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Abstract

The mirror neuron system (MNS) has been described as the neural basis of action
understanding, as the system responsible for the human capacity to imitate and as the
crucial step in the evolutionary development that led to language. Understanding the
evolutionary origins of the MNS will therefore likely provide much insight into what
makes us human. The involvement of the MNS in both imitation and action under-
standing has been firmly established. Various authors have discussed the evolution-
ary origins of the MNS and claimed that its function in facilitating imitation builds
upon its role in action understanding and is thus a phylogenetically later develop-
ment. I argue, however, that this hypothesis lacks sufficient theoretical or empirical
evidence and instead present support for the reverse: the phylogenetically primary
function of the MNS is imitation and the MNS evolved in direct response to a selec-
tive pressure for imitative behavior. This hypothesis was tested using evolutionary
robotics simulation techniques. The simulation was conducted with embodied and
simulated-world embedded artificial agents equipped with a lifetime-adapting (i.e.,
Hebbian learning) neural network for which the learning parameters were subject to
evolution. The agents had to perform an imitation task. Analysis of the neural con-
troller that evolved in response to this task revealed artificial neurons showing clear
mirror characteristics, suggesting that, indeed, mirror neurons evolve due to a selec-

tive pressure for imitative behavior.
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1 Introduction

1 Introduction

Mirror neurons are a particular class of visuomotor neurons, originally discovered in the
macaque monkey, that fire both when the monkey performs a particular action and when
the monkey sees that same action being performed by another individual (DiPellegrino,
Fadiga, Fogassi, Gallese, & Rizzolatti, 1992; Gallese, Fadiga, Fogassi, & Rizzolatti, 1996;
Rizzolatti, Fadiga, Gallese, & Fogassi, 1996). The discovery of the mirror neuron system
has given an important impetus to diverse scientific disciplines. Neurobiologists and cog-
nitive neuroscientists unravel its physiological properties more and more, while cognitive
psychologists, linguists and even philosophers continue to apply its explanatory power to
increasingly diverse classes of problems. The mirror neuron system (MNS) has been de-
scribed as the neural basis of action understanding, as the system responsible for the hu-
man capacity to imitate and as the crucial step in the evolutionary development that ulti-
mately led to modern language (see Rizzolatti & Craighero, 2004).

The evolutionary origin of the mirror neuron system itself remains, however, not well
understood. Identifying the circumstances under which a system that seems so essential
to our higher cognitive abilities has come to evolve will likely provide much insight into
what makes us human.

In an attempt to characterize the MNS’s evolution, Vilayanur Ramachandran (2000)
claims that mirror neurons were a “pre-adaptation” and that the extensive role they play
in the modern human mind should thus be considered an exaptation (i.e., an adaptation
whose current function is not the function for which it originally evolved). The absence of
any direct evidence concerning the MNS’s evolution does not warrant any dismissal of this
claim (nor does it lend it any credibility), but Ramachandran’s hypothesis does leave open
the question of which selective pressure originally led to the MNS’s evolution.

An alternative hypothesis that attempts to address this question directly has been put
forward by Elhanan Borenstein & Eytan Ruppin (2005). Using a computational model of
evolution, they artificially introduced a selective pressure for imitation learning. The evo-
lutionary process resulted in agents being born with neurons that had ‘mirror-like’ proper-
ties. These findings suggest that, when a selective pressure for imitation learning is present,
i.e., when the capacity to imitate is beneficial to an individual, mirror neurons tend to
evolve to meet this pressure.

Borenstein & Ruppin’s agents are, however, radically disembodied and their simulation
was not conducted embedded within a realistically simulated environment. This drastically
reduces the applicability of their claim to real-life biological organisms. It is essential of
biological mirror neurons that they are intimately intertwined with both visual and motor
processing: they respond to observed bodily motion of another individual and ‘mirror’ this
motion by resonating within the motor system of the observer. These characteristics were

not taken into account in Borenstein & Ruppin’s (2005) study.
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In this thesis, I investigate the evolutionary origins of the mirror neuron system. In
particular, I attempt to address the question of whether mirror neurons tend to arise in
a population left to evolve under an evolutionary pressure for imitation learning. First, I
briefly review the literature concerning the MNS and its properties. Next, I put forward a
new computational model of the evolution of imitative behavior, in which artificial agents
evolved to perform well on an imitation learning task. After this, I conclude by discussing

the implications this new model has for the discussion concerning the MNS’s evolution.

2 The mirror neuron system

Rizzolatti & Craighero (2004) have provided an extensive review of the literature concern-
ing the functional properties of mirror neurons. I will not repeat their entire review here,
but mention the points that I deem most important for the present thesis.

As stated in the introduction, mirror neurons are visuomotor neurons, originally dis-
covered in area Fs5 of the macaque monkey brain, that fire both when an individual exe-
cutes a goal-directed action and when that same action is observed. For the firing of mirror
neurons, only the action itself is important; the exact specifics of the visual stimuli are irrel-
evant. Visual presentation of either a monkey’s or a human’s hand, or of a scene either near
to or far from the monkey, will result in the same neurons’ firing, as long as the represented
action is the same.

The amount of specificity to stimuli, or ‘congruence; as it has been called in the mirror
neuron literature, differs among the mirror neurons. Cells always firing in response to ob-
servation and execution of an action with a certain goal (e.g., grasping) are called ‘broadly
congruent’ mirror neurons, while cells responding more specifically to only a combination
of a certain goal and a means of obtaining that goal (e.g., precision grip) are called ‘strictly
congruent’ mirror neurons. Broadly congruent mirror neurons comprise about 60% of all
mirror neurons in area Fs; about 30% of F5 mirror neurons are strictly congruent. The
remaining 10% of F5 neurons do respond to both visual presentation and execution of ac-
tions, but the action leading to their firing during execution and the action leading to their
firing during observation show no clear relationship. These neurons were dubbed ‘non-
congruent mirror neurons’ by Gallese et al. (1996).

In addition to containing mirror neurons responding to hand actions, when its more
lateral part was investigated area F5 was also found to contain so-called ‘mouth’ mirror neu-
rons. These come in two types: ingestive and communicative. Ingestive mirror neurons fire
both when a monkey executes food-related mouth actions and when it observes them be-
ing executed. In monkeys, lip-smacking is a communicative action, and communicative
mirror neurons fire when such an action is observed. They do not show strong activity
when a monkey is performing such acts itself, but they do fire when a monkey is perform-

ing ingestive acts, so in a motor respect they are the same as the ingestive mirror neurons.




2 The mirror neuron system

It has been suggested that “the communicative mouth mirror neurons found in Fs reflect
a process of corticalization of communicative functions not yet freed from their original
ingestive basis” (Rizzolatti & Craighero, 2004, p. 171) and while this is certainly an inter-
esting hypothesis, a more apparent question seems to be whether these neurons, showing a
congruence even far more loose than ‘broadly congruent, should be called ‘mirror neurons’
at all. The same issue can be raised concerning the use of the term ‘non-congruent mirror
neurons mentioned in the previous paragraph. This, of course, is a question of definition,
but to avoid confusion of tongues it would not hurt to address it. However, since it is not

particularly relevant for the remainder of this thesis I will not attempt to do so here.

2.1 The mirror neuron system in humans

Because of the invasiveness of the technique involved, there have not been extensive single-
cell recording studies of possible mirror neurons in humans, as there have been in the
macaque monkey. However, there are good indications that humans also possess a mirror
neuron system.

A well-known electrophysiological property of the human cerebral cortex is the so-
called p-rhythm that occurs over the somatosensory areas in rest. When subjects perform
an action, neural desynchronization occurs in these areas, resulting in the y-rhythm be-
coming suppressed. Long before the MNS was discovered in monkeys, this phenomenon
was also found to occur when human subjects only observed actions performed by others
(Gastaut & Bert, 1954), suggesting involvement of cortical motor areas in action oberva-
tion.

More recent evidence has come from motor evoked potential (MEP) recordings after
transcranial magnetic stimulation (TMS). Using this technique, TMS is applied to certain
cortical areas, resulting in activation of related muscles in the body. The activation of these
muscles is recorded as an MEP. The change in TMS-evoked MEP under certain conditions is
taken as a measure of the excitability and, consequently, of the activity of the cortical areas
being stimulated. It was found that the MEP of certain muscles showed an increase when
subjects were presented with visual stimuli showing an individual moving these muscles
(Fadiga, Fogassi, Pavesi, & Rizzolatti, 1995). It is interesting to note that this increase oc-
curred both when a goal-directed action was observed (e.g., grasping) and when an action
with no apparent goal, or intransitive action, (e.g., random arm gestures) was observed.
This suggests that the response characteristics of the human MNS are somewhat different
from those of the monkey MNS, since the latter only shows a clear response to goal-directed
actions.

In an fMRI-study with human subjects, Buccino et al. (2004) tried to characterize the
exact nature of the motor resonance exhibited by the MNS. They recorded brain activity

during visual presentation of either a biting animal or an animal performing a communica-
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tive act. In both the biting and the communication condition, the action was performed
by animals of three different species: a human, a monkey and a dog. For the human, the
communicative act was muted speech; for the monkey, it was lip smacking; for the dog, it
was barking. The activation in the brain areas most likely associated with the human MNS
was the same during observation of all three species’ biting. In the communicative act con-
dition, the barking dog did not elicit any MNS activation, while the monkey and the human
did. These findings confirm that indeed the MNS is involved in motor resonance and that
this resonance is quite strict: since humans lack the musculature required for barking, they

cannot bark, so there is no barking resonance.

2.2 Possible functions of the mirror neuron system

Rizzolatti, Fogassi, & Gallese (2001) have reviewed and extended upon two main hypothe-
ses concerning the function of the MNS that had been previously put forward in the lit-
erature: action understanding and imitation. The proposed MNS mechanism for action
understanding is quite simple: when an individual observes an action, the mirror neurons
representing that action fire, resulting in activation of the observer’s motor system. This
activation is highly similar to the activation that occurs when the observer is actually exe-
cuting that action and, since the observer knows (one hopes) the consequences of his own
actions, he will understand the action as it is being performed by the other.

There are two important findings in the macaque monkey that support the view that the
MNS is involved in action understanding. The first is that about 15% of F5 mirror neurons
also fire when a monkey hears the sound of an action (e.g., the ripping apart of a piece
of paper), with any visual stimuli being absent (Kohler et al., 2002). The second piece
of evidence comes from an experiment by Umilta et al. (2001). Two conditions of their
experiment are important. In the first, a piece of food was put behind a screen while the
monkey could see it being put there. Subsequently, a grasping action towards this piece of
food was performed by a human. Mirror neurons were found to fire during this action,
even though the final part of the action was invisible, due to the screen. In the second
condition, the piece of food was put behind a screen while the monkey was unable to see
this. The subsequent visual presentation of the grasping action was the same. No MNS
activity was found during the observation of the action, suggesting that, because it did not
know it was observing a goal-directed action, the monkey did not recognize it as such, this
being reflected by the absence of mirror neuron firing.

