
Radboud University Nijmegen

Bachelor Thesis

in Artificial Intelligence

Understanding the features of a convnet
trained for phone recognition

Thesis submitted by:
Diede Kemper
s4056566

Supervisors:
Marcel Van Gerven∗

Umut Güçlü∗

July 8, 2015

∗ Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen

2

Abstract

For convolutional neural networks (convnets) trained for image recognition it is known what the fea-
tures represent. However, for convnets trained for phone recognition this is not known yet. This study
tried to answer the following question: What do the features of such a convnet represent? A convnet with
three convolutional layers was trained on the TIMIT phone recognition task and a deconvnet was applied
to obtain visualizations of its features. In experiment 1 the deconvnet was applied on the activation
caused by the top 4 input phones per feature. In experiment 2 it was applied on the activation caused
by the top 3 average phones per feature. Phone label analysis reveals consonant-, front vowel- and back
vowel-sensitive features in the third layer. For both experiments, the visualizations were hard to interpret.
It could be that visualizing features that represent aspects of audio is not the best way to gain insight into
the features, although more experiments that use different convnet architectures should be run to confirm
this. Future research could search for other ways to gain insight into the representations of the features,
by for example further exploring the possibilities of phone label analysis.

Introduction

Convolutional Neural Networks

Convolutional neural networks (convnets) are a
type of deep neural network with three distinc-
tive characteristics: local receptive fields, shared
weights and sub-sampling (Lecun et al., 1998).
The first layer of the convnet is a convolutional
layer, in which each unit is connected to a local
receptive field of the input, for example an image.
A convolutional layer is composed of multiple fea-
ture maps with different weight matrices. Such a
feature map is a set of units that all have their re-
ceptive fields at different locations on the image,
but share the same set of weights. This causes all
units in the feature map to be sensitive to the same
input, but at different locations on the image. The
subsequent layer is a sub-sampling layer. The re-
ceptive field of each sub-sampling unit is an area
of fixed size in the previous layer. The activation
of a sub-sampling unit is either the average (av-
erage pooling) or the maximum (max pooling) of
the output of the units in its receptive field. The
architecture of a convnet is not fixed and thus the
number, type and order of the layers can differ be-
tween convnets.

Currently, convnets are applied mostly in the
field of image classification. Contests in image
classification are held to promote research in this

field and convnets are true top performers. For ex-
ample, Krizhevsky et al. (2012) have built a large
convnet consisting of five convolutional and max-
pooling layers and three fully connected layers and
they trained it on the ImageNet dataset which con-
sists of 1.2 million labeled training images. Their
model achieved a winning top-5 test error rate of
15.3 percent in the ILSVRC-2012 competition.

Convnets have two properties that cause them to
be so good in image recognition. First, compared
to standard fully-connected networks, convnets
have much less parameters that need to be learned
and thus they are easier to train (Krizhevsky et
al., 2012). This comes in handy when training on
huge datasets such as the ImageNet dataset. Sec-
ond, convnets are less sensitive to variations in the
position of features in the input images than reg-
ular feedforward neural networks (LeCun & Ben-
gio, 1995). This is caused by the weight sharing
property of convnets. Because weights are shared,
units will be sensitive to the same features, and
because their receptive fields are at different lo-
cations on the input they can recognize the same
feature at all locations. For example, the network
of Krizhevsky et al. (2012) could correctly classify
a mite even when it was depicted at the edge of the
image. Third, whereas fully-connected networks
ignore the topology of the input, the local receptive
fields of the units of convnets force the network to

3

extract and combine local features before recog-
nizing the full image (LeCun & Bengio, 1995).

Visualizing the features

Visualizing the features that the feature maps of
a convnet represent can be a good way to gain in-
sight in the network. When visualizing a feature
of a network, the activation of the corresponding
feature map is projected back onto input space. In
other words, it is decided which input activation
could probably have caused the activation within
the feature map and this input activation is visu-
alized. Visualizing the features of the first layer is
easy, because the first layer is connected directly to
input space. However, for features of deeper lay-
ers visualization is hard. Zeiler & Fergus (2014)
introduced a new technique that can be used to vi-
sualize the features of these deeper layers. They
used a Deconvolutional Neural Network (decon-
vnet), which can be seen as the opposite of a con-
vnet. A convnet maps pixels to features and a de-
convnet maps features to pixels.

