (see Appendix B.2). This is evident in the histograms as
except for the square room with corner exit the distributions are all skewed with a longer right tail.
Additionally the square room with middle exit has a higher peakedness.

Given the normality of the time distributions a T-test is not justified; a non-parametric MWU
test was executed. The normality statistics of the pressure distributions is not consistent? enough
to prove that a T-test is justified; a MWU test was executed.

5.4 The tests of extensions

Tables 5 and 6, respectively square and round rooms setting, state the descriptives'® of the data
used in answering the question of if the extensions support the model by Shiwakoti et al.. Similar
to the first tests in this chapter, these descriptives state that the corner exit setting in the square
room is on average a faster evacuation situation than the middle-wall exit setting. It also states it

9The Lilliefors and Shapiro-Wilk tests state that they are normally distributed in contrast to the skewness and
peakedness
100\ lean rank value is the mean of the ranks that correspond to the conditions
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Figure 30: Output of the experiments: pressure

is a safer situation given the maximum recorded pressure. Unlike before the impeded exit setting
in the round room is on average a faster evacuation situation than the clear exit setting. Though
the maximum recorded pressures are on average higher in this setting in contrast to the clear exit.
The statistical test on the square and round room data however can produce a more precise answer
to this.

Table 7 states that the null-hypotheses, the maximum pressure recorded and evacuation time of
the first 50 evacuated ants is equal for both exit setting, is rejected as the significance is smaller than
0.05. The mean rank of pressure and time for the corner exit is statistically significantly lower than
the middle-wall exit in a square room (a 1-tailed test (2921) p < 0.05). Table 8 however concludes
that the null-hypotheses is not rejected, the maximum pressure recorded and evacuation time of the
first 50 evacuated ants is equal for both clear and impeded exit in a round room (p > 0.05). This
is in contrast with the prediction that the impeded versus clear exit is safer, time wise and pressure
wise given the results stated in Shiwakoti et al. (2011).
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General group descriptives

Table 5: Square room simulations

Table 6: Round room simulations

Ranks Ranks
Mean Sum of Mean  Sum of
Exitsetting N Rank  Ranks Exitsetting Rank  Ranks
Middle 91  86.02 7828 Time Clear 60 66.47 3988
Time Corner 60  60.80 3648 Impeded 62 56.69 3515
Total 151 Total 122
Middle 91 91.83 8356.5 Pressure  Clear 60 59.47 3568
Pressure  Corner 60 51.99 3119.5 Impeded 62 63.47 3935
Total 151 Total 122

Note: mean rank of Pressure supports Time,
a fast evacuating room holds lower pressures

Note: mean rank of Time contradicts Pressure,
a fast evacuating room holds higher pressures

Mann-Whitney U tests on extensions Time-Pressure

Table T7:

Test-result on square room data,

middle-wall versus corner exit setting.

Table 8: Test-result on round room data, clear
versus impeded exit setting.

Test Statistics

Test Statistics

Mann-Whitney U
Wilcoxon w
Z

Asymp. Sig. (2-tailed)

Time Pressure
1818.0 1289.5
3648.0 3119.5
-3.468 -5.480

.001 .000

Mann-Whitney U
Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Time Pressure
1562.0 1738.0
3515.0 3568.0
-1.526 -.625

127 .532

Note: Shape = Square
Grouping Variable: Exit
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6 Conclusions/discussion

Collective crowd behaviour in form of panic induced crowd stampede is disastrous and consists of
complex behaviour'!. Radboud Rocks was a motivation to investigate this topic; extra tickets were
sold after the festival was originally sold out. This makes the safety (the probability of a stampede
is proportionate to the size of the crowd) questionable. To understand and predict the behaviour
of an egressing crowd, many researchers have studied humans and animals in non-panic and panic
conditions during egress. By means of a real ant experiment and Newtonian physics Shiwakoti et al.
created a basic model and simulation to capture these behaviours.

This project was to understand, replicate and extend the basic model stated in Shiwakoti et al.
(2011) to create a more realistic model of collective crowd stampedes. The research consisted of
two aspects; reproducibility and reality.

6.1 Reproducibility

The model of collective ant behaviour made by Shiwakoti et al. was replicated and simulated in
four different room conditions. The first research question was:

1. Repeatability Can the mathematical model by Shiwakoti et al. (2011) be replicated?
(Research question 1 page 4)

The replicated model was tested in two ways, the effect replication and the time replication. The
square room effect (first part of the effect replication) was supported by the replicated model. The
square room effect: a corner exit decreases directional changes which increases the flow in contrast
to a middle exit. The round room effect is: an obstructed exit suppressed the overload of ants at
the exit which increases the flow of evacuation in contrast to a clear exit. This effect however was
not supported by the data from the simulations.