In an attempt to determine whether or not the human MNS is involved in imitation and
whether this involvement is dependent upon objects being present or not, Wohlschliger &
Bekkering (2002) presented subjects with visual images of an index finger touching either
the ipsi- or the contralateral item of a pair of dots glued to a table; the touched dot thereby

acting as the object to which the action was directed. In another, control, condition, the
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2 The mirror neuron system

dots were absent, while the presented finger movements remained the same. Subjects were
instructed to imitate the stimulus presented. It was found that, in the ‘dots’ condition,
(1) movement onset time for the ipsilateral index finger was reduced and (2) error rate
was higher when movement of the contralateral finger was required. No such effects were
observed in the ‘dots absent’ condition. These findings suggest that the human MNS is
involved in imitation and that its activation is, at least in part, dependent upon object-
directed action.

Summarizing this section so far, ample evidence can be said to exist for the MNS’s in-

volvement in both action understanding and imitation, in monkeys as well as in humans.

2.3 Evolutionary origins of the mirror neuron system

There has been quite some discussion of the MNS in relation to evolution, but this discus-
sion has focused almost exclusively on the role the MNS might have played in catalyzing
the phylogeny of other, higher, cognitive functions, most notably communication and lan-
guage (e.g., Rizzolatti & Arbib, 1998) and the ‘reading’ of other people’s mental states (e.g,
Gallese & Goldman, 1998). The body of literature on the phylogenetic origins of the MNS
itself is, as I have already stated in the introduction, quite a bit slimmer.

In order to understand the origins of any biological trait, one needs to consider the
function it evolved to fulfil. This function can be identical to the function the trait ful-
fils today, in which case the trait is called an adaptation, or it can be different, in which
case the trait with its current function is called an exaptation. The two functions the MNS
most likely fulfils today, as described above, are action understanding and imitation, and
Ramachandran (2000) seems to claim the MNS has been exapted to fulfil these functions.
However, in contrast to his view, in the absence of any clear evidence I believe our best bet
is to try and identify a function the MNS is an adaptation for.

Rizzolatti has claimed that the MNS’s role in action understanding phylogenetically pre-
dates its role in imitation (Rizzolatti, 2005). However, it seems highly likely that imitation
without understanding occurs in many animals, including humans. For instance, a flock of
birds will often fly away in its entirety after one or two individuals have started to flap their
wings (Thorpe, 1963) and newborn human and monkey babies are already able to imitate
mouth gestures they observe (Meltzoff & Moore, 1979). In both cases, presuming a true
understanding of the observed action seems questionable. Fortunately, Rizzolatti admits
just this, but his solution to the problem seems even more problematic.

The solution Rizzolatti (2005, p. 76) proposes is to make a distinction between low-
level and high-level resonance mechanisms, with the low-level mechanism having evolved
much earlier than the high-level one and being responsible for the type of imitatory be-
haviors described above. The high-level resonance mechanism would have a “cognitive

meaning’, while this is lacking from the low-level mechanism. The neurons comprising
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the latter would be located “close to” the motor system, eliciting a motor response without
any understanding occurring. The high-level resonance mechanism is the basis for action
understanding and is, of course, the mirror neuron system as it was found in area Fs. Riz-
zolatti claims that this view, which he does call “hypothetical”, provides a unitary account
for the different types of imitative behavior, but in my view it rather introduces a distinc-
tion that need not be there. First, there is no evidence of anatomical, physiological, or any
other nature that suggests an additional mirror-like low-level mechanism that would be
the basis for imitation without understanding. Second, while the MNS as a motor- and
perceptually grounded basis for action understanding and imitation is a very elegant view,
endowing one type of mirror system with “cognitive meaning” while depriving another of
it negates much of this elegance - for whence could this extra meaning come from, if the
basic mechanism is identical?

Since imitatory behavior is present in phylogenetically ‘lower’ species, I believe it plau-
sible the function the MNS evolved to fulfil is imitatory behavior. The MNS should thus
be considered an adaptation and its function in facilitating imitation should be considered
primary and as having phylogenetically predated its function in action understanding. In
order to test this hypothesis, I now put forward a computational model of the evolution of

adaptive agents under selective pressure for imitation learning.

3 An evolutionary robotics model of the phylogeny of imitation

Evolutionary robotics is a technique for the development of artificial agents that meet cer-
tain requirements in a robust manner (see Nolfi & Floreano, 2000). The artificial agents
have a body and a controller, the latter of which is usually composed of artificial neurons.
Certain properties, most commonly concerning the makeup of the neural controller, but
sometimes also concerning the bodily structure of the agent, are encoded into a string
representation which is referred to as a ‘genotype’ In a typical, so-called ‘generational;, evo-
lutionary robotics experiment, a pool of genotypes is randomly initialized, after which an
agent is successively created for each genotype and left to interact with the physical or a
simulated world. Based on the behavior displayed by the agent, a fitness value is calculated
according to some fitness function and assigned to the genotype the agent was a reflection
of. After all the genotypes in the pool have been evaluated, some are selected, based on their
fitness value, and left to reproduce. During this reproduction, genetic operations, such as
random mutation and/or crossing-over, will usually take place, although exact reproduc-
tion of a few genotypes is also commonly used. This results in a new pool of genotypes
ready to be evaluated in the same manner as the initial one. This process is repeated until
either a specified number of generations have been evaluated or an individual with certain
traits has evolved.

Because of the variation introduced by the genetic operations and the fitness-dependent
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3 An evolutionary robotics model of the phylogeny of imitation

selection, average and maximum fitness values tend to increase over time. In other words,
agents get better at what they are supposed to do. Since natural evolution also proceeds
with reproduction, random variation, and selection, evolutionary robotics provides an in-
tuitively appealing way of modelling evolutionary processes, especially when the agents
studied are either implemented on a physical robot or in a realistically simulated environ-
ment.

In this section, I put forward a model of the evolutionary processes that led to imitative
behavior. First, the Framsticks environment, in which the simulation was conducted, is
introduced. Next, the structure of the body and controller of the agents is described, as well
as the environment they inhabit. Following this, the specifics of the evolutionary algorithm
are given, after which I describe the results of the evolutionary simulation and analyze the

evolved agents.

3.1 The Framsticks simulation platform

To conveniently implement the evolutionary model, the Framsticks platform was used
(Komosinski, 2005). This platform has a number of properties that make it ideally suited
for the study of artificial evolution. First, it realistically simulates both the physics of the
actual world, allowing agents to be evaluated according to their behavior, as well as the dy-
namics of discrete-time neural networks of arbitrary complexity. Second, it comes in both
a graphical user interface (GUI) version, that allows easy inspection of the simulation as it
is being run, and a command line interface (CLI) version, that can be used for fast batch
execution of multiple and/or long-lasting simulations. Third, it specifies a number of ge-
netic ‘languages’ in which agents’ properties, both concerning the neural controller and the
bodily structure, can be described according to a strict syntax and from which simulated
agents can automatically be created. Fourth, it provides automatic management of pools of
genotypes, populations of creatures, and some commonly used genetic operations, allow-
ing an experimenter to use these functions off-the-shelf. Finally, the Framsticks platform
comes with a variety of different experiment definition files and artificial neuron imple-
mentations that an experimenter can use, or one can choose to implement completely new
experiment definitions and/or neuron implementations in the Framscript scripting lan-
guage. However, while this functionality greatly increases the flexibility of the platform, it
is not without problems. In appendix A, a number of bugs and inconveniences are summed

up that were encountered during the implementation of the current model.

3.2 'The agent and its environment

3.21 Body  The genotypes used in the model are specified in the Framsticks f1 geno-
type language. This language allows simple specification of bodily structure in terms of

parts and their joints, while also allowing complex control over the neural controller. The
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Figure 1: A 3D rendering of the bodily structure of the agents. Clearly visible are the legs the agents use to
propel themselves back and forth.

basic genotype of the agents was derived from the 2-legged rammer, a genotype available
in the online Framsticks Experimentation Center in the genotype group called ‘walking.
The original version of this genotype codes for two legs and continuous walking in a sin-
gle direction. The genotype was edited to allow adaptive synapses and multi-directional
motion. In figure 1, a graphical depiction of the body of the agents used in the current
model is shown. Clearly visible are the legs the agents use to propel themselves back and
forth. Each leg is driven by a bend and a rotation muscle. The movement of the agents was
simulated by the Framsticks Mechastick physics engine. The exact mechanics according to
which muscles, joints, body parts and their interactions are simulated by this engine is be-
yond the scope of this thesis, but the interested reader is referred to the Framsticks Manual

(Komosinski & Ulatowski, 2006).

3.2.2 Brain  In figure 2, the layout of the agents’ neural controller is shown. It is
composed of four more or less separate modules: the sensors module, containing the four
sensors the agent has to gather information about the world; the fully connected, fully re-
current adaptive network that is subject to evolution and in which lifetime learning can
occur; a signal generator, responsible for generating a periodic signal that drives the walk-
ing motion of the agent; and a motor system, responsible for integrating the output of the
adaptive network and the signal generator and actually moving the muscles accordingly.

Between the adaptive network and the motor system a ‘polarity conversion neuron’ has

'The 2-legged rammer was created in 2000 by Miron Sadziak and is downloadable from http://www

.alife.pl/fec/www/index.php?PAGE=view_genotype&ID=67
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3 An evolutionary robotics model of the phylogeny of imitation

been included, converting the unipolar output (i.e., with values in the range [0,1]) of the
adaptive network to a bipolar one (i.e., with values in the range [-1,1]). This conversion is
done by computing output = 2 - input — 1 and is necessary because the motor system re-
quires bipolar activation values. The nature of the sensors and what they sense is described
along with the agents’ environment in section 3.2.3.

The neurons that are not in the adaptive network are all, with the exception of the
polarity conversion neuron, of the Framsticks built-in ‘simple neuron’ type. The activation
characteristics of these neurons are governed by three parameters: force (real value in
the range [0,1]), inertia (real value in the range [0,1]), and sigmoid (any real value).
The force parameter governs how fast the neuron responds to a change in its inputs; the
inertia parameter governs how fast neuron activation decays; and the sigmoid parameter
governs the shape of the neuron’s output function. More precisely, at time ¢, the neuron’s

output is determined by the following set of equations:

n
input, = Z W;i0; 11 (1)
i=0
velocity, = velocity, - inertia + force - (input, — state, ;) (2)
state; = state;_, + velocity, (3)
Outputt - 1+ e—state,sigmoid N (4)

Where w; represents the weight of incoming connection i; 0, ; represents the output of in-
put neuron i at time ¢; and n represents the total number of inputs. These characteristics
make neurons of this type good general-purpose non-linear neurons for use in evolution-
ary experiments, because both the incoming weights and the parameters governing their
response characteristics can be genetically encoded. In the present model, however, all
the weights concerning simple neurons were kept constant at the levels required for ef-
ficient locomotion and the parameters were kept at their default values: inertia = 0.8;
force =0.04; sigmoid = 2.0.

The seven neurons making up the adaptive network are of a completely different nature.
Their incoming connections have weights that can be adapted according to Hebbian-like
learning rules during the lifetime of an individual agent. This architecture is based on
that proposed by Floreano & Urzelai (2000) and extended upon by Borenstein & Ruppin
(2005). The exact manner in which lifetime learning can and will occur is not fixed, but
rather determined through parameters subject to evolutionary optimization. Also subject
to evolutionary optimization are the initial weights of these synapses, allowing for a mix
of innate and acquired traits to express itself in the behavior of the agents. For a single

neuron, each input synapse i is governed by four parameters:

 w;o — the initial weight of the input (real value in the range [0,1]).

