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Abstract

The human mirror neuron system (MNS) refers to brain regions becoming
active both when an action is performed, and when a similar action is being ob-
served. Several functions have been attributed to the MNS. It is argued that the
MNS is responsible for goal inference, and could be involved in learning by im-
itation. Here we investigated an existing neural network model which exhibits
mirror properties, the Recurrent Neural Network with Parametric Bias (RNNPB).
However, this model fails to account for goal inference, when the body of the
actor and observer are dissimilar. The RNNPB model is extended such that it is
able to explain this general goal inference. This is achieved by ignoring bodily
parameters as a direct input to the model, and instead use the perceived state
of the world as a body-invariant input for the model.

First, the RNNPB model is tested for robustness against noise and paramet-
ric noise in the original signals. It is demonstrated that the model is able to gen-
eralize, which means that the extended RNNPB model does not demand strict
requirements on the features used for representing the state of the world. Fur-
thermore, we demonstrated the present model in a toy world example, in which
it is shown that observation of multiple goal-directed actions and generation of
a goal directed action achieving the same goal both leads to equal activation of
an additional input layer of the network. This layer contains the so called para-
metric bias nodes, which is an essential part of the RNNPB architecture. This
exemplifies the goal related mirror properties of the model.

1 Introduction

In 1996, Gallese, Fadiga, Fogassi, and Rizzolatti (1996) presented findings of their
research performed on macaque monkeys. The aim of this research was to study
neurons which are specialized in hand control. However, this research has led to
the interesting result that neurons in the F5 region of macaque monkeys discharge
both when a goal directed movement is performed, and when a similar movement
is being observed.

Neurophysiological (Cochin et al., 1998), and brain imaging (Rizzolatti et al.,
1996) experiments resulted in similar findings in the human brain. The inferior
frontal cortex and parietal lobe have both been identified as becoming active during
execution of a goal directed movement, as well as during observation of a similar
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movement. Although no single neuron measurements have been performed, it is
very likely that these regions contain mirror neurons. These regions are generally
referred to as the main areas of the human mirror neuron system (MNS).

Since its discovery, several functions have been attributed to the MNS. Roughly,
these functions can be subdivided into three major hypotheses: i) intention under-

standing; basically, two theories exist on explaining how humans understand each
others’ behavior. In the first, ‘theory’ theory or folk psychology, understanding of
other’s mental states is explained by attribution of mental states to others by rea-
soning. The second, contrasting theory, is simulation theory, which states that the
observed actor’s state is simulated, such that his mental state can be experienced.
Since the MNS is active during action observation, while no overt movements can be
observed, mirror neurons seem to be involved in simulation of the observed move-
ment. Because of this, mirror neurons have been considered as supporting simu-
lation theory (Gallese & Goldman, 1998). In relation to this, another hypothetical
function of the MNS is ii) imitation learning; learning by imitation is performed by
children, as well as by adults. Such a mechanism allows one to map other’s behavior
to his own motor repertoire, allowing an individual to decrease the time necessary to
acquire certain motor skills. Gallese et al. (1996) have postulated this hypothesis as
the feature extraction hypothesis. Finally, there is the iii) epiphenomenologists view,
which actually does not attribute any function to the MNS, but assumes that activity
of mirror neurons is a by-product of processing in the brain, having no causal effect
at all.

Experiments resulted in the finding that mirror neurons do not discharge dur-
ing random movements, but during goal directed movements, such as grasping for
food, or placing of an object (Fogassi et al., 2005). Furthermore, it has been shown
that discharge of macaque monkey mirror neurons (Fogassi et al., 2005), and activ-
ity in the human MNS (Iacoboni et al., 2005), is associated with intentions of the ob-
served and generated movement, rather than with the actual movements of the in-
volved kinematic bodies. Behavioral experiments (Bekkering, Wohlschlager, & Gat-
tis, 2000) support these findings, since it has been shown that imitation in human
beings is guided by goals, rather than actions. These findings support the notion
that the MNS is involved in intention understanding (in this article we assume that
intention understanding is equal to goal inference. Therefore, in this article these
two terms are used interchangeably).