Zeiler & Fergus (2014) trained a convnet with
the same architecture as the award winning net-
work of Krizhevsky et al. (2012). They trained the
network on the ImageNet dataset and then visu-
alized its layers, which showed two important re-
sults. First, visualizations of deep layer features
were more complex than those of first layer fea-
tures. In layer 1, stripes and borders were repre-
sented. In layer 2, corners and circles were visible.
In layer 3 and 4 the features became more com-
plex, up to layer 5 where whole objects such as
faces and petals were represented. Second, Zeiler
& Fergus (2014) showed that visualizing the lay-
ers of a convnet can help finetune the architecture
of the network. For example, the authors found
that the first layer filters focused too strongly on
the high and low frequency information and not
enough on the mid frequencies. Moreover, the
visualization of the second layer showed aliasing
artefacts. After finetuning the network parameters
to remedy these problems, the new network per-
formed better in terms of classification accuracy.

Application to audio

The application of convnets for speech recog-
nition is a new emerging field. In 2012, Hinton
et al. wrote an overview paper about the applica-
tion of deep neural networks to speech recognition,
with only one paragraph dedicated to the applica-
tion of convnets to speech recognition. One year
later, the same research teams as before wrote an
extra overview paper to describe the advances of
that year. One of the new discoveries they men-
tion was that convnets work better than plain deep
neural networks because they have less parameters
to train and the pooling gives some invariance to
vocal tract differences between speakers (Deng et
al., 2013).

There has not been much research on the mecha-
nisms by which convnets trained for speech recog-
nition exactly work. One of the only studies in this
matter was conducted by Ma et al. (2014). They
have studied the physical meaning of the hidden
layers of a deep neural network trained for speech
recognition. They first trained a seven-layered
deep neural network on the TIMIT phone recogni-
tion task and then compared its performance with
the performance of the network when one of its
layers is removed. The idea behind this method
was that the performance of the network with one
removed layer tells us something about the respon-
sibility of that layer. When the probability of cor-
rectly classifying a certain phone decreases when
a layer is removed from the network, it is proba-
ble that the removed layer is responsible for rec-
ognizing that type of phone. However, when the
probability of correctly classifying a phone does
not decrease when removing a layer, it is probable
that the layer is not responsible for recognizing that
type of phone.

Using this method, the authors found that the
first layers are responsible for the back vowels1,

1Back vowels are vowels produced by changing the
position of the back of the tongue, for example the ’a’
in ’car’. Front vowels are produced by changing the
position of the front of the tongue, for example the ’i’

4

whereas the latter layers are responsible for the
front vowels. Moreover, they found that the first
hidden layer is responsible for most of the conso-
nants with the constriction located in the front of
the vocal tract2, whereas the other consonants are
processed by the middle and higher layers. Why
this pattern arises is yet unknown.

Research questions

There is much to discover about the mechanisms
by which convnets trained for speech recognition
exactly work. This study will dive deeper into
this, by answering the following research ques-
tions: what do the features of a convnet represent
when the convnet is trained to classify phones?
And how do the features change from layer to
layer? To answer these questions, a convnet is
trained to classify phones and a deconvnet is ap-
plied to the activation of its feature maps. Then,
in order to interpret the result, the output of the
deconvnet is visualized.

There are two main hypotheses about the result
of this study. The first hypothesis is that features
will get more complex when moving from the first
to the latter layers, just like Zeiler & Fergus (2014)
found when visualizing the features of a convnet
trained for image recognition. The second hypoth-
esis is that features will represent those parts of a
spectrogram that give information about the phone
that is depicted. But what are these relevant parts
of spectrograms? That question is answered within
the field of acoustic phonetics. Here, a short sum-
mary of the answer will be given, mainly based on
the book by Ladefoged & Johnson (2011).

In spectrograms, vowels can be recognized by
looking at the formants. Formants are peaks of en-
ergy at particular frequencies (Harley, 2008). The
two lowest formants distinguish vowels from each
other. The lowest formant F1 is related to the
’height’ of a vowel, which is whether the tongue
moves up or down to produce the vowel. The dis-
tance between formants F1 and F2 is related to the
’backness’ of a vowel, which is the extend to which
the vowel is produced in the front or the back of the

mouth. When the frequency of formants change
over time, this indicates that the shape of the mouth
has changed over time and that the phone is a diph-
thong: a combination between two other vowel
sounds. Figure 1 shows the spectrograms of a
vowel and a diphthong3.

Consonants often show more complex spectro-
grams than vowels. Consonants can be seen as par-
ticular ways of beginning or ending a vowel and
do not always have distinguishing characteristics
themselves. Consonants can be distinguished by
looking at attributes such as the onset and offset
frequency of each formant, whether the formant
changes in frequency, whether there is a sudden or
gradual silence, whether there is noise and if so, at
which frequency and the intensity of the different
frequencies. Figure 2 shows two spectrograms of
consonants. The first shows the nasal consonant
’n’. Nasal consonants start abrupt. Their formant
structure is similar to that of a vowel, except that
the formants are fainter. There is usually a very
low first formant centered at about 250 Hz. Differ-
ent nasal consonants can be distinguished by look-
ing at the formant transition patterns at the onset
and end of the phone. The second spectrogram in
Figure 2 shows the consonant ’s’, which is a voice-
less fricative. Voiceless fricatives can be recog-
nized by random-like noise in higher frequencies.
For the ’s’ in particular this noise has a very high
intensity.