The time replication is the specific comparison of the data-samples from the simulation to the
data from the real ant experiments and simulation completed by Shiwakoti et al. (2011). Seen as
a whole, the simulated data-samples of the replication lies within the range of the data from the
real ant experiments. In fact two datasets resulted from the four conditions are more similar to
the experiments than the simulation created by Shiwakoti et al. (square room with corner exit and
round room with obstructed exit).

A complete replica of the reality is very difficult, if not impossible to create. It has to be taken
into account that random fluctuations which are present in the experiments are not present in the
simulations. The result of adding these fluctuations to the simulation is an increase of the spread
of the associated data-samples. The two datasets that are less similar to the experiments than the
simulations from Shiwakoti et al. are predicted to fall beyond the range of the experiment data-
samples. The simulations on this point do not support the model described by Shiwakoti et al.
(2011).

It seems that the wall interaction behaviour is the main problem. The mean time of evacuation
in the round room with clear exit condition benefited from the absence of obstacles. Only a notion
of wall interactions was included to the model, which caused the need for a more specific definition.
A definition was found in the human crowd model from Helbing et al. (2000). It seems Shiwakoti
et al. underestimated this part of a crowd stampede. Although this is not interaction between the
individuals, it is an important part of the behaviour. Without walls and obstacles a stampede is
half its problem.

"Tnteractions between the individuals makes this behaviour complex
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6.2 Reality

The model of ant behaviour was extended with extra characteristics of stampede behaviour. The
original second research question was:

2. Reality Is it possible to extend the model with the following features?
(a) Measuring forces in the crowd
(b) Obstructions consisting of humans being pushed down
(¢) Multiple exits
(d) Social contagion

(Research question 2 page 4)

The statistical tests state that the maximum recorded forces support the results in which the
corner exit room is evacuated more safely than a room with a middle-wall exit. The effect found by
Shiwakoti et al. for the round room was that the maximum pressure at the impeded exit condition
is smaller than at the clear exit condition. However this was not supported by the replicated model.

The number of deceased ants was specifically not stated and used for a statistical test, as the
forces an ant can withstand are not known. This is necessary to know in order to create a correct
extension ‘obstructions consisting of individuals being pushed down’.

The extension multiple exits were partly described by another paper by Shiwakoti et al.. Social
contagion necessitates sufficient research to substantiate its function to implement it into the model.
When this panic was turned off in the function exploration, the simulation did not notably differ
from the baseline. This suggests that this behaviour cannot be used for this extension.

6.3 Future research

The replication of the basic model created by Shiwakoti et al. is a good start at testing the
reproducibility. However to enhance their model it first has to be replicated completely and produce
the same results (precise and effect wise). Replicating the correct and complete equation of the wall
interactions has to be known as well as the observation range. If negative egress, and its specifics,
was actually part of the model is unknown. This needs to be confirmed with the authors.

Although Shiwakoti et al. mentioned multiple exits in one of their papers, it is crucial to add it
to the model as it increases the reality level. Social contagion is at behavioural level crucial as it is
a characteristic of human egress, which is simulated by the model. The added behaviour of panic
(by Shiwakoti et al. (2011)) and its impact on the simulation has to be fully understood. Than this
behaviour can be used to its full extend as ‘social contagion’.

The motivation of this project was the questionable safety of Radboud Rocks. Luckily this event
has past without any incident. An excellent research topic for future research lies in simulating these
kind of events. To try and create a stampede and reason about its causes, and eventually prevent
these disastrous event from happening.

To simulate such an event the extended model has to be extended with the ‘multiple exits’ and
‘social contagion’. Than it is converted to a human egress model (with use of Eq. (18)) mentioned
in Shiwakoti et al. (2011). At which time the surroundings in the simulation can be implemented for
example park Brakkestein were Radboud Rocks took place. The deaths, pressures, flow in pressure
colors in the model and time of first 50 evacuees predict the safety of that specific situation and
answers if the event is safe for the set amount of attendees.