« s; — the connection sign of the input (-1 or 1).
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Figure 2: The layout of the artificial agents’ neural controller. It is composed of four more or less separate
modules: the sensors module, containing the four sensors the agent has to gather information about the
world; the fully connected, fully recurrent adaptive network that is subject to evolution and in which lifetime
learning can occur; a signal generator, responsible for generating a periodic signal that drives the walking
motion of the agent; and a motor system, responsible for integrating the output of the adaptive network
and the signal generator and actually moving the muscles accordingly. Between the adaptive network and
the motor system a ‘polarity conversion neuron’ has been included, converting the unipolar output of the
adaptive network to a bipolar one (see main text for details). A triangle symbol represents an artificial
neuron. Note that, apart from a few manual edits to improve clarity, this graphical representation of the
neural controller was created by the Framsticks GUI application and, because Framsticks has not rendered all
the connections in the adaptive network symmetrically, this network might not look like a fully connected,

fully recurrent network, while in fact it is.
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World state 0
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o 1; — the learning rate for the synapse (real value in the range [0, 1]).
o r; — the learning rule for the synapse (integer value in the range [0, 4]).

The connection sign is taken as a separate parameter because the learning algorithm re-
quires positive weight values to function properly. At time ¢, the neuron’s output is com-

puted as follows:
n
input, = Z WikSiOi,t-1 (5)
i=0

output, = (6)

1 + e—inputt

Where o; ; represents the output of input neuron i at time ¢ and the subscript k is a time-
dependent index whose relation to time governs how often synapses are adapted.

In the present model, the relation used was k = 55. This results in the synaptic weights
being updated every 20 time steps. This update happens according to the following for-

mula:
Wik = Wik-1 + NiAwi (7)

The value of Aw; ;. is determined by the learning rule used for the particular synapse whose

weight is being updated. The synaptic parameter r; governs which learning rule is applied:

r; = 0 — No learning:

Aw;x =0 (8)
r; =1 — Standard Hebbian learning:

AWk = (1= Wik-1)0preOpost (9)
r; = 2 — Postsynaptic Hebb rule:

AWk = Wik1(=1+ 0pre ) 0post + (1= Wi k-1)0preOpost (10)
r; =3 — Presynaptic Hebb rule:

AWk = Wik10pre (=1 + 0post) + (1= Wi k-1) 0preOpost (11)
r; = 4 — Covariance rule:

(]‘ - Wixk—l)ﬁ(opres Opost)a ifﬁ(Opre, Opost) > 0;
Awi = . (12)
Wi,kfly(opru Opost)) 0therw1se;
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where 7 (0pre, 0post) = tanh(4(1—[0pre — 0post|) —2).

In these formulas, o, is the activation of the presynaptic neuron and o0, is the activation
of the postsynaptic neuron, both values averaged over the time steps since the last weight
update (i.e., averaged over the last 20 time steps).

This type of adaptive synapses has been “based on neurophysiological findings (...)
[and] these rules capture some of the most common mechanisms of local synaptic adap-

tation found in the nervous system of mammalians [sic]” (Floreano & Urzelai, 2000, p.

433).

For each adaptive synapse, each of its four properties are encoded onto the genotype
and subject to evolutionary optimization. The adaptive network is fully connected and fully
recurrent, i.e., each neuron receives incoming connections from each other neuron and
from itself. In addition, four neurons receive sensory input, each from another sensor, and
the output of one neuron is propagated to the polarity conversion neuron and, ultimately,

to the motor system.

3.2.3 Task and environment  The task the adaptive agents have to master during their
lifetime is the execution of correct actions for given states of the world they inhabit. The
correct action for each state is not initially known to the adaptive agents; they can only
infer it by observing the action that is being executed by another, non-evolving, agent and
learning to link this action to the state the world is currently in.

More specifically, the world the adaptive agents inhabit can be in two different possible
world states, world state o and world state 1. Each world state has a different action asso-
ciated with it, but which action is associated with which world state is not fixed. The two
actions are walking (1) in north-east direction or (2) in south-west direction. The correct
action for the current world state is always being executed by a demonstrator creature co-
inhabiting the world with the adaptive agent (see figure 3 for a graphical representation of
the artificial world).

The demonstrator creature has the exact same bodily structure as the adaptive agents.
It is also equipped with a signal generator and a motor system, but it is lacking the sensors
and adaptive network. Two versions of the demonstrator genotype were created: one equal
to the original 2-legged rammer, always walking in north-east direction; and one edited to
have it always walk in south-west direction. This allows the simulator to easily create the
appropriate demonstrator creature when the world state changes.

Asindicated in the previous section, the adaptive agent is equipped with two world state
sensors with which it can sense the current state of the world. One sensor is responsive to
world state o, whereas the other responds to world state 1. When the actual world state is
equal to the state the neuron is sensing for, the sensor’s output will be 1.0. When this is not

the case, the sensor’s output will be 0.0.
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3 An evolutionary robotics model of the phylogeny of imitation

Figure 3: A 3D rendering and a wireframe display of the artificial world inhabited by the adaptive agents.
Apart from the agent subject to evolution, the demonstrator creature, capable of executing two different

kinds of actions, is shown.

Adaptive agent /\E\\

P

Demonstrator

In addition to the world state sensors, the adaptive agents are equipped with two joint
rotation sensors, sensing the rotation of certain joints in the demonstrator creature. More
specifically, the rotation in the X-dimension is sensed for joints 1 and 9, respectively. These
specifics were chosen after analysis of the demonstrator’s locomotion revealed that these
variables were the only ones showing variation with time; in other words, all the other
joints were not controlled by muscles and were completely stiff. X-rotation was found

to always lie within the interval [-Z, 2Z], and to make this compatible with the neural

22 2
network, requiring activations in the range [0,1], this value is scaled. The scaled output of

the joint rotation sensors is given by:

outpUl rotation N 1 (13)
S TR 3
It should be noted that, through their sensors, the adaptive agents have no privileged

access to any of the internal workings of the demonstrator; only to its external behavior.

3.3 The evolutionary process

A population consisting of 20 adaptive agents, for which the properties of the adaptive
network’s synapses were randomly initialized, was subjected to evolutionary optimization.
Each genotype was evaluated during two lifetimes, one for each possible world-state-to-
action mapping. This was done to prevent the correct mapping from being genetically
‘learned. In the first lifetime, the correct action for world state o was walking in north-east
direction and the correct action for world state 1 was walking in south-west direction, while
this mapping was reversed in the second lifetime. At the beginning of each lifetime, the

weights were initialized according to the initial weight values encoded in the genotype, so
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From imitation to action understanding

Figure 4: A graphical display of the structure of the lifetime of a single agent. Shown are the world state (black
represents state o, white represents state 1), the visibility of the demonstrator creature and the visibility of
the world state (black represents invisible, white represents visible). Note that, while the distribution of
both world states across the world state visible/invisible condition is asymmetrical, this asymmetry does

not confound the results (see section 3.4.3 for details).

Infancy phase [ ] =2,000 time steps
f_J%
World state 0/1
Demonstrator visible
World state visible |
Time

no properties acquired during the first lifetime could be expressed in the second (i.e., no
Lamarckian evolution occurred). Each lifetime took 60000 time steps, resulting in each
genotype being evaluated for a total of 120000 time steps. The world state was changed
every 2000 time steps. The world state was visible to the agent (i.e., the corresponding
world state sensor’s output was 1.0) in 70% of its lifetime and invisible (i.e., the output of
both world state sensors was 0.0) in 30% of its lifetime. The demonstrator executing the
proper action was visible to the agent (i.e., the output of the joint rotation sensors was the
actual joint rotation) in 67% of its lifetime and invisible (i.e., the output of the joint rotation
sensors was 0.0) in 33% of its lifetime. Furthermore, the world state and the demonstrator’s
joint rotation were always visible in the first 12 000 time steps of the agent’s life, simulating
an infancy phase. Figure 4 shows a graphical representation of the temporal structure of
a single lifetime. These values ensure a good mix of different conditions is experienced
during each lifetime. Note that, while the distribution of both world states across the world
state visible/invisible condition is asymmetrical, this asymmetry does not confound the

results (see section 3.4.3 for details).

During the evolutionary simulation of a single generation, each genotype is assigned an
error score (for which lower is better), rather than a fitness value (for which, by definition,
higher is better). Fitness values are, for technical reasons, linearly computed from these
error scores only at the end of each generation. Except during infancy, an agent’s error
score is updated just before each world state change. The angle (in the range [0, 27)) of
the path traveled by the agent is computed, as well as the angle of the path traveled by the
demonstrator creature. The squared difference between these values is added to the error
score. When the world state is invisible, the error score is updated by instead adding half of
the absolute distance traveled by the agent to it. Summarizing, the fitness function rewards
agents that perform the correct action for a visible world state and do nothing at all when

the world state is invisible.

At the end of a generation, the next generation is created as follows. First, two exact
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3 An evolutionary robotics model of the phylogeny of imitation

Figure 5: The development of average and maximum fitness over time.
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replicas are made of the best genotype in the pool. The remaining eighteen genotypes are
created by selecting a parent individual based on its fitness value according to a roulette
wheel selection mechanism and allowing it to reproduce. There is a 60% chance that a
child genotype will be mutated and a 40% chance that it is an exact replica of its parent. A
mutated genotype will have a single property value changed to a random value within the

valid range for that property type.

3.4 Results

3.4.1 Fitness  The evolutionary simulation was run until 256 generations had been
evaluated. The development of the population’s average and maximum fitness value is
shown in figure 5. A linear regression analysis was performed to estimate the effect of gen-
eration on average fitness. This effect was found to be significant (F(1,254) = 165.201, p <
.001) and strong (r? = .394). Average fitness increases with generation (standardized f8 =
.628). Also, a linear regression analysis was performed to estimate the effect of generation
on maximum fitness. This effect was found to be significant (F(1,254) = 152.563, p < .001)
and strong (r? = .375) as well. Maximum fitness increases with generation (standardized
B = .613).

These results indicate that the evolutionary simulation was successful; agents capable

of imitative behavior have evolved.

3.4.2 Neurodynamics  In order to determine whether or not neurons with mirror-
like properties have evolved, the dynamics of the adaptive neural controller of the best
individual of the last generation were analyzed. Mirror neurons are neurons that fire both
when an action is executed and when that same action is only observed. Interpreted in
terms of a neural network working with activation values rather than action potentials, a

‘mirror neuron’ is rather defined as a neuron showing the same activation pattern during
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execution of a particular action as during observation of that action.

During an agent’s lifetime, it has to execute without observation when the world state
is visible, but the demonstrator is invisible. Observation without execution occurs when
the world state is invisible and the demonstrator is visible. Activation patterns of the seven
adaptive neurons in both these conditions, for both world states, are shown in figure 6.