To summarize, based on the previous section, it
is hypothesized that the features in the first layers
represent formants, their onset and end points and
random noise patterns. Furthermore, it is hypothe-
sized that in latter layers the position of noise and

in ’bit’.
2An example of a consonant with the constriction

located in the front of the vocal tract is the ’p’ in ’pie’.
A consonant with the constriction located more deeply
in the vocal tract is the ’k’ from ’kid’.

3In this thesis the same phone labels are used as
in the TIMIT database. The book chapter by Lopes
& Perdigao (2011) is used to know which phone label
matches which sound.

5

(a) ’eh’ (b) ’oy’

Figure 1. Panel a) shows the spectrogram of the vowel ’eh’, for example the ’e’ in ’bed’. The horizontal
bars of high energy are the formants. Panel b) shows the spectrogram of the diphthong ’oy’, for example
the ’oy’ in ’boy’. It can be seen that the formants change frequency over time.

(a) ’n’ (b) ’s’

Figure 2. Panel a) shows the spectrogram of the nasal consonant ’n’, for example the ’n’s in ’noon’. Panel
b) shows the spectrogram of the consonant ’s’, for example the ’s’ in ’sea’.

formants relative to each other and their frequen-
cies are represented. Besides the two hypotheses it
will also be checked whether the features between
the layers differ in some way that could explain the
results found by Ma et al. (2014).

Materials and Methods

In this section, the materials and methods that
are used in this study are described. Some of
the work described in this section was performed
together with Riemens (2015) and Churchman
(2015). To be precise, the preprocessing of the
auditory data and the design and training of the

6

convnet were shared activities. All other work that
is described was performed by the author of this
thesis herself.

Preprocessing the auditory data

The dataset that is used in this study is the
TIMIT dataset (Garofolo, 1993). TIMIT contains
the recordings of 630 speakers each reading out
loud ten sentences in American English. Two sen-
tences are read by all speakers, the other eight
sentences vary between speakers. The dataset is
divided into a balanced train and test set. The
dataset was read using the Matlab Audio Database
Toolbox, that automatically splits the audio data
in slices that represent phones. The sentences that
were read by all speakers (with codes ’SA1’ and
’SA2’) were not included to prevent some phones
to be overrepresented, because this could bias the
results (Abdel-Hamid et al., 2012). Following Lee
& Hon (1988), the 61 phone labels were converted
to a set of 48 phone labels, such that similar phones
are grouped together under the same label.

The inputs to the convnet must be of equal
size. Therefore, the audio data of each phone was
padded with zeros on both sides such that it was as
long as the longest phone in the dataset. However,
to save memory, the largest 5 percent of the phones
were excluded before zero padding the data. Then,
the data of each phone was represented as a spec-
trogram, using the short-time fourier transform4.
This was done using a 16ms Hanning window and
a fixed frame rate of about 9ms. The number of
frequency bins (y-axis) was 201 for each spectro-
gram5. Moreover, all spectrograms (of both train-
ing and test phones) were normalized by subtract-
ing the average of all training spectrograms. At
the end, each of the 126691 train and 45744 test
phones was represented as a spectrogram with 201
frequency bins and 16 time windows.

Convnet architecture and training

In the appendix it is explained in detail how
deep neural networks, and in specific convnets,

work and how they can be trained. For the im-
plementation of the convnet the Matlab toolbox
MatConvnet (Vedaldi & Lenc, 2014) was used.
The code that was used to train the network was
based on example code available in the toolbox.
For training, stochastic gradient descent was used,
which was already implemented in the code, with
a batchsize of 128 phones per batch. To make
the training faster, the network was trained on a
GPU. Moreover, batch loading and network train-
ing were done on two separate threads. To make
multithreading possible, some of the code had to
be rewritten to C++. As can be seen in Fig-
ure 3, the number of train examples per phone
class differs tremendously. To solve this prob-
lem, (re)sampling took place every epoch such that
there was a uniform distribution of classes6. The
network was trained for 372 epochs. Adagrad was
implemented to make the learning rate annealing
automated (Dyer, n.d.). Moreover, a dropout layer
with a dropout rate of 0.9 was added to the net-
work to combat overfitting. Also, following Lee

4Two other types of spectrograms have been consid-
ered. For the first type, the gammatone based spectro-
gram, the problem was that data took too much mem-
ory when stored in this form. With the second type, the
melscale based spectrogram, the convnet did not per-
form as well as with the short-time Fourier transform
spectrogram type.