S — wMO,38 (18)
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A.1 Implemented code
A.1.1 Panic

]‘ ifelse Panic ; when panic s included in the behaviour
j [ let ‘Iizshe = [1 ¥ Uz + p2 ok € * U ; force in shearing direction
3 let yone = M1 % vy |+ opz ox £ % Dy ; second part is panic
4 let Fp,,. = —1(a1 % vz + a2 * € * 0g) ; force in normal direction
_
~ c . 5 - . .
5 let Fy,,,. = —1(aq * vy + a2 % € * Oy) ;0 in €° is zero in panic
G 1
1 [ let Fih,, = p1 * vs ; force in shearing direction minus panic
a let }:yshe = H1 ¥ Uy
q let Fg,,. = —1(a1 = e’ Ve + a2 k €% % Dy) ; force in normal direction, minus panic
Iy
10 let F,,, = —1(a1 * € % vy + az * €7 * i)
11 ]

Listing 10: Panic method

A.1.2 Normal force

1 to—report normalF [zag yap U €] ; Calculating the normal force

2 ; Tap, Yap and € is respectively the distance/overlap of ant to/with other ant. U its speed, in x and y direction.
3 ; a1, aa are the previously set as the damping and elasticity coefficients

4

5 let projectSh = (v * Tag + vy * Yap) / (22 + yop) : Calculate projection

G

T if projectSh =0 ; speed vector not perpendicular with wall
§ [ let v, = projectSh * z45 ; relative velocity in normal direction
9 let vy = projectSh = yap

10 let 0, = vy / v + 115 ; unit vector in normal direction

11 let 0y, = vy / Jvi+02

2 let flip =1 ; wnitialize flip with not flipping

13

14 ; If the needed direction is bigger than 90 degrees:

15 if abs(distance—angle (atan v, vy) (atan —zag —Yap)) > 90

16 [ set flip —1] ; set flip with flipping

17

18 ifelse Panic

19 [ let F,,, = (a1 * vs + g = € * 9,) = flip ; force in mormal direction,
2( let ﬁynw = (a1 % vy + az % € * 0y) = flip ; force in normal direction, y
21 report list ﬁzmr F, nor ; report/return these forces

i
23 [ let Fy,. = (a1 * €% vy + ag + €+ 0,) * flip ; force in mormal direction, ©
24 let F,,,, = (a1 * e+ vy, + ag = %% d,) = flip ; force in normal direction, y
2] report list ﬁznov‘ _’ynw ; report/return these forces
26 |
27 ]
28 report list 0 0 ; else ant walks parallel to wall
29 end

Listing 11: Normal force method
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A.1.3 Shear force

to—report shearF [zag Yap U €] ; Calculating the shear force
; Tag, Yap and € is respectively the distance/overlap of ant to/with other ant. ¥ its speed, in x and y direction.
; a1, ag are the previously set as the damping and elasticity coefficients
let projectSh = (v * Tag + vy * Yap) / (22 + yop) : Calculate projection
if projectSh =0 ; speed vector not perpendicular with wall
[ let v, = projectSh * zqp ; relative velocity in normal direction
let v, = projectSh * yug
let 9z = vz / JvZ+v2 ; unit vector in normal direction
let 9y = vy, / /24032
ifelse Panic
[ let Foo = p1 % Uz + p2 % € % U ; force in shearing direction, x
let Fy,,. = pi % vy +opz k€ ox Dy ; force in shearing direction, y
report list Fp_, Fy,. ; report/return these forces
[ let ﬁwshe = W1 * Vg ; force in shearing direction, x
let Fy,., = p1 * vy ; force in shearing direction, y
report list Fp_, Fy,,. ; report/return these forces
report list 0 0 ; else ant walks toward wall
end

Listing 12: Shear force method

A.1.4 Extensions

.

§

to force2 [avoida—f avoidw—f]
set force = list ((abs(item 0 avoida—f)) / 1%10%°) ((abs(item 1 avoida—f)) / 1x10°)

let total_ force = \/(itemOforce)Q—l—(item1f01"ce)2 ‘
if total force > max N [set max N = total force]

force—colours(total force)
end

Listing 13: Combining method

to setObstacle

set size = 1
set color = 4
set mass = mass *x 0.2
set r =1 x 0.2
end

Listing 14: Ant dies method
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47
48
49
5(