Matching an observed goal-directed movement to execution of motor actions,
requires a mechanism responsible for extracting the elements describing the action
of the observed agent’s action. A technique often used in imitation learning is the
mapping of the actor’s bodily joints on the observer’s kinematic joints. Several MNS
models using this approach have been proposed. In this study, we investigate the
Recurrent Neural Network with Parametric Bias (RNNPB) (Tani, Ito, & Sugita, 2004;
Oztop, Kawato, & Arbib, 2006) as a potential model for goal inference. The RNNPB
model is based on a recurrent artificial neural network, extended with a series of in-
put nodes which are referred to as the parametric bias (PB). Since the PB nodes be-
come equally active during generation and recognition of a time series, these nodes
exhibit mirror properties.

As noted by Tani et al. (2004), an important issue which is missing in their study
of the RNNPB model is the goal-directedness in generating or recognizing behav-
iors. The imitation learning approach, as used in the RNNPB model, is limited in
the sense that it requires similar bodies of actor and observer (Cuijpers, Schie, Kop-
pen, Erlhagen, & Bekkering, 2006). In order to infer the intentions or the goal of the
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actor, an alternative approach is required. In this article we try to fill this gap by
extending the RNNPB model with a goal representation, such that body-similarity
problem is circumvented. A model is presented, which is consistent with the exper-
imental findings on the involvement of the MNS in goal inference, while its mirror
properties are preserved.

This article is organized as follows. In Section 2, a detailed description of the
RNNPB model is given. Next, in Section 3, a description of the presented model is
given. Simulations of the RNNPB model and the presented model will be discussed
in Section 4. In this section, we will also discuss the inner workings of the models
and their strenghts and weaknessess. In Section 5, we finish with a conclusion and
a discussion of the presented model.

2 The RNNPB Model

2.1 Overview

The model described in this article is based on a modification of Tani et al.’s Re-
current Neural Network with Parametric Bias (RNNPB) model (Tani et al., 2004).
The RNNPB model has a recurrent network architecture, similar to a Jordan type
network (Jordan, 1990). Basically, the model consists of a standard three layered
feed-forward model, having an input layer, a hidden layer and an output layer. In
addition, a context layer provides recurrent connections to the hidden layer. Fur-
thermore, parametric bias (PB) nodes are added which are connected to the hidden
layer. A schematic view of this architecture is shown in Figure 1.

Hidden Layer

Input Layer PB Layer

Output Layer

Context Layer

Figure 1: RNNPB model architecture. Arrows between layers denote a full connection of the
nodes inside the layer block. Recurrent connections are denoted by dashed lines.

Like a Jordan type network, the RNNPB model is capable of learning to predict
a time series. However, during learning, the PB nodes are modulated in a self orga-
nizing manner. This provides a way of learning the network to predict multiple time
series. If multiple time series are presented during learning, the associated PB node
values tend to move to unique values for each provided time series. The PB nodes
learn to encode the task the network has to perform.

After the learning phase, the model can be used to generate the learned time
series by setting the appropriate PB node values and running the network in closed
loop mode (i.e. using the output at time step t as input on time step t + 1). The
major advantage of this model is that after learning it can also be used to recognize
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the learned time series. Presentation of a time series coerces the PB nodes to take
on the same values as during learning of the presented time series. Because of these
common activation patterns of the PB nodes during generation and recognition, the
RNNPB is said to exhibit mirror properties and the PB nodes are mirror neuron like.

In their article, Tani et al. used the RNNPB network to predict sensory and mo-
tor signals. That is, the network learned to predict the next sensory signal ŝ t+1, and
motor command m̂ t+1, given the current sensory signal s t and current motor com-
mand m t . In their experiment, a robot was learned to imitate a human agent. This
was achieved by mapping the agent’s arm position to joint angles of the robot. These
angles where extracted from the agent’s arm position by putting detectable markers
on his arm, and computing joint angles from the position of these markers.

During the learning phase, the robot learned to associate PB node values with
the observed joint angle sequences. After learning, an interaction phase was used
to demonstrate the model’s recognition and generation abilities. During this phase,
the robot had to recognize the human agent’s movement from the observed joint
angle sequences such that the robot was able to perform the observed movement
himself. Tani et al. demonstrated this by feeding the observed joint angles to the
RNNPB network, and as soon as the PB node values were set, running the network
in closed loop generation mode. The resulting state and motor time series were used
to drive the effectors of the robot.