5This parameter was chosen such that there was a
nice trade-off between network training speed and re-
construction quality, with reconstruction quality mea-
sured as the correlation between the original signal and
the signal that arises from inverting the spectrogram.
With 201 frequency bins, this correlation was 0.91. For
comparison, with 101 frequency bins this correlation
was 0.36 and with 301 frequency bins this correlation
was 0.98.

6Sampling took place such that each class had 500
train examples per epoch. In case the class did not have
500 different train examples, all train examples were
used at least once and some train examples were resam-
pled (without replacement) such that the total number
of examples was 500. The same method was used such
that each class had 200 test examples per epoch.

7

& Hon (1988), the convnet was trained to classify
48 phone classes, but validated with only 39 phone
classes, such that confusions between some of the
48 phone classes were not seen as errors.

Multiple different architectures of convnets have
been considered. Their performance was com-
pared by training each convnet for 10 epochs on
a section of the training data. The first main ar-
chitecture that was considered used convolution
across both axes. It did not perform well and
changing parameters did not add much to its per-
formance. The second main architecture that was
considered used convolution across the time axis
only, inspired by the time-delay neural networks
(Waibel et al., 1989). It performed quite well:
with two convolutional layers and two fully con-
nected layers it had an phone recognition accuracy
of 48.7%. The third main architecture that was
considered used convolution across the frequency
axis only. This architecture was inspired by the
paper of Abdel-Hamid et al. (2013), who showed
that convolution across frequency axis works bet-
ter than convolution across time axis for their con-
vnet. As a possible reason for the difference in
performance the authors mention that the input to
their convnet only has 15 time windows compared
to 40 frequency bins, and thus convolution across
frequency has more benefit because there is more
to convolve over. In the current study, this is also
the case: The input has 16 time windows compared
to 201 frequency bins, and thus convolving across
frequency makes more sense. Using this architec-
ture with two convolutional layers and two fully
connected layers, the convnet had a phone recog-
nition accuracy of 59.1%.

The final version of the convnet scored a phone
recognition accuracy of 62.6% and its architecture
is as follows. All units, except for the units in the
last layer, are Rectified Linear Units, which means
that their activation function is f (x) = max(0, x).
The convnet starts with three convolutional and
max pooling pairs. The first convolutional layer
consists of 8 units each with a filtersize of 8 fre-
quency bins and 16 time windows. This filtersize

covers all time windows and thus the filter only
convolves across the frequency axis. The second
dimension of the filters of the second and third
convolutional layer is of size 1, because the time
axis is reduced to size 1 in the first convolutional
layer and thus the filters cannot be larger. The sec-
ond convolutional layer consists of 16 units, each
with a filtersize of 6 × 1. The third convolutional
layer consists of 32 units each with a filtersize of
4 × 1. Each max pooling layer has a pool size of
5×1 and a stride of 2. The last max pooling layer is
followed by three fully connected layers, each con-
sisting of 1000 units. The convnet ends with one
fully connected layer consisting of 48 units. This
last layer has the softmax function as its activation
function, which causes the output of the network
to be a categorical probability distribution.

Visualizing features by using a deconvnet

Zeiler & Fergus (2014) have introduced the de-
convnet as a new technique that can be used to vi-
sualize the features of a convnet. The following
section describes how this technique works. As
described before, a deconvnet can be seen as the
opposite of a convnet. For each layer in the con-
vnet the deconvnet has a corresponding layer that
approximately inverts the operation of the convnet
layer: Each max pooling layer has a corresponding
max unpooling layer and each convolutional layer
has a corresponding deconvolutional layer. Figure
4 shows how a deconvnet (on the right) is attached
to a convnet (on the left) to be able to visualize the
features of the convnet.

Suppose the goal is to visualize a certain feature
F within the second convolutional layer of the con-
vnet. The first step is to select the input for the
convnet that will cause the most activation within
the feature map of F. Let us call the location of this
maximum activation within the feature map loca-
tion L. Then, a forward pass is performed through
the convnet with this input (the grey arrows that
go up in Figure 4) up to the second convolutional
layer. The activation in this last layer is copied
to the corresponding deconvolutional layer in the

8

Figure 3. The number of train examples per phone class (folded to 48 classes).

deconvnet. Then, all activation in the deconvolu-
tional layer is set to zero, except for the activation
at location L within the feature map of F. Again,
a forward pass is performed, this time through the
deconvnet (the grey arrows that go down). Note
that the layers of the deconvnet have the opposite
order as the layers of the convnet. The output of
the deconvnet shows the part of the input that has
activated location L. If this output is visualized, it
shows to what input feature F is sensitive.