to force—colours [total force] cextention , colour of ant cha

tncrease of pushing forces. to be extended

let co_br = lime
- e ¢ 1/ — ”/?m."TV{/w' " ”n /‘ et co_ ',"!., ’,' € /
if breed = "agitator" [set co_br (lime — 2)]
if breed = "steward" [set co_br (lime — 4)]
if total force > (0.4 % forceToll) & total force <= 0.5 % forceToll
[ set color = co_br — 10
ifelse health <= 9.5
[ set health = 0.95 * health |
[ set health = 9.5 |
I
if total force > (0.5 % forceToll) & total force <= 0.6 « forceToll
[ set color = co_br — 20
ifelse health <= 8.5
[ set health = 0.85 * health |
[ set health = 8.5 |
I
if total force > (0.6 = forceToll) & total force <= 0.7 « forceToll
[ set color = co_br — 30
ifelse health <= 7
[ set health = 0.7 % health |
[ set health = 7 |
I
if total force > (0.7 % forceToll) & total force <= 0.8 x forceToll
[ set color = co_br — 40
ifelse health <= 5
[ set health = 0.5 * health |
[ set health = 5 ]
I
if total force > (0.8 % forceToll) & total force <= 0.9 « forceToll
[ set color = co_br — 50
ifelse health <= 2.5
[ set health = 0.25 % health |
[ set health = 2.5 |
I
if total force > (0.9 x forceToll)
[ set color = co_br — 60
ifelse health <= 0.5
[ set health = 0.5 % health |
[ set health = 0.5 ]
I
if health < 0.2 |
set health 0
set num—died num—died + 1
setObstacle
I
end

Listing 15: Setting ant color by pressure(an early version)
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A.2 Description of the not implemented extensions

Add multiple exits to the model: mathematically an exit for each room is created by adding a
new exit position, combining the starting point x,y and the width of the corridor. The ant can
behave in different ways, fleeing to the closest exit when near or following the majority of ants.
This behaviour is already built in, but the influence of the swarming behaviour is minuscule and
can never overcome the force of egressing while the ant is in ‘see exit’ range. A possibility to study
in the future, research the ratio of the forces swarming, egressing and avoiding.

Add social contagion to the model: Social contagious behaviour could be obtained by means of
adding an extra parameter ‘panic’ which increases linearly with the panic of the close surrounded
ants. The panic parameter has influence on the parameters § and ¢ in Listings 10.

A.3 Interpretation of wall interaction based on Shiwakoti et al. (2011)

Collisions with wall behaviour has been implemented approximately the same as the ‘collision and
pushing’ behaviour has been set up. The biggest difference was that the parameters were not given,
thus these had to be logically contrived (see Equation 9).

74 4
Original ¥ :,_{
direction U Ut N.ew )
Z I direction
I

Fuwp = QW1 T + Qe + 1T + poet (19)

T

overlap
s 4

N

Figure 31: Schema collision/pushing

An interpretation has been given to the behaviour of the ants interaction with the walls, and the
pseudo-code is its corresponding implementation. First is checked whether the ant is at the exit,
meaning that is could cross the wall boundaries (see Listing 16 line 2). The overlap is the overlap
with the wall in contrast to overlap with other ants, see line 3. And the rest, code lines 16-24,
corresponds with the calculations from the paragraph above. Line 25 returns the forces. For the
entire program code including the help function like normalF(.. ) and shearF(.. ), see Appendix
A.1.2 and A.1.3. The parameters z,8, ¥o3 and € represent the distance to the wall or obstacle and
overlap with the wall in contrast with the comments at the speudo-code.
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to—report collWall—force

if atExit [ set exiting = true |

let overlapL = exceedWall

let Faw, = Fow, = 0

if (item 2 overlapL) > 0

[ let zag,,. = item 0 overlapL
let zag,,., = Yapno. = item 1 overlapL
let yap,h. = TaBnor * —1
let ¢ = item 2 overlapL
let ﬁznor = ﬁyno'r‘ = ﬁzshe - ﬁyshe =0
if zagn,, = 0 & Yaspor = 0
[ set zap,,. = Za

set Yoo, = Yo |

let Fhnor = normalF (zas,.. Yaps,.. ¥ €)
set F_';nor = Fror,
set F, . = Fror,
let Fi. = shearF (Zas.,. Yap.,.: T €)
set Fp,. = Fue,
set ﬁyshe - shey
set chl = _‘ch + F';nm, + ﬁzshe
set _‘ch = ﬁch + _’ynor + Fiysh,e

|

report list (Fc;l/'m)(Fc;Vy)

end

e ( 187 T f
‘distance » ¢ and Yy 7‘// om anitg 1o W 1l
/ e 9( 7 "U CE
A e ter nor ear T
[} ///
C t he 7 7
tore th dy t1 rmal fo
L' te € SNel( Jjorce
t the d y of the shear for
lculate and add the normal
A 4/ SIe [ T
‘retu dded collision and pushin /

Listing 16: Collision and pushing on wall force method

Experimenting on parameters wall-interactions

The parameters in table 9 shows the given values to enter into the equation (8).