For each of the above discussed phases (learning, generation, and recognition),
a more elaborate explanation will be given below.

2.1.1 Learning

In the learning phase, the network is trained to predict a given time series Y =

{y 1, y 2, . . . , y T−1, y T }. This is accomplished by altering the internal weights of the
network (i.e. all weights except for the recurrent connection weights), such that the
sum of squared differences E between the output ŷ of closed loop execution of the
network and the original time series is minimized. Here, output ŷ is obtained by for-
ward propagating the node activities through the network. More formally, we want
to find the network weights such that

E =

T∑

t=1

||ŷ t − y t ||
2 (1)

is minimized. A multitude of learning algorithms exist to solve this problem, but
the one used by Tani et al. is Backpropagation Through Time (BPTT) (Rumelhart &
McClelland, 1986). Basically, this learning method is identical to backpropagation,
except that the recurrent network is unfolded over time first, such that the network
is similar to a feed-forward network∗.

For notational convenience, from here on, the collection of node activations
within each network layer will be represented by a mathematical vector, and are
typeset in bold. Input of the network is denoted by x , and output by ŷ . Activation
of the PB nodes is denoted by p . The internal values of the PB vector which can be
considered as net input to the PB vector, are denoted by u .

∗Unfolding over time allows one to transform an arbitrary recurrent network into a feed-forward net-
work, extending the applicability of the backpropagation algorithm to networks with an arbitrary amount
of recurrent connections.

4



In order to let the network predict multiple time series, time series are presented
to the network in sequential order. Updating of the PB vector takes place after pre-
sentation of each time series. After all the time series have been presented, the net-
work’s internal weights are updated according to the BPTT algorithm. This cycle,
from here on referred to as an epoch, is repeated for a predefined amount of times.

In each learning epoch, the network is run in closed loop mode. The recurrent
input x t+1 at time t +1, used in the closed loop generation, is calculated as follows:

x t+1 = β ŷ t +(1−β )y t , (2)

where y t and ŷ t respectively represent the target signal and the output activity at
time step t . β represents the input ratio, which is used to combine the expected
signal and actual signal in order to gain acceptable learning performance†.

The following update rules are used to modify the PB vector during learning‡:

∆u e =η

T∑

t=1

δt , (3)

where δt represents the back propagated error for the PB vector at time step t , u e

represents the internal values of the PB vector at epoch e , and η is the PB learning
rate. The PB vector values are updated as follows:

u e+1 = u e +∆u e . (4)

Finally, the PB vector is related to the internal values by

p e+1 = g (u e+1) , (5)

where g (·) is the standard logistic activation function, given by

g (x ) =
1

(1+ e−x )
. (6)

2.1.2 Generation

In the generation phase, the network is used to generate the time series associated
with the provided PB vector during learning. This is accomplished by setting the PB
vector to the value associated with the desired time series, and executing the net-
work in closed loop for a desired amount of time steps. During this phase, no up-
dating of internal weights and PB vector values take place. The output is generated
solely by employing forward propagation of the node activities through the network.

2.1.3 Recognition

The recognition phase is similar to the learning phase with the exception that the
internal weights of the network are not updated. Consequently, only the PB vector
is updated during this phase. As a result the PB vector takes on the same value as
during the learning phase.

†This method is also known as teacher forcing (Jaeger, 2002).
‡In their original article, Tani et al. (2004) use ρ instead of u to refer to the interval values of the PB

vector. Moreover, p was used to refer to the PB vector. For clarity, an alternative notation is used in this
article.
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3 Goal Inference using the RNNPB Model

In Tani et al.’s experiment, observed motor angles were mapped onto the actor’s
body, such that generated motor/state sequences could be used during observa-
tion and generation of bodily movements. Therefore, the RNNPB model is unable
to explain goal inference due to the fact that observed motor actions directly serve
as input to the network. As a consequence, the network is sensitive to the actual
movements. Clearly recognition is best when the body of the observer and actor are
similar.

In this article a novel approach is proposed, in which both actions and states are
represented as separate sequences. This allows observation of goal related move-
ments without referring to a body which manipulates the specific object in a goal
oriented fashion. If the agent has learned to associate motor actions to a series of
states (forward model), the goal can be achieved by executing these motor actions.
On the contrary, by using an inverse model, actions can be associated to a desired
state. A schematic overview of this approach, in relation to the approach of Tani and
colleagues (Tani et al., 2004), is given in Figure 2(a) and Figure 2(b).