A deconvnet has two types of special layers. The

Figure 4. A convnet (left) with a deconvnet (right)
attached to it.

first is the max unpooling layer, which approxi-
mately inverts the operation of the max pooling
layer of the convnet. In Figure 5, both the max
pooling and max unpooling operation is depicted.
As can be seen, a max pooling layer takes the max-
imum value from, in this case, a 2× 2 pooling area
as the value of the units. It also saves the loca-
tion of the maximum value for each pooling area
in the so called switches. The max unpooling layer
takes the maximum values and places them back
onto the locations where they came from. The
layer uses the switches to know at what locations
the maximum values should be placed. The sec-
ond special layer of the deconvnet is the decon-
volutional layer, which approximately inverts the
operation of the convolutional layer of the con-
vnet. The deconvolutional layer uses the same fil-
ters as the corresponding convolutional layer, with
the only difference that the filters are flipped both
vertically and horizontally. It then convolves these
filters over its zeropadded input.

Springenberg et al. (2015) have extended the de-
convnet technique by Zeiler & Fergus (2014) by
extending the way the rectified linear function is
approximately inverted, as shown in Figure 6. Dur-
ing the forward pass, the rectified linear function

9

Figure 5. In the max pooling layer, the location
of the maximum values are stored in the so called
switches. The max unpooling layer uses these
switches to know where to put the maximum val-
ues.

sets all negative activation to zero (Panel 6A). Dur-
ing backpropagation and in a deconvnet, the back-
ward pass through this function is executed in a
different way. During backpropagation, all values
that were set to zero during the forward pass are
set to zero in the backward pass too (Panel 6B).
In a regular deconvnet, the rectified linear func-
tion that is applied within the convnet is approx-
imately inverted by applying the same function
within the deconvnet (Panel 6C). Springenberg et
al. (2015) found that using the guided backpropa-
gation method, which combines the regular decon-
vnet method with the method used during back-
propagation, gave much less noise in the results of
the deconvolution process, mainly when visualiz-
ing the features in higher layers.

The current study

The current study consisted of two experiments.
In the first experiment, the features of the three
convolutional layers were visualized using a de-
convnet with the extra method of guided backprop-
agation. This was implemented in Matlab7. For
each feature, the 4 input spectrograms within the
test set that caused the most activation in the fea-
ture map were selected. These 4 phones were then
used to visualize the aspects of the phone that the

Figure 6. Panel A shows the forward pass, in
which the rectified linear function is applied to all
values. Panels B to D show different ways to ex-
ecute the corresponding backward pass. Panel B
shows the backward pass during backpropagation
and Panel C shows the backward pass in a decon-
vnet. Panel D shows the method of guided back-
propagation, which combines the methods that are
used during backpropagation and in a deconvnet.

feature was sensitive to.8

The results of the first experiment were hard to
interpret, because the input phones used in the de-
convolution process of different features were very
similar and thus did not convey much information
about the features. Therefore, in the second ex-
periment the deconvolution method was used in a
different manner. First, for each of the 48 phones
within TIMIT an average phone was created based
on the spectrograms within the test set. The inten-
sities of the average phones were set to vary be-
tween 0 and 1, to ensure that a difference in in-
tensity could not cause all features to be sensitive
to the same phones. Then, for each of these av-
erage phones the maximum activity of each fea-
ture was computed. The top 3 average phones per
feature were then used to visualize the aspects of
the phone that the feature is sensitive to, using the

7Code for deconvolution was retrieved from the
following url (2015-07-04): https://github.com/
umuguc/matconvnet/tree/deconvnet/examples/
deconvnet.

8Seven feature maps of the third convolutional layer
did not have a positive activation with any of the input
phones. The corresponding features were not visualized
and excluded from further analysis.

https://github.com/umuguc/matconvnet/tree/deconvnet/examples/deconvnet
https://github.com/umuguc/matconvnet/tree/deconvnet/examples/deconvnet
https://github.com/umuguc/matconvnet/tree/deconvnet/examples/deconvnet

10

same method as in experiment 1. The results of the
two experiments will now be described.

Results

Experiment 1

Figures 7, 8 and 9 show some of the visualized
features of respectively the first, second and third
convolutional layer9. The intensity of all projec-
tions was changed such that it ranged from 0 to
6 within each feature. Figure 10 shows the pro-
jection of a feature of the first layer. As can be
seen, the projection does not cover the whole input
space. This was true for all features of the three
convolutional layers. Therefore, only the activated
parts were visualized. Note that the exact frequen-
cies at which the projections appeared is not im-
portant: all features are convolved across the fre-
quency axis and can react to activity across the full
input space. As with the projection in Figure 10,
almost all projections appeared in the lower fre-
quencies. Reason for this is that the lower fre-
quencies have a higher intensity in human speech
(Ladefoged & Johnson, 2011), and therefore lower
frequencies will be able to activate a feature more
strongly than higher frequencies. In the following
paragraphs, we will take a closer look at the fea-
tures layer by layer.