If a neuron had the exact same activation pattern in two conditions, linear regression
analysis of the effect of the activation pattern in one condition on the activation pattern
in the other condition would reveal a correlation of = 1.00 and a regression line with
an intercept of B oustant = 0.00. To quantify the mirror neuron definition in terms of sta-
tistical analyses of activation patterns, a mirror neuron is defined as a neuron showing a
very strong correlation (r > 0.85) between its activation pattern in the ‘observation, no ex-
ecution’ condition and its activation pattern in the ‘execution, no observation’ condition?.
Furthermore, the regression line relating the two activation patterns is required to have an
intercept close to zero (B.onstant < 0.05). Calculating these measures for all the neurons in
both world states revealed that neuron 6 satisfies the mirror neuron criteria in world state
o and that neuron 1 satisfies the mirror neuron criteria in world state 1. No other neurons
were found to satisfy the criteria. Table 1 shows all correlations and intercepts that were

computed for this analysis.

3.4.3 Possible confounds  The specific relative frequency of conditions mentioned in
section 3.3 and shown in figure 4 results in the following distribution of world state occur-
rences, relative to the visibility of the demonstrator creature and the visibility of the world
state. Relative to the visibility of the demonstrator, the occurrence of both world states is
the same: during a single lifetime, both world states occur 10 times while the demonstrator
is visible and both world states occur 5 times while the demonstrator is invisible. Relative
to the visibility of the world state, however, the distribution is different: during a single
lifetime, world state o occurs 12 times while the world state is visible and 3 times while the
world state is invisible, whereas world state 1 occurs 9 times while the world state is visible
and 6 times while the world state is invisible. The asymmetry of this distribution suggests
it might confound the results.

To test if this is indeed the case, the error scores for each world state evaluation of the
best individual of the last generation were analyzed. If the asymmetry described above
were a confounding factor, the world state and/or the interaction between world state and
world state visibility would have a significant effect on error score. A two-way analysis of
variance was performed to estimate this effect and no significant overall effect (F(3,44) =

1.039, p = .385) was found. The asymmetrical relative distribution of the two world states

*The exact interpretation of the relative strength of correlations is debatable. However, the most com-
monly accepted threshold for considering a correlation as ‘strong’ is ¥ > 0.50 (Cohen, 1988), so defining a

‘very strong’ correlation as a correlation of r > 0.85 seems justified.
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3 An evolutionary robotics model of the phylogeny of imitation

Figure 6: The activation levels of the seven neurons in the adaptive network, plotted for 2000 subsequent
time steps in which the environment parameters were the same. In each graph, the X-axis represents time
and the Y-axis represents output. Notice that a different range of Y values is plotted for the different neurons.
This was done to improve clarity. However, to avoid a distorted view of the results, the Y range was kept
constant for each neuron between conditions. Highlighted are the neuron activations for which statistical
analysis revealed they satisfy mirror neuron criteria (see main text for details).
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World state o World state 1

r=0.256 r= 0.885

Neuron 1
Bconstant = 0-962 Bconstant = 0030
r=0.204 r= 0.236

Neuron 2
Bconstunt =0.507 Bconstant = 0.525
r =0.186 r= 0.400

Neuron 3
Bconstunt =0.072 Bconstant =-0.069
r=0.387 r= 0.627

Neuron 4
Beonstant = 1.166 Beonstant = —0.672
r=0.137 r= 0.245

Neuron 5
Bcansttmt =0.589 Bconstant = 0.491
r =0.910 r= 0.285

Neuron 6
Bconstunt =0.033 Bconstunt = 0.092
r =0.453 r= 0.663

Neuron 7
Bconstunt =0.108 Bconstant =-0.333

Table 1: The correlations between the activations of the neurons in the adaptive network in the ‘observation,
no execution’ condition and the neuron activations in the ‘execution, no observation’ condition, as well as

the intercepts of the regression lines relating those activation patterns.

across the world state visible/invisible condition does not confound the results.

4 Conclusion and discussion

The mirror neuron system (MNS), a system present in monkeys and most likely also in
humans, forms an important basis for many cognitive functions. An understanding of its
evolutionary origins will, therefore, bring us closer to understanding the human mind.

The model of the evolutionary origins of imitation put forward in the present the-
sis shows that an evolutionary pressure for imitative behavior results in artificial neurons
emerging that have mirror-like properties. This suggests that the primary function of the
MNS is imitation, rather than action understanding, and that this latter function is a phy-
logenetically later development that builds upon a capacity to imitate.

Ramachandran (2000) claims the MNS has been exapted to fulfil the functions of action
understanding and imitation, but since there is no direct evidence concerning the MNS’s
origins, the best approach to understanding these origins is to try and identify a function
the MNS is an adaptation for. The present model provides strong support for the hypothesis
that the MNS is, in fact, an adaptation for imitatory behavior.

In addition, once the function the MNS fulfils in facilitating imitation is considered as

phylogenetically primary, one can avoid the highly problematic distinction between low-
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4 Conclusion and discussion

level and high-level resonance mechanisms that Rizzolatti (2005) has proposed in order to
explain imitatory behavior in Tower’ species.

While the present model is a lot more realistic than previous models (such as that put
forward in Borenstein & Ruppin, 2005), there are still some important factors that can
be improved. Most notably, the artificial neurons used in the model employ continuous
activation levels, whereas biological neurons use the frequency of their action potentials
to transfer information. Because of this, the original definition of a mirror neuron is not
applicable to the artificial neurons used in the model: the artificial neurons do not have
a firing rate, while biological mirror neurons are defined by their relative firing rate in
different conditions.

Also, a question of a somewhat broader scope arises when considering whether the
MNS has evolved in response to a selective pressure for imitation learning: did such a se-
lective pressure ever occur during the evolutionary history of the primates? I believe this
intuitively plausible, but hard evidence would be welcome. This evidence could very well
come from biology, but I think it is also possible to address the question with models in
computational cognitive science. Such models should obviously not introduce a selective
pressure for imitation learning explicitly, but rather use a fitness function of a more ba-
sic nature (for instance, reproductive success). Populations can then be studied to see if

imitative behavior is a rewarding trait in terms of fitness.
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Appendix A Problems with the Framscript scripting language

The scripting language used by Framsticks has a Javascript-like quasi-object-oriented syn-
tax, at first sight allowing it to be used directly by programmers familiar with object-
oriented programming and scripting languages. However, looks can be deceiving, since
object instances and static class properties can be used interchangeably in Framscript, and

altering a property of one can affect the other. For instance, while
LiveLibrary.getGroup(0) .getCreature(0)
will return an object of type Creature which can be used in subsequent calls, the following:

LivelLibrary.group = O;

LivelLibrary.creature = 0;

will select the same creature, after which its properties can be accessed and modified through

static calls making no explicit reference to a single creature:

Creature.genotype;

// etc.

This is highly undesirable from an object-oriented point of view and can often be confusing

when one is not accustomed to Framscript and its internal workings.

Aa  List of bugs encountered

The following is a list of the obvious bugs I encountered while scripting the various files
required for the model described in the present thesis. The description is intended for
readers with some experience with Framscript. However, readers lacking such experience

but having other programming experience might also be able to appreciate the bugs.

 Sometimes, anull value will be considered as a string with contents “null’, so testing

for null values has to be done by testing:

(x == null || x == "null")

+ Reference updates within Vector objects (especially within the fields property of
a Neuro object) sometimes fail. When or why this happens is unclear to me, but I

have worked around this by implementing a construction like the following:

do {
n.fields.myProperty = value;

} while (n.fields.myProperty != value)
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« Floating point values with high positive or negative exponents sometimes find the
sign of their exponent and/or coefficient flipped. This is of course extremely unde-
sirable. I suspect this is due to a floating point under- or overflow, but Framsticks

does not raise an error when this occurs, which it obviously should.
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Appendix B Source code listings

Appendix B Source code listings

The following pages list the source code of the relevant Framscript files making up the

model described in the present thesis. Listed are:

o imitlearn.expdef — The main experiment definition script, controlling the flow

of the simulation.

+ hebbian.neuro — The implementation of the adaptive neurons.

Not included are the source listings of the following files, since they are all composed of
only one or two lines of trivial code and their working has been completely specified in the

main body text of this thesis:

» convertpolarity.neuro — The implementation of the polarity conversion neu-

ron.
« sense_joint.neuro — The implementation of the joint sensors.

« sense_worldstate.neuro — The implementation of the world state sensors.
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### imitlearn.expdef

izzy

### imitation learning Framsticks experiment definition

### created by Eelke Spaak, Nijmegen, NL, 2007

SR e e e e

expdef:
name:Experiment for the study of imitation learning

¢ info:~

: Created to study imitation learning and the neural structures required for it.

: #REGION Experiment code ###HHHHHHHHHHHHHAHHEHREHEHRHHEHRHHBHE AR
. code:~

. /*** Global variables *********************************************************/

: // the two different possible world state to demonstrator genotype mappings
: // Vector<String>
: global g_mappingl, g _mapping2;

: // the currently active mapping (each genotype will be evaluated twice, once
: // for each possible mapping

. // int [1,2]

: global g activeMapping;

: // the file to store the results of each epoch in

. // File
: global g_resultFile;

: // coordinates for the creatures, updated on each creation

: // float
: global g _demoBeginX, g_demoBeginY, g_learnerBeginX, g_learnerBeginY;

. /**% Initialization functions *¥#kskskkscrssskskskdrihts koo onkfokkkkkotorf kR ok /

: /**

* Called by Framsticks when the experiment definition file is loaded.

*/

: function onExpDeflLoad() {

log("onExpDefLoad");

initializeGroups();
initializeParameters();

// initialize state-to-action mapping vectors
g_mappingl = Vector.new();

g _mappingl.set(0, ExpParams.actionlgen);
g_mappingl.set(1l, ExpParams.action2gen);

g_mapping2 = Vector.new();

g _mapping2.set(0, ExpParams.action2gen);
g _mapping2.set(1l, ExpParams.actionlgen);
g_activeMapping = 1;

log("state-to-action mapping vector initialized");

// initialize experiment state
ExpState.epoch = 0;
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61: ExpState.current = 0;

62: log("experiment state initialized");
63: }

64:

65: /**

66: * Called by Framsticks when the experiment should initialize itself.
67: */
68: function onExpInit() {

69: log("onExpInit");

70:

71: // clear groups

72: LiveLibrary.clearGroup(0);

73: GenotypelLibrary.clearGroup(0);

74: GenotypeLibrary.clearGroup(1);

75:

76: if (lareParameterSettingsCompatible()) {
77: Simulator.message("parameter settings are incompatible!", 2);
78: }

79:

80: initializeResultFile();

81: }

82:

83: /[**

84: * Creates the necessary creature groups and genotypes groups and sets their
85: * parameters to appropriate values.