State/Motor Sequence

PB Ac!va!on

Observe/Act

Recognize/Match
RNNPB

(a) Original RNNPB Model

Motor Sequence

State Sequence

PB Ac!va!on

Act

Observe

Recognize/Match
RNNPB

Forward/Inverse model

(b) Proposed model

Figure 2: A comparison of Tani et al.’s model and the proposed model. An additional layer
has been added to the original RNNPB model, removing the tight coupling between observed
motor sequences and PB node activation. This gives the model the ability to be used for goal
inference.

Separation of action and state has two major benefits in comparison to the origi-
nal RNNPB model. First, it does not require similarity between the body of the actor
and observer, because states are, by definition, invariant for differences in kinemat-
ics. Consequently, it allows goal inference even when the observed motor sequences
differ from the observers own way of achieving the same goal. This gives the model
the ability to be used in intention understanding and learning by imitation.

The model implements the above as follows. As soon as the agent senses that a
goal has been achieved, he is triggered to learn the past state sequence. By utilizing
the RNNPB network, the resulting PB vector is associated with the achieved goal
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described by the presented state sequence. Note that this requires a form of working
memory, responsible for retaining the past states.

In order to recognize a goal oriented action, the perceived state sequence is fed
directly to the network. As a consequence, the PB vector should converge to the
value associated with the presented state sequence during learning. Using the re-
sulting PB vector, the perceived state sequence can be associated with the goal or
intention of the actor who caused the perceived changes in state.

4 Simulation and Results

4.1 Mirror Properties of RNNPB Networks

In order to simulate the modified model, we define three unique signals, and repeat
Tani et al.’s simulations using these signals. The following signals are used:

1. Sinusoidal time series ( 1
2
(0.8 sin(3t )+1)),

2. Same as 1. but with doubled frequency ( 1
2
(0.8 sin(6t )+1)), and

3. Aperiodic time series (0.9−0.8e−t )).

The following network architecture is used: 1 input node, 1 output node, 5 hid-
den nodes, 2 context nodes, and 2 PB nodes. The following learning parameters are
used: η = 0.01,β = 0.1,ηBP = 0.02, and α = 0.9, where ηBP and α respectively de-
note the learning rate and momentum parameter for the BPTT algorithm. These
parameters were determined experimentally.

Results of simultaneously training a single network with these signals are shown
in Figure 3. In this figure, the original time series are shown in the left column,
and the resulting patterns of running the network in closed loop mode (generation
phase) are shown in the right column. The PB vectors are denoted by p k , where k

corresponds to the signal number (e.g. p 3 denotes the PB vector associated with
the aperiodic signal). As can be seen in the figure is that the network successfully
reproduces all three time series.

Furthermore, the network recognizes all three signals successfully (see Figure
4). In the left column, the modulation of the PB vector during learning is shown.
Note that the latest known value of the PB vector, obtained at the end of the learn-
ing phase, is associated with the corresponding time series. The right column shows
the modulation during the recognition phase. As expected, we can see that the PB
vectors converge to the values that where associated with the presented time series
during learning. However, in case of the third signal, the PB vector did not seem to
stabilize. This was not a problem, because training and recognition was performed
for an emperical determined amount of 2600 epochs. Selection of a stopping cri-
terion for learning and recognition is outside the scope of this article, but for an
overview and discussion on various stopping criteria, see Haykin (1998).

During the learning phase, it was observed that learning using BPTT is a very
delicate process; if learning is performed too long, the learning process becomes
unstable and the weight alterations become too high, pushing the network into a
state from which it is unable to recover.
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Figure 3: The network’s ability to generate a time series in closed loop mode (right column)
after simultaneously learning the corresponding signals (left column). Each row number cor-
responds to one of the signals as described in Section 4.1.

4.2 Generalization and Robustness

Additional simulations were run to test the model for robustness against noise and
parametric noise in the presented signals during recognition. This allowed us to
analyze the models’ generalization abilities.