Figure 7 shows the features of the first convolu-
tional layer. For every feature only the projection
of the maximum activation is shown, because all
top 4 activations showed a very similar projection.
As can be seen, the features show diverse patterns
of sensitivity over time. Some features are sensi-
tive to activity at the onset of the phone, whereas
others are sensitive to activity at the end or at the
middle of the phone. Some features are sensitive
to a very short burst of activity whereas others are
sensitive to a more noisy pattern of activity.

Figure 8 shows six out of sixteen features of
the second convolutional layer. For each feature
the projections of the top 4 activations are shown.
Note that each projection covers two to three times
more frequency bins as the features of the first

layer. The features look quite noisy, but some pat-
terns can be distilled: again, some features are sen-
sitive to activation mainly at the onset (feature (a))
or at the end of the phone (feature (b)). Also, some
features are sensitive to high activation in the mid-
dle of the phone (feature (c)) whereas other fea-
tures are more sensitive to activation at both the
onset and the end of the phone (feature (d)). How-
ever, in most features it is hard to see clear patterns.

Figure 9 shows six out of 32 features of the third
convolutional layer. For each feature the projec-
tions of the top 4 activations are shown. Note that
each projection covers twice as much frequency
bins as the features of the second layer. As with
the features of the second layer, it is difficult to see
patterns clearly by eye. It is visible that sometimes
activation is more at the onset and sometimes more
at the end of the phone. Moreover, the features
differ in how wide their activation is. For example,
feature (a) is sensitive to a thinner stroke of acti-
vation than feature (d). Another thing that draws
attention is that feature (c) looks like it represents
two horizontal lines of activation at the right side
of the feature. When looking at the input phones
that were used for these projections, three out of
four phones indeed show two clear formants (see
Figure 11).

Table 1 shows the similarities of the different
features quantified by two measures. The first
measure is the sum of squared errors, which for
each datapoint takes the squared error between
both features and then sums these. Thus, the more
similar two features are, the lower their sum of
squared errors is. The second measure is the aver-
age column-wise cross correlation. For each time
point in the features, the normalized cross correla-
tion is taken and the maximum value of the created
sequence is computed. Then, the average of the
maxima of all time points is computed. If two fea-
tures are very similar, their average column-wise
cross correlation is very close to one.

9Note that only a part of the features is depicted
because of shortage of space. All results that are not
depicted are send along with this thesis.

11

These two measures are used to compute two
similarity scores. First, the between-feature sim-
ilarity, which is the similarity of projections of dif-
ferent features. Second, the within-feature sim-
ilarity, which is the similarity of projections of
the same feature. As can be seen in the table,
from both measures the same conclusions can be
drawn. To begin with, for the first layer the av-
erage within-feature similarity of the features is
very high, whereas the average between-feature
similarity is lower. Furthermore, for the features
of the second and third layer, the average within-
feature similarity is only a bit higher than the aver-
age between-feature similarity.

Figure 12 shows how often each phone label
is used as a top 4 input phone for the deconvo-
lution process. As can be seen, vowels are over-
represented. Almost all input phones used for de-
convolution are vowels. Thus, the labels of the
top 4 input phones do not convey much informa-
tion about the features. Moreover, the input spec-
tograms are very similar and often do not show
any clear feature-specific characteristics. There are
two exceptions. First, the input phones of one fea-
ture of the second convolutional layer (feature (e)
in Figure 8) are all very short. Figure 13 shows
the spectrograms of its four input phones. As can
be seen, all phone labels are different, but the four
phones are all very short. Thus in some way, the
feature is sensitive to a pattern common in short
phones. Second, the input phones of one feature of
the third convolutional layer (feature (f) in Figure
9) are all consonants, with three out of four being
s-like sounds. Figure 14 shows the spectrograms
of its four input phones.

There are two possible explanations for why al-
most all input phones used for deconvolution are
vowels. First, vowels show more intensity on av-
erage and therefore could cause more activation
within features. Figure 15 plots for each phone
label the average maximal intensity of its spectro-
grams. As can be seen, the spectrograms of vowels
tend to have a higher maximum intensity than the
spectrograms of consonants. Second, vowels show

very clear formants that are often quite constant
in frequency over time. These formants show in
spectrograms as horizontal lines of high intensity.
Since all features are thin and horizontal, it could
be that they ’catch’ most activation when on top of
a formant.

Thus, it is not strange that the input phones used
for deconvolution were mostly vowels. It does
make it difficult to interpret the results. Therefore,
a second experiment was run, that focussed more
on making clear to which phones each feature is
most sensitive.