86: */

87: function initializeGroups() {

88: // clear groups

89: GenotypeLibrary.clear();

90: LiveLibrary.clear();

91:

92: // create genotype groups

93: GenotypeGroup.name = "Current generation”;
94: GenotypeGroup.fitness = "return this.userl;";
95: GenotypeGroup.fitfun = 0;

96: GenotypeLibrary.addGroup("Previous generation");
97: GenotypeGroup.fitness = "return this.userl;";
98: GenotypeGroup.fitfun = 0;

99: log("genotype groups created");

100:

101: // create learner creature group

102: CreaturesGroup.name = "Learners";

103: CreaturesGroup.nnsim = 1;

104: CreaturesGroup.enableperf = 1;

105: CreaturesGroup.death = 0;

106: CreaturesGroup.energy = 0;

107: CreaturesGroup.colmask = 1;

108:

109: // create demonstrator creature group

110: LiveLibrary.addGroup("Demonstrator");

111: CreaturesGroup.nnsim = 1;

112: CreaturesGroup.enableperf = 1;

113: CreaturesGroup.death = 0;

114: CreaturesGroup.energy = 0;

115: CreaturesGroup.colmask = 1;

116:

117: // create 'invisible' demonstrator creature group (for use in fitness
118: // calculation)

119: LiveLibrary.addGroup("Invisible demonstrator");
120: CreaturesGroup.nnsim = 1;
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121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
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140:
141:
142:
143:
144
145:
146:
147:
148:
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150:
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152:
153:
154:
155:
156:
157:
158:
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160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:

CreaturesG
CreaturesG
CreaturesG
CreaturesG
log("creat
}
/**

roup.enableperf = 1;
roup.death = 0;
roup.energy = 0;
roup.colmask = 1;

ure groups created");

* Initializes the experiment parameters and simulation parameters.

*/

function initi

// the fixed demonstrator genotypes

alizeParameters() {

ExpParams.actionlgen = "(RRX[6:-0.783][-1:2][-1:2][-1:2][-21:2][-21:2][-21:2]("
+ "RRLIMMMX[ |-1:10][@0:0.737, -1:-10](RR11IX(fffX, , , , , , fffX), , R"
+ "RIIIX(FFFX, , , , , , FFFX)), , ), , RRX(RRIIMMMX[|-3:-10][@!:0.046,"
+ " -1:10](RRILIX(ffFX, , , , , , FffX), , RRILIX(ffFX, , , , , , FFEX)"

+ II)J
ExpParams.

> N

action2gen =

"(RRX[6:-0.783][-1:2][-1:2][-1:2][-1:2][-1:2][-1:2]("

+ "RRLIMMMX[ |-1:-10][@9:0.737, -1:10](RRILIX(fffX, , , , , , FffX), , R"
"RILIX(FFEX, , , , , , FFFX)), , ), , RRX(RRLIMMMX[|-3:10][@!:0.046, "
-10](RRILIX(FFFX, , , , , , FFFX), , RRILIX(FFX, , , , , , FFFX)"

+
+ "-1:
+

ExpParams.
ExpParams.
ExpParams.
ExpParams.
ExpParams.
ExpParams.
ExpParams.

sim_params

> N

en

popsiz = 20;
.15

2
creath = 0
p_nop =
p_mut
p_Xxov =
num_mut = 1;
num_best = 2;

n

n ® B ©
N “e
-.

.autosaveperiod = 1;

/1
/!
//
//
//
//
/1

/!

population size

creatures are born at this height
chance of copying genotype unchanged
chance of copying genotype mutated
chance of copying genotype x-ed over
# of mutations per reproduction

# of exact copies of best individual

automatically save every X epochs

// do not mutate the creatures' morphology

sim_params
sim_params
sim_params
sim_params

sim_params
sim_params
sim_params
sim_params

sim_params

ExpParams.
ExpParams.
ExpParams.
ExpParams.
ExpParams.
ExpParams
ExpParams
ExpParams.

ExpParams
World.wrld

f1_smX = 0.0;
.f1_smJunct =
.f1_smComma
.f1_smModif

1]
[ RN ]
[ I ov]
e e

[

.f1_nmNeu = @
.f1_nmConn
.f1_nmProp
f1_nmWei =

9;

)

.0
.0;
.0

)

0
0
0

.f1_nmval = 1.0;

evaltime = 60000;
statetime = 2000;
infancytime = 12000;
updatetime = 20;

demovisiblenum = 10;

.demoinvisiblenum = 5;
.wsvisiblenum = 7;

wsinvisiblenum = 3;

.debug = 1;

siz = 100;

//
//

no new neurons
no new connections

no new neural property settings

no change in connection weights
(Hebbian weights are stored as
property values rather than weights)
do change neural property values

lifetime of a single individual

time of a single state

duration of infancy

do Hebbian learning after X timesteps
# evaluations w/ visible demonstrator
# evaluations w/ inv. demonstrator

# evaluations w/ visible world state
# evaluations w/ inv. world state

print debug messages to console
make the world big enough

log("experiment parameters initialized");
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181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:

}
/**

* Checks whether the various 'time' experiment parameters are compatible, i.e.
* whether a single lifetime encompasses an integer number of world state
* changes and whether a creature's infancy fits within its lifetime.
*/
function areParameterSettingsCompatible() {
return ExpParams.evaltime % ExpParams.statetime ==
&% ExpParams.infancytime < ExpParams.evaltime;

}

/%%
* Creates a file to write each epoch's results to.
*/
function initializeResultFile() {
var fileName = "results_" + String.format("%10.0f", Math.time) + ".txt";
g resultFile = File.createDirect(fileName);
g _resultFile.writeString("RESULT:\tepoch #\tmin fitness\tmax fitness\tavg f"
+ "itness\tmin err\tmax err\tavg err\tbest genotype\r\n");
g_resultFile.flush();
}

/*** Lifetime control functions ***********************************************/

/%%
* Called by Framsticks on each time step. This function is the main controller
* for the course of the experiment.

*/
function onStep() {
var lifetimeIndex = Simulator.time % ExpParams.evaltime;
var isInfant = lifetimeIndex <= ExpParams.infancytime;

if (lifetimeIndex == @) {
// a new individual should be created

if (LivelLibrary.getGroup(®@).creaturecount > 0) {
// save the old creature's data
updateCreatureFitness();
updateGenotypePerformanceData();
prepareNextLifetime();

}

prepareNextWorldStateAndCreateDemonstrator();
createNewLearnerCreature();

} else if (lifetimeIndex % ExpParams.statetime == @) {
// the world state should change

// no fitness is calculated during infancy
if (lisInfant) {
updateCreatureFitness();

}

prepareNextWorldStateAndCreateDemonstrator(isInfant);
resetLearnerCreature();

/**
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241:
242
243:
244
245:

* Updates the fitness value of the learner creature.
*/
function updateCreatureFitness() {

246:

247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:

updateCreatureFitnessExternal();
}
/%%
* Computes the angles of the paths traveled by both the demonstrator and the
* learner. The squared difference of these angles is added to the user2 field
* of the current creature. Also, the radius of the path traveled by the learner
* is added to the user3 field of the current creature. If the world state is
* invisible, half the radius traveled is added to user2, rather than the angle
* squared error.
*/

function updateCreatureFitnessExternal() {
var learner = Livelibrary.getGroup(0).getCreature(0);
var demonstrator = Livelibrary.getGroup(1l).getCreature(9);

258:

259:
260:
261:

if (demonstrator == null) {
demonstrator = LivelLibrary.getGroup(2).getCreature(0);

}

262:

263:
264:
265:
266:
267:
268:
269:
270:
271:

if (learner != null && demonstrator != null) {

var demoEta = getAngle(demonstrator.center_x - g_demoBeginX,
demonstrator.center_y - g_demoBeginY);

var demoR = getRadius(demonstrator.center_x - g_demoBeginX,
demonstrator.center_y - g_demoBeginY);

var learnerkEta = getAngle(learner.center_x - g_learnerBeginX,
learner.center_y - g_learnerBeginY);

var learnerR = getRadius(learner.center_x - g_learnerBeginX,
learner.center_y - g_learnerBeginY);

272:

273:
274:
275:
276:
277

if (ExpState.worldstatevisible) {
learner.user2 += getSquaredError(demoEta, learnerEta);

278:

279:
280:
281:

282:

283

284:
285:
286:
287:
288:

} else {
learner.user2 += (learnerR / 2.0);
}
learner.user3 += learnerR;
}
}
AL
* Adds the current creature's user fields' values to those of the current
* genotype.
*/

function updateGenotypePerformanceData() {
var learner = Livelibrary.getGroup(0).getCreature(0);

289:

290:
291:
292:

if (learner != null) {
GenotypelLibrary.group = 0;

293:

294
295:
296:
297:
298:

GenotypelLibrary.genotype = ExpState.current;

if (Genotype.user2 == null || Genotype.user2 == "null") {
Genotype.userl = 0.0;
Genotype.user2 = 0.0;
Genotype.user3 = 0.0;

}

299:

300:

Genotype.userl += learner.userl;
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301:
302:
303:
304:
305:
306:
307:
308:
309:
310:
311:
312:
313:
314:
315:
316:
317:
318:
319:
320:
321:
322:
323:
324:
325:
326:
327:
328:
329:
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341:
342:
343:
344:
345
346:
347:
348:
349:
350:
351:
352:
353:
354:
355:
356:
357:
358:
359:
360:

Genotype.user2 += learner.user2;
Genotype.user3 += learner.user3;

}

/%%
* Deletes the current demonstrator, updates the world state and
* creates the appropriate demonstrator creature. This function also determines
* whether or not the demonstrator should be visible and whether or not the
* world state should be visible.
*/
function prepareNextWorldStateAndCreateDemonstrator(isInfant) {
LiveLibrary.clearGroup(1); // clear demonstrator group
LiveLibrary.clearGroup(2); // clear invisible demonstrator group
LiveLibrary.group = 1;

// determine next world state

if (ExpState.worldstate == 0) {
ExpState.worldstate = 1;
} else {

ExpState.worldstate = 0;

}

// determine visibility of demonstrator and world state (only during adult
// life)
var demoVisible;
if (lisInfant) {
var stateCounter = Simulator.time % ExpParams.evaltime
/ ExpParams.statetime;

var demoVisibleIndex = stateCounter % (ExpParams.demovisiblenum
+ ExpParams.demoinvisiblenum);

demoVisible = (demoVisibleIndex < ExpParams.demovisiblenum);

if (!demovisible) {
LiveLibrary.group = 2;

}

var wsVisibleIndex = stateCounter % (ExpParams.wsvisiblenum
+ ExpParams.wsinvisiblenum);

if (wsVisibleIndex >= ExpParams.wsvisiblenum) {
ExpState.worldstatevisible = 0;

} else {
ExpState.worldstatevisible = 1;

}

} else {
ExpState.worldstatevisible = 1;
demoVisible = 1;

}

if (g_activeMapping == 1) {
LiveLibrary.createFromString(g_mappingl[ExpState.worldstate]);

} else {
LiveLibrary.createFromString(g_mapping2[ExpState.worldstate]);

}

moveNewBornDemonstratorCreature();

}

/**
* Sets the active world-state-to-demonstrator-mapping and current genotype
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361:
362:
363:
364:
365:
366:
367:
368:
369:

identifier to appropriate values for a new learner creature lifetime. This
function is responsible for each genotype having two lifetimes per epoch: one
for each possible world-state-to-demonstrator-mapping. If necessary, this
function moves the experiment into a new epoch.