From estimation

Parameters Value of ants  Value of wall Description

o 0.01 g/s . g/s Damping, controlling dissipation during collision
Qg 8 g/s? 1g/s? Elastic restoration, controlling particle stiffness
1 0.06 g/s —0.17 g/s Friction

12 0.06 g/s? —0.1? g/s>  Friction

Table 9: Values from simulation by Shiwakoti et al. (2011)
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B.1

Normality tests

Normality of the data from the replicated model

. Square room with middle exit

The dataset resulting from the first condition ‘square room with middle exit’ has a skewness
of 1.52 (SE = 0.31), kurtosis of 3.89 (SE = 0.61), the Shapiro-Wilk tests states 0.12 (Sign. =
0.04) and the Lillifors test states 0.89 (Sign. = 0.00). The values of skewness and kurtosis
indicate the extend of non normality by the size of the statistic which is significant if the
standard error (SE) is half the size of that statistic. The values for the first condition state
that the dataset is not a normal distribution. It has a longer right tail (the skewness is
significantly positive) and is very peaked (the kurtosis is significantly positive). Additionally
the correlation (Shapire-Wilk test) and largest departure (Lillifors test) between a normal
distribution and the dataset is respectively significantly dissimilar to zero and one. That
this dataset is not normally distributed is supported by the histogram, see Figure 17, as the
skewness and peakedness is evident. Concluded that the dataset is not normally divided, data
analyses showed no extreme outliers!?.

Square room with corner exit

The dataset from the second condition ‘square room with corner exit’ has a skewness of 0.179
(SE = 0.31), kurtosis of -0.354 (SE = 0.61), the Shapiro-Wilk test states 0.99 (Sig. = 0.9) and
the Lilliefors states 0.06 (Sig. = 0.2). The values of skewness and kurtosis that the dataset
normally is distributed. This is confirmed for the Shapiro-Wilk and Lillifors tests, as they are
not significant.

Round room with clear exit

The dataset from the third condition ‘round room with clear exit’ has a skewness of 0.829
(SE = 0.30), kurtosis of 0.419 (SE = 0.60), the Shapiro-Wilk test states 0.94 (Sig. = 0.007)
and the Lilliefors states 0.08 (Sig. = 0.2). The value of skewness is significant and states that
the distribution has a longer right tail. The kurtosis is not extreme. The Shapiro-Wilk and
Lillifors tests state that the dataset is normally distributed. Although these test are powerful,
however the skewness is significant thus it is not normally distributed

. Round room with impeded exit

The dataset resulting from the fourth condition ‘round room with impede exit’ has a skewness
of 0.785 (SE = 0.31), kurtosis of 0.186 (SE = 0.61), the Shapiro-Wilk test states 0.94 (Sig.
= 0.008) and the Lilliefors states 0.13 (Sig. = 0.02). The value of skewness is significant
and states that the distribution has a longer right tail. The kurtosis is not extreme. The
Shapiro-Wilk and Lillifors tests are both significant, but the Lillifors differs more from the
wanted 0. The dataset given the skewness and Lillifors test is not normally distributed.

12Qutliers in a not normal distribution transcends 4 * IQR + 75th quartile
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Explore Normality

Shape = Square

Case Processing Summary”

Cases
Valid Missing Total
Exit N Percent N Percent N Percent
Time Middle 60 100,0% 0 0,0% 60 100,0%
Corner 60 100,0% 0 0,0% 60 100,0%
a. Shape = Square
Descriptives”
Exit Statistic Std. Error
Time Middle Mean 14,93563 ,492795

95% Confidence Lower Bound 13,94955
Interval for Mean Upper Bound 15,92171
5% Trimmed Mean 14,61772
Median 14,38400
Variance 14,571
Std. Deviation 3,817172
Minimum 8,796
Maximum 29,455
Range 20,659
Interquartile Range 4,222
Skewness 1,517 ,309
Kurtosis 3,888 ,608

Corner Mean 11,88792 ,154960
95% Confidence Lower Bound 11,57784
Interval for Mean  Upper Bound 12,19799
5% Trimmed Mean 11,87602
Median 11,79300
Variance 1,441
Std. Deviation 1,200316
Minimum 9,132
Maximum 14,581
Range 5,449
Interquartile Range 1,668
Skewness ,179 ,309
Kurtosis -,354 ,608

a. Shape = Square
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Tests of Normality”

Kolmogorov-Smimovb Shapiro-Wilk
Exit  Statistic df Sig. Statistic df  Sig.