First, the original signals were distorted by adding Gaussian noise to them. Sec-
ondly, the model we tested is capable to recognize signals of varying amplitude and
frequency. For each measurement, the PB vector resulting from recognition were
compared to the values that were learned. The error ǫ of the resulting PB vector was
measured using the Euclidean distance metric,

ǫ = ||p t a r g e t −p a c t u a l || . (7)

This error was then calculated for various noise levels. Figure 5 shows the results
of this simulation. In this figure, the error of the resulting PB vector is plotted as
a function of the amount of noise (i.e. standard deviation σ of Gaussian noise) in
the presented signal. This is shown for each time series. The solid line in the figure
represents the error curve of the expected PB vector and the resulting PB vector. In
order to demonstrate that the network is still able to discriminate the presented time
series from the other learned time series, the difference between the other learned
PB vectors and the resulting PB vector is also plotted. It can be seen that after adding
a fair amount of noise (σ < 0.18) to the presented signal, the network is still able to
successfully discriminate between the learned time series.

The network is most robust with respect to noise in the high frequency signal. A
possible explanation is that noise has a high frequency, and, thus forces the network
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(a) p1 training
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(b) p1 recognition

500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

epoch

ac
tiv

at
io

n

(c) p2 training
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(d) p2 recognition
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(e) p3 training
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(f) p3 recognition

Figure 4: PB vector modulation during training (left column), and during recognition of the
corresponding signal (right column). It can be seen that during recognition, the PB vectors
converge to the values associated with the presented time series during learning.
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(a) Distortion of signal #1
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(b) Distortion of signal #2
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(c) Distortion of signal #3

Figure 5: Error between the recognized PB vector and each known PB vector after presenting
the network a Gaussian distorted version of the original time. It can be seen that the associ-
ated PB vector is still the best matching vector in terms of Euclidean distance ǫ, after adding
a fair amount of noise (e.g. σ< 0.18 for the first signal).
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to the PB vector associated with the high frequency signal. However, during recog-
nition of the other noisy signals, no attraction to the high frequency PB vector can
be observed.

Figure 6 shows the error ǫ between the recognized PB values and the trained PB
values, as a function of amplitude and frequency of the presented signal. Due to the
third signal’s aperiodic nature, the parametric noise simulation was only applied to
the first and second signal.

0.5

0.6

0.7

0.8

0.9

1 2
2.5

3
3.5

4
4.5

5
5.5

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A

f

ǫ

Figure 6: This figure illustrates the model’s sensitivity to alterations of the original signal,
by plotting the Euclidean error between the expected PB vector and resulting PB vector as a
function of amplitude A and frequency f . Here, the expected PB vector is equal to the PB
vector associated with the single frequency sinusoidal signal. Comparison of the other PB
vectors yielded similar results.

As can be seen in the figure, the global minimum lies as expected on the origi-
nal amplitude and frequency values, while the error slightly increases when moving
away from this spot. Similar results were obtained for the second signal (not shown).

Another way to look at the network’s performance is by plotting the indidual
components of the PB vector, for varying frequency and constant amplitude, and
vice versa (see Figure 7). For the presented signal, a frequency interval of 2Hz to
7Hz was used, while an amplitude interval of 0.5 to 1 was used. For both intervals,
a stepsize of respectively 0.1 and 0.05 was applied. If the network has learned to en-
code a property of the trained time series, we would expect that the components of
the resulting PB vector follow a smooth trajectory in the planeR2 when a parameter
of the presented time series is increased or decreased. As can be seen in the figure,
in case of the frequency-variation, the PB vector follows a smooth trajectory in the
plane (the trajectory denoted by the gray dots). This indicates that the network has
learned to implicitly represent the frequency component of the presented signal in
the PB vector. On the other hand, generalization of the amplitude is limited, as can
be seen by the discontinuity of the trajectory denoted by the triangles. The encircled
values in the figure correspond to the PB vector values associated with the learned
time series.
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Figure 7: A 2D geometrical interpretation of the PB vector p = [p1, p2]
T , obtained as a result

of varying the frequency f of the presented signal, while keeping the amplitude A constant
(denoted by the gray dot marker). The contrary case is also shown, in which frequency was
kept constant, while amplitude is varied (denoted by the triangle marker). The latter case
was performed only for the single frequency sinusoid. A frequency interval of 2Hz to 7Hz was
used, while an amplitude interval of 0.5 to 1 was used, using a stepsize of respectively 0.1 and
0.05. The encircled PB vectors p k correspond the learned PB vectors associated with time
series k .