Figure 7. All features of the first convolutional
layer. For every projection, the y-axis covers 8 fre-
quency bins which is equal to a range of about 300
Hz.

Table 1
Per layer, the average between-feature and within-
feature similarity scores for the projections cre-
ated in experiment 1. Similarity is measured as the
sum of squared errors (SSE) and as the average
column-wise cross correlation (corr).

Between-feature Within-feature
Layer SSE corr SSE corr

1 14.3590 0.4355 <0.0001 1.0000
2 31.9019 0.5295 28.2896 0.5992
3 45.9228 0.5064 44.2928 0.5249

12

(a) (b)

(c) (d)

(e) (f)

Figure 8. Six out of sixteen features of the second convolutional layer. For each feature the projections of
the top 4 activations are shown. For every projection, the y-axis covers 21 frequency bins which is equal
to a range of about 850 Hz.

13

(a) (b)

(c) (d)

(e) (f)

Figure 9. Six out of 32 features of the third convolutional layer. For each feature the projections of the
top 4 activations are shown. For every projection, the y-axis covers 42 frequency bins which is equal to a
range of about 1700 Hz.

14

Figure 12. Histogram that plots how often each phone label appeared in the top 3 input phones of features
(experiment 1).

Figure 10. The full projection of a feature of the
first convolutional layer. Figure 11. The top 4 inputs of feature (c) of the

third convolutional layer.

15

Figure 15. Per phone label the average maximal intensity of its spectrograms.

Figure 13. The top 4 inputs of feature (e) of the
second convolutional layer.

Figure 14. The top 4 inputs of feature (f) of the
third convolutional layer.

16

Experiment 2

The results of this second experiment is divided
in two sections. First, the actual projections of the
features are analysed. Second, the phone labels
that were used for these projections are analysed.

Projections. Figures 16, 17 and 18 show some
of the projections of the features10. Visual inspec-
tion of the projections themselves does not result in
more information than we already had: besides the
sensitivity to high activation in different points in
time it is hard to notice any clear patterns. A differ-
ence with the results of the first experiment is that
there is more variation in the location of the projec-
tion in the spectrogram. For example, Panel 17b)
shows a feature of which the third projection is lo-
cated in the middle frequencies. Moreover, Panel
18b) shows a feature that is located at the higher
frequencies of the spectrogram for all projections.
A closer inspection of this feature and other fea-
tures that show the same behaviour, reveals that the
maximum activity of these features is negative for
all average input phones. Thus, when placed on
patterns of high activation, these features will have
a strong negative activation. It could be that these
features are sensitive to certain patterns of (close
to) zero activation in the input phones.11

Again, both the sum of squared errors and the
average column-wise cross correlation are com-
puted between the features to see how similar they
are. Table 2 shows the results for the second exper-
iment. The results are the same as those of the first
experiment. For both measures, the within-feature
similarity of the first layer features is very high,
whereas the between-feature similarity is lower.
Furthermore, for the features of the second and
third layer, the within-feature similarity is only a
bit higher than the between-feature similarity.

Now that, in the two experiments, two different
methods are used to visualize the same features,
one could wonder to what extend these two meth-
ods give similar projections per feature. Table 3
shows this. As can be seen, the projections of the
features of the first layer do not differ between the
experiments. The projections of the features of

the second and third layer do. However, the simi-
larities of the between-method comparison are for
both experiments closer to the within-feature sim-
ilarities than to the between-feature similarities.
Thus, it is likely that the difference between the
projections of both experiments is caused by the
variation in input phones used for deconvolution
that also occurs in both experiments separately.

Table 2
Per layer, the average between-feature and within-
feature similarity scores for the projections cre-
ated in experiment 2. Similarity is measured as the
sum of squared errors (SSE) and as the average
column-wise cross correlation (corr).

Between-feature Within-feature
Layer SSE corr SSE corr

1 14.3590 0.4355 <0.0001 1.0000
2 32.4422 0.5251 29.5021 0.5782
3 48.3679 0.5029 47.6350 0.5127

Table 3
Per layer, the average between-method similarity
of all projections, which compares the projections
created in experiment 1 with those created in ex-
periment 2. Similarity is measured as the sum of
squared errors (SSE) and as the average column-
wise cross correlation (corr).

Between-method
Layer SSE corr

1 <0.0001 1.0000
2 29.8113 0.5928
3 44.6686 0.5223

10Again, all other projections are send along with
this thesis.

11Note that in the first experiment, only the features
that had a positive maximum activation were selected.
Features that did not meet this requirement were not
visualized.

17

Figure 16. The projections and input phones of one out of eight features of the first convolutional layer.