Time Middle ,118 60 ,037 ,894 60 ,000
Corner ,061 60 ,200° 991 60 ,937

*_ This is a lower bound of the true significance.

a. Shape = Square
b. Lilliefors Significance Correction

Time Histograms

Histogram
Shape= Square. for exitcondition= Middle
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Shape = Round

Case Processing Summary”

Cases
Valid Missing Total
Exit N Percent N Percent N  Percent
Time Clear 62 100,0% 0 0,0% 62 100,0%
Impeded 60 100,0% 0 0,0% 60 100,0%
a. Shape = Round
Descriptives”
Std.
Exit Statistic Error
Time Clear Mean 13,52085 ,352581

95% Confidence Lower Bound 12,81583
Interval for Mean  ypper Bound 14,22588
5% Trimmed Mean 13,33996
Median 13,09800
Variance 7,707
Std. Deviation 2,776222
Minimum 9,433
Maximum 21,358
Range 11,925
Interquartile Range 3,800
Skewness ,829 ,304
Kurtosis ,419 ,599

Impeded Mean 13,68282 ,338536
95% Confidence Lower Bound 13,00541
Interval for Mean  ypper Bound 14,36023
5% Trimmed Mean 13,56606
Median 13,18150
Variance 6,876
Std. Deviation 2,622290
Minimum 9,737
Maximum 21,219
Range 11,482
Interquartile Range 3,396
Skewness ,785 ,309
Kurtosis ,186 ,608

a. Shape = Round
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Tests of Normality”

Kolmogorov-Smirmov®  Shapiro-Wilk
Exit Statistic  df Sig. Statistic df  Sig.

Time Clear ;075 62 200 944 62 ,007
Impeded ,128 60 ,016 944 60 ,008

*_ This is a lower bound of the true significance.
a. Shape = Round
b. Lilliefors Significance Correction

Time Histograms

Histogram
Shape= Round. for exitcondition= Clear
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B.2 Normality of the data from the extended model

B.2.1 Normality of the time datasets

1.

Square room with middle exit

The dataset about time from the extended model associated with the first condition has a
skewness of 0.810 (SE = 0.25), kurtosis of 0.335 (SE = 0.50), the Shapiro-Wilk test states
0.95 (Sig. = 0.002) and the Lilliefors states 0.11 (Sig. = 0.008). The value of skewness is
significant and states that the distribution has a longer right tail. The kurtosis is not extreme.
The Shapiro-Wilk and Lillifors tests state that the dataset is normally distributed. Although
these test are powerful, the skewness is significant, the dataset is not normally distributed.

Square room with corner exit

The dataset about time associated with the second condition has a skewness of 0.192 (SE
= 0.31), kurtosis of -0.355 (SE = 0.61), the Shapiro-Wilk test states 0.98 (Sig. = 0.56) and
the Lilliefors states 0.07 (Sig. = 0.2). All normality test state that this dataset is normally
distributed.

Round room with clear exit

The dataset belonging to the third condition has a skewness of 1.241 (SE = 0.31), kurtosis of
1.377 (SE = 0.61), the Shapiro-Wilk test states 0.897 (Sig. = 0.000) and the Lilliefors states
0.159 (Sig. = 0.001). All normality test state that this dataset in not normally distributed.
It has a longer right tail and is very peaked.

. Square room with impeded exit

The dataset about time from the extended model belonging to the fourth condition has a
skewness of 0.646 (SE = 0.30), kurtosis of -.035 (SE = 0.60), the Shapiro-Wilk test states
0.96 (Sig. = 0.026) and the Lilliefors states 0.125 (Sig. = 0.017). The value of skewness is
significant and states that the distribution has a longer right tail. The kurtosis is not extreme
and the Shapiro-Wilk test state that this is a normal distribution. However the Lillifors tests
is close to stating that the distribution is not significantly normally distributed. This with
the skewness concludes that this dataset is not normally distributed.
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Explore

Shape = Square

Case Processing Summary”