EE R

*/
function prepareNextLifetime() {
if (g_activeMapping == 2) {
g_activeMapping = 1;
ExpState.current++;

370:

371:
372:
373:
374:
375:
376:
377:
378:
379:

if (ExpState.current >= GenotypeGroup.count) {

380:

381:
382:
383:
384:
385:
386:
387:
388:
389:

computeFinalFitnessValues();
onEpochEnd();
prepareNextEpoch();
}
} else {
g_activeMapping = 2;
}
}
/%%

* Deletes the current learner creature and creates a new one.
*/
function createNewLearnerCreature() {
GenotypelLibrary.genotype = ExpState.current;
LiveLibrary.group = 0;
LiveLibrary.creature = 0;
LiveLibrary.delete();

390:

391:

392:

393:
394:
395:
396:

397:

398

399:
400:
401:
402:
403:
404

LiveLibrary.createFromGenotype();
moveNewBornLearnerCreature();
Creature.userl = 0.0;
Creature.user2 = 0.0;
Creature.user3 = 0.0;
}
: /**

* Resets the learner creature to its original position, while preserving all
* important values (performance data and lifetime-adapted weights).
*/
function resetLearnerCreature() {
LiveLibrary.group = 0;
LiveLibrary.creature = 0;

405:

406:
407:
408:
409:
410:
411:
412:
413:
414
415:

// backup relevant creature values before creature deletion
var velocity = Creature.c_velocity;

var vertVelocity = Creature.c_vertvelocity;

var distance = Creature.distance;

var lifespan = Creature.lifespan;

var avgVelocity = Creature.velocity;

var avgVertVelocity = Creature.vertvel;

var userl = Creature.userl;

var user2 = Creature.user2;

var user3 = Creature.user3;

416:

417:
418:
419:
420:

// also retrieve the hebbian neuron configurations
var weightsVectorsVector = Vector.new();

var summedStatesVector = Vector.new();

var summedInStatesVectorsVector = Vector.new();
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421:
422:
423:
424
425:
426:
427:
428:
429:
430:
431:
432:
433:
434:
: /**

* Updates the currently selected creature with the provided values.

435

436:
437:
438:
439:
440:
441
442
443
444
445
446:
447
448:
449:
450:
451:
452:
453:
454
455:
456:
457
458:
459:
460:
461:
462:
463:
464:
465:
466:
467
468:
469:
470:
471:
472:
473:
474
475:
476:
477
478:
479:
480:

}

var labelsVector = Vector.new();
retrieveWeightsAndLabels(weightsVectorsVector, summedStatesVector,
summedInStatesVectorsVector, labelsVector);

LiveLibrary.delete();
GenotypelLibrary.genotype = ExpState.current;
LiveLibrary.createFromGenotype();
moveNewBornLearnerCreature();

restoreCreatureInfo(velocity, vertVelocity, distance, lifespan, avgVelocity,
avgVertVelocity, userl, user2, user3, weightsVectorsVector,
summedStatesVector, summedInStatesVectorsVector, labelsVector);

function restoreCreatureInfo(velocity, vertVelocity, distance, lifespan,

avgVelocity, avgVertVelocity, userl, user2, user3, weightsVectorsVector,
summedStatesVector, summedInStatesVectorsVector, labelsVector) {

Creature.c_velocity = velocity;
Creature.c_vertvelocity = vertVelocity;
Creature.distance = distance;
Creature.lifespan = lifespan;
Creature.velocity = avgVelocity;
Creature.vertvel = avgVertVelocity;
Creature.userl = userl;

Creature.user2 = user2;

Creature.user3 = user3;

var i;
for (i = @; i < Creature.numneurons; i++) {
if (weightsVectorsVector.get(i) != null) {
var n = Creature.getNeuro(i);

.fields.inWeights = weightsVectorsVector.get(i);
.fields.myStateSum = summedStatesVector.get(i);
.fields.inStatesSum = summedInStatesVectorsVector.get(i);
.fields.label = labelsVector.get(i);

5 5 5 S

// the following strange construction is necessary because
// Framsticks sometimes does not handle reference updates in Fields
// objects well; this is a bug work-around
if (n.fields.inWeights != weightsVectorsVector.get(i)
|| n.fields.myStateSum != summedStatesVector.get(i)
|| n.fields.inStatesSum != summedInStatesVectorsVector.get(i)
|| n.fields.label != labelsVector.get(i)) {

LiveLibrary.delete();
GenotypelLibrary.genotype = ExpState.current;
LivelLibrary.createFromGenotype();
moveNewBornLearnerCreature();

restoreCreatureInfo(velocity, vertVelocity, distance, lifespan,
avgVelocity, avgVertVelocity, userl, user2, user3,
weightsVectorsVector, summedStatesVector,
summedInStatesVectorsVector, labelsVector);

break;
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481:
482:
483:
484 :
485:
486:
487:
488:
489:
490:
491:
492:
493:
494
495
496:
497:
498:
499:
500:
501:
502:
503:
504:
505:
506:
507:
508:
509:
510:
511:
512:
513:
514:
515:
516:
517:
518:
519:
520:
521:
522:
523:
524:
525:
526:
527:
528:
529:
530:
531:
532:
533:
534:
535:
536:
537:
538:
539:
540:

}

/%%
* Scans the currently selected creature for any hebbian neurons and stores
* their weights, averaged activations (required for learning) and labels in the
* specified vectors. This function guarantees the vectors to be indexed such
* that an element will be present at an index i iff the creature's neuron at
* index i is a hebbian neuron.
*/
function retrieveWeightsAndLabels(weightsVectorsVector, summedStatesVector,
summedInStatesVectorsVector, labelsVector) {
var i;
for (i = @; i < Creature.numneurons; i++) {
var n = Creature.getNeuro(i);

var iObj = Interface.makeFrom(n.fields);
var weightsInd = iObj.findId("inWeights");

if (weightsInd != -1) {
var weights = i0Obj.get(weightsInd);
var summedState = iObj.get(iObj.findId("myStateSum"));
var summedInStates = iObj.get(iObj.findId("inStatesSum"));
var label = iObj.get(iObj.findId("label"));
weightsVectorsVector.set(i, weights);
summedStatesVector.set(i, summedState);
summedInStatesVectorsVector.set(i, summedInStates);
labelsVector.set(i, label);

}

/%%
* Moves the currently selected creature to an appropriate location for a
* newborn learner creature.
*/
function moveNewBornLearnerCreature() {
placeCurrentCreatureAtOffsetFromCenter(0.0, 10.0);
g_learnerBeginX = Creature.center_x;
g_learnerBeginY = Creature.center_y;

}

/**
* Moves the currently selected creature to an appropriate location for a
* newborn demonstrator creature.
*/
function moveNewBornDemonstratorCreature() {
placeCurrentCreatureAtOffsetFromCenter(0.0, -10.0);
g_demoBeginX = Creature.center_x;
g_demoBeginY = Creature.center_y;

}

/**

* Computes the final fitness values for each of the genotypes in the current
* population. This can only be done after an entire generation is finished,
* since the the calculation mechanism requires the minimum and maximum to be
* Kknown.

*/
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541:
542:
543:
544
545
546:
547
548:
549:
550:
551:
552:
553:
554
555:
556:
557:
558:
559:
560:
561:
562:
563:
564:
565:
566:
567:
568:
569:
570:
571:
572:
573:
574
575:
576:
577:
578:
579:
580:
581:
582:
583:
584:
585:
586:
587:
588:
589:
590:
591:
592:
593:
594:
595:
596:
597:
598:
599:
600:

function computeFinalFitnessValues() {
GenotypelLibrary.group = 0;
GenotypelLibrary.genotype = 0;

var minE = Genotype.user2;
var maxE = Genotype.user2;

// compute maximum and minimum

var i;

for (i = @; i1 < GenotypeGroup.count; i++) {
GenotypelLibrary.genotype = i;

if (Genotype.user2 < mink) {
minE = Genotype.user2;
} else if (Genotype.user2 > maxE) {
maxE = Genotype.user2;
}
}

// fill in the fitness values

var val = maxE + minE;

for (i = @; i < GenotypeGroup.count; i++) {
GenotypelLibrary.genotype = i;
Genotype.userl = val - Genotype.user2;

}

/*** Epoch management functions ¥kt sioksokiofbosodiok ook ook ok /

/**
* Called by lifetime control just before an epoch ends.
*/
function onEpochknd() {
outputEpochResults();
Simulator.checkpoint();

if (ExpState.epoch >= 10000) {
Simulator.stop();
}
}

/**
* Computes the results of the current epoch and outputs them to the result
* file.
*/
function outputEpochResults() {
GenotypelLibrary.group = 0;
var minF, maxF, sumF, minE, maxE, sumE, bestGenotype;

Genotypelibrary.genotype = 0;
minF = Genotype.fit;

maxF = Genotype.fit;

sumF = Genotype.fit;

minE = Genotype.user2;

maxE = Genotype.user2;

sumE = Genotype.user2;
bestGenotype = Genotype.genotype;

var i;
for (i = 1; i < GenotypeGroup.count; i++) {
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601: GenotypelLibrary.genotype = i;

602:

603: if (Genotype.fit < minF) {

604: minF = Genotype.fit;

605: } else if (Genotype.fit > maxF) {

606: maxF = Genotype.fit;

607: bestGenotype = Genotype.genotype;

608: }

609: sumF += Genotype.fit;

610:

611: if (Genotype.user2 < minE) {

612: minE = Genotype.user2;

613: } else if (Genotype.user2 > maxE) {

614: maxE = Genotype.user2;

615: }

616: sumE += Genotype.user2;

617: }

618:

619: g resultFile.writeString("RESULT:\t" + ExpState.epoch + "\t" + minF + "\t" +
620: maxF + "\t" + (sumF / ExpParams.popsiz) + "\t" + minE + "\t" + maxE +
621: "\t" + (sumE / ExpParams.popsiz) + "\t" + bestGenotype + "\n");
622: g_resultFile.flush();

623: }

624:

625: /**

626: * Called by lifetime control to move the experiment into a new epoch. This
627: * function copies all current genotypes to the 'Previous generation' genotype
628: * group and initializes a new generation.

629: */

630: function prepareNextEpoch() {

631: // clear the previous generation group and copy the current to the previous
632: GenotypelLibrary.clearGroup(1);

633: GenotypelLibrary.group = 0;

634: var i;

635: for (i = @; i < GenotypeGroup.count; i++) {

636: GenotypelLibrary.genotype = 1i;

637: GenotypelLibrary.copyGenotype(1);

638: }

639:

640: // clear the current generation group

641: GenotypelLibrary.clearGroup(0);

642: GenotypelLibrary.group = 0;

643:

644: // copy the best genotype a number of times

645: while (GenotypeGroup.count < ExpParams.num_best) {
646: Genotypelibrary.group = 1;

647: selectBestGenotype();

648: Genotypelibrary.copyGenotype(0);

649: log("copying best genotype exactly, genotype=" + Genotype.genotype);
650: GenotypelLibrary.group = 0;

651: }

652:

653: // fill the rest of the population

654: while (GenotypeGroup.count < ExpParams.popsiz) {
655: GenotypelLibrary.group = 1;

656: selectOrCreateGenotypeForNewGeneration();
657: if (Genotype.isvalid) {

658: GenotypelLibrary.copyGenotype(0);

659: }

660: GenotypelLibrary.group = 0;
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661:
662:
663:
664:
665:
666:
667:
668:
669:
670:
671:
672:
673:
674:
675:
676:
677:
678:
679:
680:
681:
682:
683:
684:
685:
686:
687:
688:
689:
690:
691:
692:
693:
694:
695:
696:
697:
698:
699:
700:
701:
702:
703:
704:
705:
706:
707:
708:
709:
710:
711:
712:
713:
714:
715:
716:
717:
718:
719:
720:

}
clearGenotypesPerformance();

// next epoch
ExpState.epoch++;
ExpState.current = 0;

}
/**

* Selects a genotype in the GenotypelLibrary that is either an exact copy or a
* mutated version of an existing genotype, or a genotype created by crossing
* over two existing genotypes. Which method is used is determined by the
* related experiment parameters.
*/
function selectOrCreateGenotypeForNewGeneration() {
var sel;
sel = (ExpParams.p_nop + ExpParams.p_mut + ExpParams.p_xov) * Math.rndeil;
if (sel < ExpParams.p_nop) {
GenotypelLibrary.genotype = selectedForCreation();
} else {
sel = sel - ExpParams.p_nop;
if (sel < ExpParams.p_mut) {
GenotypelLibrary.genotype = selectedForCreation();
performMutation();
} else {
GenotypelLibrary.genotype = selectedForCreation();
GenotypelLibrary.crossover(selectedForCreation());

}
}
}
/**
* Selects a genotype based on its fitness.
*/

function selectedForCreation() {
return GenotypelLibrary.roulette();

}

/**

* Selects the best genotype.