4.3 Model Demonstration

After showing that the model is able to both generate and recognize time series,
we can illustrate the main purpose of our model. To do so, A toy world has been
constructed, with the following features:

• a set of reachable goals,

• a set of perceivable features (states), and

• a set of possible actions.

In the world used in this experiment, two goals have been defined (see Figure 8):
i) moving from the location with the dot to the location marked by the cross, and ii)

moving from the location marked by the cross to the location marked by the dot. The
set of perceivable features consists solely of the ‘distance to the cross’ feature. This
feature is calculated as the Euclidean distance between the current board position
and the cross. The set of possible actions consists of moving up, down, left, and
right.

For each goal, three ways of achieving it have been simulated, and the resulting
state sequence was stored. Next, the model was trained to learn to predict one of the
three time series for both goals. This is illustrated in Figure 9. The left column shows
the time series used to train the network. Here, one of the non-diagonal movements
was used. Both non-diagonal movements produce the same sequence. Thus, the
network is already trained for two different ways of achieving the goal. The right
column shows the network’s ability to reproduce the trained signal.
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(a) Goal #1 (b) Goal #2

Figure 8: The board used in simulation. Two goals can be distinguished, namely a) reaching
the cross from the dot, and b) reaching the dot from the cross. The dashed arrows denote
alternative paths which can be followed to achieve the goals. These paths are constructed
using the available motor actions, which are moving up, down, left, and right.

After learning, recognition of different ways of achieving the defined goals was
tested. During recognition, the diagonal alternative of both goal directed state se-
quences were used as input. For both sequences, recognition yielded correct PB
vector values (ǫ < 0.01).

By this simulation it is shown that goals of an observed action can be inferred,
even if the bodies are dissimilar, and if an alternative way of achieving the same
goal is used. This demonstrates the model’s invariance for differences in kinematic
bodies, and different ways in which a goal can be achieved.

5 Conclusion and Discussion

Ever since it’s discovery, several functions have been attributed to the Mirror Neu-
ron System (MNS). Several models for the MNS have been proposed. The RNNPB
model, as proposed by Tani et al. (2004), is used as a basis for the present model.
However, the original RNNPB model lacks the ability of general goal inference, since
it requires that both the body of the observer and actor are similar. Furthermore, it
does not account for different ways in which a single goal may be achieved.

A model has been constructed, based on Tani et al.’s RNNPB model. Unlike
Tani et al.’s original model, this model is capable of goal inference, while its mirror
properties have been preserved. The present model circumvents the body-similarity
problem by separating recognition of motor and state sequences, which are tightly
coupled in the RNNPB model. The presented model provides a theoretical founda-
tion for experimental findings, which state that the MNS is involved in goal infer-
ence. Simulations have been performed to illustrate this functionality.

Simulation have shown that the model is robust against parametric variations in
the presented state sequences. This property allows one to select features which are
not fully invariant over different means in which a goal may be achieved. Further-
more, it has been demonstrated that the model is robust against noise, which is a
must-have for use real world applications.

Further simulations demonstrated the model’s ability to recognize a goal, while
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Figure 9: Results of training the model on the selected time series representing two goal-
directed movements, each of them directed to a different goal. The first row shows the time
series associated with the ‘move from dot to cross’ goal. The second row shows the time series
associated with the ‘move from cross to dot’ goal. The left column shows the time series used
as input during learning, and the right column shows the result of running the network in
closed loop mode after the learning phase.

the means of achieving the goal are varied. This makes the model suitable for rec-
ognizing and adapting to new ways in which a goal could be achieved, allowing the
model to optimize its ways of achieving goals. This is consistent with experimental
findings, which support the notion that the MNS is involved in intention under-
standing and imitation learning.

The generation of motor commands from a generated sequence of feature values
was left out the scope of this article. People that are interested, can implement such
a mapping by creating a forward and inverse model using a look-up table. Such a
look-up would simply map from desired states to necessary motor actions, and vice
versa.

Some questions are left open for further investigation. First of all, no research
has been done on stopping criteria for learning and recognition. Some proposals
have been made in (Haykin, 1998). Furthermore, no research has been performed
on the learning algorithm, leaving questions open regarding, for example, stability
of learning.
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