Cases
Valid Missing Total
Exit N Percent N Percent N Percent
Time Middle 91 100,0% 0 0,0% 91 100,0%
Corner 60 100,0% 0 0,0% 60 100,0%
a. Shape = Square
Descriptives”
Exit Statistic Std. Error
Time Middle Mean 14,67731 , 308430

95% Confidence Lower Bound 14,06456
Interval for Mean  ypper Bound 15,29006
5% Trimmed Mean 14,52900
Median 13,97200
Variance 8,657
Std. Deviation 2,942235
Minimum 9,610
Maximum 23,560
Range 13,950
Interquartile Range 3,408
Skewness ,810 ,253
Kurtosis ,335 ,500

Corner Mean 13,00987 ,L180079
95% Confidence Lower Bound 12,64953
Interval for Mean  ypper Bound 13,37020
5% Trimmed Mean 12,98759
Median 12,94700
Variance 1,946
Std. Deviation 1,394886
Minimum 10,497
Maximum 16,768
Range 6,271
Interquartile Range 2,120
Skewness ,192 ,309
Kurtosis -,355 ,608

a. Shape = Square

B9



Tests of Normality”

Kolmogorov-Smirnovb Shapiro-Wilk
Exit  Statistic df Sig. Statistic df  Sig.

Time Middle ,110 91 ,008 ,951 91 ,002
Corner ,070 60 ,200° ,983 60 ,564

*_ This is a lower bound of the true significance.

a. Shape = Square
b. Lilliefors Significance Correction

Time Histograms

Histogram
Shape= Square. for Exitsetting= Middle
20
— Mean = 14,677 [
Std. Dev. = 2,9421
N=91
S 157
&) |
C
(o) -
o 10—
o
w
5_
0 =1
I 1 I I I
5 10 15 20 25 30
Time(seconds)
Histogram
Shape= Square. for Exitsetting= Corner
10
- Mean = 13,010 [
St(i. Dev.= 1,395
g (\ N= 60
> —
&)
S o H/H
3
g
47
i /X
0= T T
5 10 15 20

Time(seconds)

B10



Time(seconds)

Shape: Square

82
678
22,500 32
(@)
20,000 T
17,500
15,000 T
12,500
10,000 1
T T
Middle Corner

Exit

B11




Shape = Round

Exit

Case Processing Summary”

Cases
Valid Missing Total
Exit N Percent N Percent N  Percent
Time Clear 60 100,0% 0 0,0% 60 100,0%
Impeded 62 100,0% 0 0,0% 62 100,0%
a. Shape = Round
Descriptives”
Exit Statistic Std. Error
Time Clear Mean 14,27427 ,402444

95% Confidence Lower Bound 13,46898
Interval for Mean  ypper Bound 15,07956
5% Trimmed Mean 14,02304
Median 13,68500
Variance 9,718
Std. Deviation 3,117318
Minimum 9,798
Maximum 23,784
Range 13,986
Interquartile Range 3,146
Skewness 1,241 ,309
Kurtosis 1,377 ,608

Impeded Mean 13,32581 ,305064
95% Confidence Lower Bound 12,71579
Interval for Mean  ypper Bound 13,93582
5% Trimmed Mean 13,21420
Median 12,71800
Variance 5,770
Std. Deviation 2,402076
Minimum 9,121
Maximum 19,562
Range 10,441
Interquartile Range 3,812
Skewness ,646 ,304
Kurtosis -,035 ,599

a. Shape = Round
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Tests of Normality”

Kolmogorov-Smirmov®  Shapiro-Wilk
Exit Statistic  df Sig. Statistic df  Sig.

Time Clear ,159 60 ,001 ,897 60 ,000
Impeded ,125 62 ,017 956 62,026

a. Shape = Round
b. Lilliefors Significance Correction

Time Histograms

Histogram
Shape= Round. for Exitsetting= Clear
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B.2.2 Normality of the pressure datasets

1. Square room with middle exit
The dataset of pressure from the extended model belonging to the first condition has a skew-
ness of 0.996 (SE = 0.25), kurtosis of 1.409 (SE = 0.50), the Shapiro-Wilk test states 0.943
(Sig. = 0.001) and the Lilliefors states 0.08 (Sig. = 0.19). The value of skewness and skew-
ness state that the distribution has a longer right tail and is very peaked. Although the
Shapiro-Wilk and Lillifors tests state that the dataset is normally distributed, the skewness
ans peakedness conclude it is not normally distributed.