*/

function selectBestGenotype() {
var i, best, maxF;
maxF = 0.0;

for (i = @; i < GenotypeGroup.count; i++) {
GenotypelLibrary.genotype = i;
if (Genotype.fit > maxF) {
maxF = Genotype.fit;
best = i;
}
}
log("selected best: " + best);

GenotypelLibrary.genotype = best;
}

/**
* Mutates the currently selected genotype a number of times. This number is
* specified by the relevant experiment parameter.
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721: */

722: function performMutation() {

723: var i;

724: for (i = @; i < ExpParams.num_mut; i++) {
725: GenotypelLibrary.mutate();

726: }

727 }

728:

729: [**

730: * Clears the performance of all the genotypes in the current generation.
731: */

732: function clearGenotypesPerformance() {

733: GenotypelLibrary.group = 0;

734:

735: var i;

736: for (i = @; i < GenotypeGroup.count; i++) {
737: GenotypelLibrary.genotype = i;
738: Genotype.userl = 0.0;

739: Genotype.user2 = 0.0;

740: Genotype.user3 = 0.0;

741: Genotype.fit = 0.0;

742: }

743: }

744

745 /*** Miscellaneous func‘tions **************************************************/
746:

747 [**

748: * Moves the currently selected creature to the specified offset from the center
749: * of the world.

750: */

751: function placeCurrentCreatureAtOffsetFromCenter(x,y) {

752: Creature.moveAbs((World.wrldsiz - Creature.size x) / 2 + x,
753: (World.wrldsiz - Creature.size_y) / 2 + vy,
754: 0);

755: }

756:

757: [**

758: * Returns the squared error between two angles, taking into account that a = a
759: * + 2pi = a + 4pi etc.

760: */

761: function getSquaredError(al, a2) {

762: var e = (al - a2) * (al - a2);

763: if ((al - a2 - Math.twopi) * (al - a2 - Math.twopi) < e) {
764: e = (al - a2 - Math.twopi) * (al - a2 - Math.twopi);
765: } else if ((al - a2 + Math.twopi) * (al - a2 + Math.twopi) < e) {
766: e = (al - a2 + Math.twopi) * (al - a2 + Math.twopi);
767: }

768: return e;

769: }

770:

771: [**

772: * Returns the angle theta (in the range [0,2pi) ) when converting the given
773: * point to polar coordinates.

774: */

775: function getAngle(x,y) {

776: if (x > 0.0 & y >=0.0) {

777: return Math.atan(y / x);

778: } else if (x > 0.0 & y < 0.0) {

779: return Math.atan(y / x) + Math.twopi;
780: } else if (x < 0.0) {
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781:
782:
783:
784:
785:
786:
787:
788:
789:
790:
791:
792:
793:
794:
795:
796:
797
798:
799:
800:
801:
802:
803:
804:
805:
806:
807:
808:
809:
810:
811:
812:
813:
814:
815:
816:
817:
818:
819:
820:
821:
822:
823:
824:
825:
826:
827:
828:
829:
830:
831:
832:
833:
834:
835:
836:
837:
838:
839:
840:

return Math.atan(y / x) + Math.pi;
} else if (x == 0.0 & y > 0.0) {
return Math.pi2; // pi/2
} else if (x == 0.0 & y < 0.90) {
return Math.pi + Math.pi2; // 3pi/2
} else {
return -1;
}
}

/%%
* Returns the radius R when converting the given point to polar coordinates.
*/

function getRadius(x,y) {

return Math.sgrt(x * x +y * y);

}

/**
* Qutputs a message to the console if debugging is enabled.
*/
function log(msg) {
if (ExpParams.debug) {
Simulator.print("DEBUG: " + msg);
}
}

[/ Hx* Saving/loading experiment state functions *ixsskksksoksksskortskskoskordkskokokskorkokokokkok /
// Note: these functions were written by the Framsticks developers.

function onExpLoad() {
GenotypelLibrary.group = 0;
LiveLibrary.group = 0;
GenotypelLibrary.clearGroup(9);
GenotypeLibrary.clearGroup(1);
LiveLibrary.clearGroup(0);
Loader.addClass(sim_params.*);
Loader.addClass(CreaturesGroup.*);
Loader.addClass(GenotypeGroup.*);
Loader.setBreakLabel (Loader.OnComment, "onExpLoad_Comment");
Loader.setBreakLabel (Loader.BeforeUnknown, "onExplLoad_Unknown");
Loader.run();
if (GenotypeGroup.count > 0) {
Simulator.print("Experiment loaded (" + GenotypeGroup.count +
" genotypes)");

}
}
function onExpLoad_Unknown() {
if (Loader.objectName != "org") {
return;
}

GenotypelLibrary.genotype = -1;
Loader.currentObject = Genotype.*;
Interface.makeFrom(Genotype.*).Interface:setAllDefault();
Loader.loadObject();
GenotypelLibrary.copyGenotype(0);

}

function onExpSave() {
File.writeComment(

imitation_learning.expdef' data");
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841: File.writeObject(sim_params.*);

842: GenotypelLibrary.group = 0;

843: File.writeObject(GenotypeGroup.*);

844: LiveLibrary.group = 0;

845: File.writeObject(CreaturesGroup.*);

846: GenotypelLibrary.group = 0;

847: var i = 0;

848: while (i++ < GenotypeGroup.count) {

849: GenotypelLibrary.genotype = i;

850: File.writeNameObject("org", Genotype.*);
851: }

852: Simulator.print("Experiment saved (" + GenotypeGroup.count + " genotypes)");
853: }

854:

855: ~

856: #END_REGION

857:

858: #REGION Experiment parameters it HHHHHHEHEHEHHBHEHEHEHEHEHBHEREEHBHEHEHEE
859:

860: prop:

861: id:actionlgen

862: name:Genotype for action 1 demonstrator

863: type:s 1
864:
865: prop:

866: 1id:action2gen

867: name:Genotype for action 2 demonstrator

868: type:s 1

869:

870: prop:

871: 1id:demovisiblenum

872: name:Number of subsequent world state evaluations with visible demonstrator
873: type:d 0 10

874:

875: prop:

876: 1id:demoinvisiblenum

877: name:Number of subsequent world state evaluations with invisible demonstrator
878: type:d 0 10

879:

880: prop:

881: 1id:wsvisiblenum

882: name:Number of subsequent world state evaluations with visible world state
883: type:d 0 10

884:

885: prop:

886: 1d:wsinvisiblenum

887: name:Number of subsequent world state evaluations with invisible world state
888: type:d 0 10

889:

890: prop:

891: 1id:updatetime

892: name:Number of time steps after which Hebbian neurons should 'learn’.

893: type:d 1 100000

894:

895: prop:

896: 1d:popsiz

897: name:Gene pool size

898: type:d 1 2000

899:

900: prop:
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901:
902:
903:
904:
905:
906:
907:
908:
909:
910:
911:
912:
913:
914:
915:
916:
917:
918:
919:
920:
921:
922:
923:
924:
925:
926:
927:
928:
929:
930:
931:
932:
933:
934:
935:
936:
937:
938:
939:
940:
941:
942:
943:
944:
945:
946:
947:
948:
949:
950:
951:
952:
953:
954:
955:
956:
957:
958:
959:
960:

id:p_nop

name :Unchanged
type:f 0 100
group:Selection

prop:

id:p_mut

name :Mutated
type:f 0 100
group:Selection

prop:

id:p_xov
name:Crossed over
type:f 0 100
group:Selection

prop:

id:num_best

name :Number of exact copies of best individual
type:d 0 20

prop:

id:num_mut

name :Number of mutations per reproduction
type:d 1 50

prop:

id:evaltime
name:Evaluation time
type:d 100 100000

prop:

id:statetime
name:Timesteps per state
type:d 1 100000

prop:

id:infancytime

name:Duration of infancy phase
type:d 1 100000

prop:

id:creath

name:Initial elevation

type:f -1 50

help:~

Vertical position (above the surface) where newborn creatures are placed.

~

prop:

id:debug

name :Debug messages?

type:d @ 1 ~No~Yes

help:Print debug messages to the console, yes or no.

#END_REGION

#REGION Experiment state AR
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961:
962:
963:
964:
965:
966:
967:
968:
969:
970:
971:
972:
973:
974:
975:
976:
977:
978:
979:
980:
981:
982:
983:
984:
985:
986:
987:
988:
989:
990:
991:
992:
993:
994:
995:
996:

state:

id:notes

name :Notes

type:s 1

help:~

You can write anything here

(it will be saved to the experiment file)

~

state:

id:epoch

name :Generation number
type:d

flags:16

state:

id:current
name:Evaluating genotype
type:d

flags:16

state:

id:worldstate
name:Current world state
type:d

flags:16

state:

id:worldstatevisible
name:Is world state visible
type:d

flags:16

#END_REGION
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NNNNNNRRRRERRRBRRERR
VM BWNPOWOVWONOODUDWNR®
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O VWO NOTUVIEA WNRPOUOVUONOOTUR,RWNRPRPOOVONOTUID, WNEP O OO

W oOoNOUVTLE WNRE

N
(o))

L i b L B R
### hebbian.neuro

izzy

### Framsticks neuron definition for hebbian learning neuron

### created by Eelke Spaak, Nijmegen, NL, 2007

SR e e e e

class:
name :Hebb
Longname :Hebbian

: description:~

: Neuron that exhibits Hebbian learning (in the adaptation of Floreano & Urzelai

: (2000)). Output is between 0.0 and 1.0 (unipolar). This neuron takes a maximum

: of 11 inputs.