2. Square room with corner exit
The dataset associated with the second condition has a skewness of 0.263 (SE = 0.31), kurtosis

of -0.376 (SE = 0.61), the Shapiro-Wilk test states 0.98 (Sig. = 0.53) and the Lilliefors states
0.07 (Sig. = 0.2). All normality tests state that this pressure dataset is normally distributed.

3. Round rooms

The dataset belonging to the third condition has a skewness of 0.647 (SE = 0.31), kurtosis of
-.260 (SE = 0.61), the Shapiro-Wilk test states 0.95 (Sig. = 0.01) and the Lilliefors states 0.094
(Sig. = 0.2). The dataset associated with the fourth condition about maximum pressure has
a skewness of 0.723 (SE — 0.30), kurtosis of 0.449 (SE — 0.60), the Shapiro-Wilk test states
0.96 (Sig. = 0.041) and the Lilliefors states 0.10 (Sig. = 0.098). For both distribution applies
the following. The value of skewness is significant and states that the distribution has a longer
right tail. The kurtosis is not extreme. The Shapiro-Wilk and Lillifors tests state that the
dataset is normally distributed. Although these test are powerful, however the skewness is
significant thus it is not normally distributed.
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Explore

Shape = Square

Case Processing Summary”

Cases
Valid Missing Total
Exit N Percent N Percent N  Percent
Pressure Middle 91 100,0% 0 0,0% 91 100,0%
Corner 60 100,0% 0 0,0% 60 100,0%
a. Shape = Square
Descriptives”
Exit Statistic Std. Error
Pressure Middle Mean ,000016875 1,511E-7

95% Confidence Lower Bound ,000016575
Interval for Mean  ypper Bound  ,000017175
5% Trimmed Mean ,000016777
Median ,000016800
Variance ,000
Std. Deviation ,0000014410
Minimum ,0000143
Maximum ,0000217
Range ,0000074
Interquartile Range ,0000017
Skewness ,996 ,253
Kurtosis 1,409 ,500

Corner Mean ,000015553 1,458E-7
95% Confidence Lower Bound  ,000015262
Interval for Mean  ypper Bound ~ ,000015845
5% Trimmed Mean ,000015531
Median ,000015550
Variance ,000
Std. Deviation ,0000011293
Minimum ,0000134
Maximum ,0000182
Range ,0000048
Interquartile Range ,0000017
Skewness ,263 ,309
Kurtosis -,376 ,608

a. Shape = Square

B16



Tests of Normality”
Kolmogorov-Smimovb Shapiro-Wilk
Exit  Statistic df Sig. Statistic df  Sig.

Pressure Middle ,081 91 ,191 ,943 91 ,001
Corner ,071 60 ,200* 982 60 ,529

*_ This is a lower bound of the true significance.

a. Shape = Square
b. Lilliefors Significance Correction

Pressure Histograms

Histograms
Histogram
Shape= Square. for Exitsetting= Middle
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Shape = Round

Case Processing Summary”

Cases
Valid Missing Total
Exit N Percent N Percent N Percent
Pressure Clear 60 100,0% 0 0,0% 60 100,0%
Impeded 62 100,0% 0 0,0% 62 100,0%
a. Shape = Round
Descriptives”
Exit Statistic  Std. Error
Pressure Clear Mean ,000016875 1,657E-7

95% Confidence Lower Bound ,000016543
Interval for Mean  pper Bound ,000017207
5% Trimmed Mean ,000016817
Median ,000016700
Variance ,000
Std. Deviation ,000001283
Minimum ,0000150
Maximum ,0000200
Range ,0000050
Interquartile Range ,0000019
Skewness ,647 ,309
Kurtosis -,260 ,608

Impeded Mean ,000017002 1,635E-7
95% Confidence Lower Bound ,000016675
Interval for Mean  ypper Bound ,000017329
5% Trimmed Mean ,000016933
Median ,000016800
Variance ,000
Std. Deviation ,000001288
Minimum ,0000148
Maximum ,0000206
Range ,0000058
Interquartile Range ,0000019
Skewness , 723 ,304
Kurtosis ,449 ,599

a. Shape = Round
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Tests of Normality”

KolmogorOV-Smimovb Shapiro-Wilk
Exit Statistic  df Sig. Statistic df Sig.

Pressure Clear ,094 60 ,200* ,946 60 ,010
Impeded ,103 62 ,098 960 62 ,041

*_ This is a lower bound of the true significance.

a. Shape = Round
b. Lilliefors Significance Correction
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