: prefinputs:-1

. prefoutput:1

: #REGION Neuron code #HHHHHHHHHHHHHHHHEHEHHEHESHEHBSHBHESHBHBHHBHEHHBHBHHEEREHEE
: code:~

AL

* Called by Framsticks to make the neuron initialize itself.
*/

. function init() {

Fields.inWeights = Vector.new();
Fields.inStatesSum = Vector.new();

var i;

for (i = @; i < Neuro.getInputCount; i++) {
Fields.inWeights.add(Fields.["w" + i]);
Fields.inStatesSum.add(0.0);

}

// assign a random label to this neuron to help identify it during
// analysis and debugging.
Fields.label = "hebbneuron" + Math.random(1000);

Fields.myStateSum = 0.0;
al =

Fields.updateInterv ExpParams.updatetime;

o)

L

* Called by Framsticks when this neuron needs to update its state.
*/

: function go() {

// determine activation level
var weightedSum;
weightedSum = 0.0;

var i;

for (i = @; i < Neuro.getInputCount; i++) {
var inState = Neuro.getInputState(i);
var sign = Fields.["sign" + i];

if (sign == 0) {

weightedSum -= inState * Fields.inWeights.get(i);
} else {

weightedSum += inState * Fields.inWeights.get(i);
}
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64:
65:
66:
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113:
114:
115:
116:
117:
118:
119:
120:

// store state of incoming neuron
Fields.inStatesSum.set(i, Fields.inStatesSum.get(i) + inState);

}

var myState = sigmoid(weightedSum);

// store state
Fields.myStateSum += myState;

// update incoming weights if necessary

if (Simulator.time % Fields.updateInterval == 0 && Simulator.time > 0) {
updateWeights();

}

// update neuron state
Neuro.state = myState;

}

/%%
* Applies hebbian learning to each of this neuron's incoming weights. The
* valued used for pre- and postsynaptic activation are averaged over a
* specified time interval (not necessarily 1, so weights are not necessarily
* updated each time step).
*/
function updateWeights() {
var avgState = Fields.myStateSum / Fields.updateInterval;
Fields.myStateSum = 0.0;

var i;

for (i = @; i < Neuro.getInputCount; i++) {
var avgInState = Fields.inStatesSum.get(i) / Fields.updatelInterval;
adaptWeight(i, avgInState, avgState);
Fields.inStatesSum.set(i, 0.9);

}
/**

* Adapts the incoming weight at the specified index using hebbian learning with
* the specified values for pre- and postsynaptic activation and the learning
* parameters specified in this neuron's properties.
*/
function adaptWeight(index, preSynapticActivation, postSynapticActivation) {
var deltaW, oldWeight, eta, r;
oldWeight = Fields.inWeights.get(index);
eta = Fields.["eta" + index];
r = Fields.["r" + index];

if (r == 0) {

// no learning
deltal = 0.0;

} else if (r == 1) {
// plain hebb rule
deltal = (1.0 - oldWeight) * preSynapticActivation

* postSynapticActivation;

} else if (r == 2) {
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122:
123:
124:
125:
126:
127:
128:
129:
130:
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146:
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173:
174:
175:
176:
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179:
180:

}
/

* %

// postsynaptic hebb rule

deltal = oldWeight * (-1.0 + preSynapticActivation) *
postSynapticActivation + (1.0 - oldWeight) * preSynapticActivation
* postSynapticActivation;

} else if (r == 3) {

// presynaptic hebb rule
deltalW = oldWeight * preSynapticActivation * (-1.0
+ postSynapticActivation) + (1.0 - oldWeight)
* preSynapticActivation * postSynapticActivation;

} else if (r == 4) {

// covariance rule

var F = tanh(4.0 * (1.0 - Math.abs(preSynapticActivation
- postSynapticActivation)) - 2.0);

if (F » 0.90) {
deltaW = (1.0 - oldWeight) * F;

} else {
deltalW

oldWeight * F;
}

} else {
Simulator.message("Hebbian r should be in the interval [0,4]!",
2);
}

var newWeight = oldWeight + eta * deltal;
Fields.inWeights.set(index, newWeight);

if (Fields.inWeights.get(index) > 1.0) {
Fields.inWeights.set(index, 1.0);
}
// Framsticks has very buggy floating point handling with exponents larger
// than +- 4, so, unfortunately, the following is necessary
if (Fields.inWeights.get(index) < 1.0e-4) {
Fields.inWeights.set(index, 0.90);
}

* Returns the hyperbolic tangent of the specified number.

*/

function tanh(x) {

}
/

X%

if (x == 0.0) {
return 0.0;

}
return (Math.exp(x) - Math.exp(-x)) / (Math.exp(x) + Math.exp(-x));

* Returns the sigmoid (or logistic) function of the specified number.

*/

function sigmoid(x) {

}

return 1.0 / (1.0 + Math.exp(-x));
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181: /**

182: * Outputs a message to the console if debugging is enabled.
183: */

184: function log(msg) {

185: if (ExpParams.debug) {

186: Simulator.print("DEBUG: " + msg);
187: }

188: }

189:

190: ~

191: #END_REGION

192:

193: #REGION Neuron properties i HHHHHHHHHAHHEHAHHEHAHHHHBHHHHERHE R
194: prop:

195: 1id:etad

196: name:learning rate for incoming connection @
197: type:f 0.0 1.0

198:

199: prop:

200: 1id:etal

201: name:learning rate for incoming connection 1
202: type:f 0.0 1.0

203:

204: prop:

205: 1id:eta2

206: name:learning rate for incoming connection 2
207: type:f 0.0 1.0

208:

209: prop:

210: 1id:eta3

211: name:learning rate for incoming connection 3
212: type:f 0.0 1.0

213:

214: prop:

215: id:etad

216: name:learning rate for incoming connection 4
217: type:f 0.0 1.0

218:

219: prop:

220: 1id:eta5

221: name:learning rate for incoming connection 5
222: type:f 0.0 1.0

223:

224: prop:

225: 1id:etab

226: name:learning rate for incoming connection 6
227: type:f 0.0 1.0

228:

229: prop:

230: 1id:eta7

231: name:learning rate for incoming connection 7
232: type:f 0.0 1.0

233:

234: prop:

235: 1id:eta8

236: name:learning rate for incoming connection 8
237: type:f 0.0 1.0

238:

239: prop:
240: 1id:eta9

52



Appendix B Source code listings

241:
242
243:
244
245:
246:
247:
248:
249:
250:
251:
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253:
254:
255:
256:
257:
258:
259:
260:
261:
262:
263:
264:
265:
266:
267:
268:
269:
270:
271:
272:
273:
274:
275:
276:
277
278:
279:
280:
281:
282:
283:
284:
285:
286:
287:
288:
289:
290:
291:
292:
293:
294
295:
296:
297:
298:
299:
300:

name:learning

type:f 0.0 1.0

prop:
id:etale
name:learning

type:f 0.0 1.0

prop:

id:ro
name:learning
type:d 0 4

prop:

id:rl
name:learning
type:d 0 4

prop:

id:r2
name:learning
type:d 0 4

prop:

id:r3
name:learning
type:d 0 4

prop:

id:r4
name:learning
type:d 0 4

prop:

id:r5
name:learning
type:d 0 4

prop:

id:ré
name:learning
type:d 0 4

prop:

id:r7
name:learning
type:d 0 4

prop:

id:r8
name:learning
type:d 0 4

prop:

id:r9
name:learning
type:d 0 4

prop:
id:rle

rate

rate

rule

rule

rule

rule

rule

rule

rule

rule

rule

rule

for

for

for

for

for

for

for

for

for

for

for

for

incoming

incoming

incoming

incoming

incoming

incoming

incoming

incoming

incoming

incoming

incoming

incoming

connection

connection

connection

connection

connection

connection

connection

connection

connection

connection

connection

connection

10

53



From imitation to action understanding

301:
302:
303:
304:
305:
306:
307:
308:
309:
310:
311:
312:
313:
314:
315:
316:
317:
318:
319:
320:
321:
322:
323:
324:
325:
326:
327:
328:
329:
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341:
342:
343:
344:
345
346:
347:
348:
349:
350:
351:
352:
353:
354:
355:
356:
357:
358:
359:
360:

name:learning rule for incoming connection 10

type:d 0 4

prop:
id:signe
name:sign of
type:d 0 1

prop:
id:signl
name:sign of
type:d 0 1

prop:
id:sign2
name:sign of
type:d 0 1

prop:
id:sign3
name:sign of
type:d 0 1

prop:
id:sign4d
name:sign of
type:d 0 1

prop:
id:sign5
name:sign of
type:d 0 1

prop:
id:sign6
name:sign of
type:d 0 1

prop:
id:sign7
name:sign of
type:d 0 1

prop:
id:sign8
name:sign of
type:d 0 1

prop:
id:sign9
name:sign of
type:d 0 1

prop:
id:signl@
name:sign of
type:d 0 1

prop:
id:wo

incoming

incoming

incoming

incoming

incoming

incoming

incoming

incoming

incoming

incoming

incoming

connection

connection

connection

connection

connection

connection

connection

connection

connection

connection

connection

0 (@=neg, 1l=pos)

1 (@=neg, 1=pos)

2 (@=neg, 1=pos)

3 (@=neg, 1=pos)

4 (@=neg, 1=pos)

5 (@=neg, 1=pos)

6 (@=neg, 1l=pos)

7 (0=neg, 1=pos)

8 (0=neg, 1=pos)

9 (0=neg, 1=pos)

10 (©@=neg, 1=pos)
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361:
362:
363:
364:
365:
366:
367:
368:
369:
370:
371:
372:
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374
375:
376:
377:
378:
379:
380:
381:
382:
383:
384:
385:
386:
387:
388:
389:
390:
391:
392:
393:
394
395:
396:
397:
398:
399:
400:
401:
402:
403:
404 :
405:
406:
407:
408:
409:
410:
411:
412:
413:
414
415:
416:
417:
418:
419:
420:

name:initial
type:f 0.0 1.

prop:
id:wl
name:initial
type:f 0.0 1.

prop:
id:w2
name:initial
type:f 0.0 1.

prop:
id:w3
name:initial
type:f 0.0 1.

prop:
id:wa
name:initial
type:f 0.0 1.

prop:
id:w5
name:initial
type:f 0.0 1.

prop:
id:wé
name:initial
type:f 0.0 1.

prop:
id:w7
name:initial
type:f 0.0 1.

prop:
id:w8
name:initial
type:f 0.0 1.

prop:
id:w9
name:initial
type:f 0.0 1.

prop:

1d:wle
name:initial
type:f 0.0 1.

prop:
id:inWeights

name:incoming inWeights

type:o
flags:o

prop:

weight
(4]

weight
0

weight
0

weight
(4]

weight
0

weight
0

weight
(4]

weight
(2]

weight
0

weight
(4]

weight
(2]

of

of

of

of

of

of

of

of

of

of

of

incoming

incoming

incoming

incoming

incoming

incoming

incoming

incoming

incoming

incoming

incoming

connection

connection

connection

connection

connection

connection

connection

connection

connection

connection

connection

10
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421: 1id:label

422: name:label

423: type:s

424: flags:0

425:

426: prop:

427: 1id:updateInterval

428: name:weights updating interval
429: type:d

430: flags:@

431:

432: prop:

433: id:myStateSum

434: name:sum of neuron states, used in updating weights
435: type:f

436: flags:@

437:

438: prop:

439: 1id:inStatesSum

440: name:array of sum of incoming connection states, used in updating weights
441: type:o

442: flags:0

443:

444: #END_REGION

445:

446:
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