18

(a)

(b)

Figure 17. The projections and input phones of two out of sixteen features of the second convolutional
layer.

19

(a)

(b)

Figure 18. The projections and input phones of two out of 32 features of the third convolutional layer.

20

Phone label analysis. Figure 19 shows how
often each phone label is used as an input phone
for the deconvolution process in the second experi-
ment. As can be seen, besides vowels also multiple
consonants appear often in the top 3 activations of
features. This was not the case in the first experi-
ment. Probably, the reason for this change is that
the intensity of all input spectrograms were set to
vary in the same range.

Thus, the advantage of the second experiment
over the first experiment is that the phone labels
of the input phones can give information about the
sensitivity of features to certain types of phones.
Table 4 shows per layer how many features are
mainly sensitive to consonants, to vowels or to nei-
ther. The sensitivity of a feature is based on the 5
average input phones that cause the feature to be
most activated. A feature is said to be sensitive to
consonants, if at least 3 out of 5 input phones is a
consonant, and at most 1 out of 5 input phones is
a vowel12. A feature is said to be sensitive to vow-
els, if at least 3 out of 5 input phones is a vowel,
and at most 1 out of 5 input phones is a conso-
nant. As can be seen in the table, the features of
the first layer are about equally sensitive to con-
sonants and vowels. The features of the second
layer are mainly sensitive to neither consonants or
vowels and some are sensitive to vowels; only one
feature is sensitive to consonants. The features of
the third layer are mainly sensitive to vowels, and
equally sensitive to neither or to consonants.

And if a feature is sensitive to, say consonants,
is this a specific type of consonant it is sensitive
to? For example, consonants with the constriction
located in the front of the vocal tract compared to
those with the constriction located in the back of
the vocal tract? Or, in case of vowels, are there
features sensitive to front or back vowels in spe-
cific? This has been analysed for the features of
the third convolutional layer. Each vowel and each
consonant has been graded on a 7 point scale, with
1 being very front and 7 being very back 13. For
each vowel-sensitive feature, the scores of its top
3 input vowels are added up to a total score. For

Table 4
Per layer, the number of features that is mainly sen-
sitive to consonants or to vowels or to neither.

Layer consonants vowels neither total
1 3 4 1 8
2 1 5 10 16
3 7 18 7 32

each consonant-sensitive feature, the same is done
for the scores of its top 3 input consonants. Thus,
the feature can have a total score ranging from 3
to 21, with 3 meaning that it is very sensitive to
front vowels or consonants and 21 meaning that
it is very sensitive to back vowels or consonants.
Scores of around 12 mean that the feature is not in
specific sensitive to either front or back vowels or
consonants.

Figure 20 shows the results of this analysis.
Panel 20a) shows the results for the 18 vowel-
sensitive features of the third convolutional layer.
It can be seen that some features are mainly sensi-
tive to front vowels and others are mainly sensitive
to back vowels. Panel 20b) shows the results for
the seven consonant-sensitive features. Five out of
seven features do not seem to be sensitive to ei-
ther front or back consonants and two out of seven
features seem to be more sensitive to back conson-
tants.

12There are input phone labels that are neither a con-
sonant nor a vowel, such as ’sil’ which refers to ’si-
lence’.

13This grading was based on second chapter of the
book by Harley (2008). All front vowels scored 1,
all central vowels scored 4 and all back vowels scored
7 points. All bilabial, labiodental and dental conso-
nants scored 1, all alveolar consonants scored 4 and all
postalveolar, velar and glottal consonants scored 7.

21

Figure 19. Histogram that plots how often each phone label appeared in the top 3 average phones of
features (experiment 2).

(a) (b)

Figure 20. These histograms show how many features of the third layer are sensitive to specific types
of vowels and consonants. Panel a) shows for all vowel-sensitive features, whether they are specifically
sensitive to front or to back vowels. Panel b) shows for all consonant-sensitive features, whether they are
specifically sensitive to consonants with the constriction located in the front or in the back of the vocal
tract.

22

Discussion

This study searched for an answer on the fol-
lowing two research questions. First, what do the
features of a convnet represent when the convnet
is trained to classify phones? And second, how do
the features change from layer to layer?

Let us first tackle the second research question,
because it is the easiest to answer. The hypothe-
sis was that features will get more complex when
moving from the first to the latter layers, and the
results seem to confirm this hypothesis: The fea-
tures of the second layer look more complex than
the features of the first layer. For example, one fea-
ture of the second convolutional layer (feature (d)
in Figure 8) is sensitive to activity both in the onset
and end of a phone, whereas all features of the first
layer are sensitive to activity at only one position in
time. Also the features of the third layer look more
complex than the features of the second layer. For
example, some features of the third layer (amongst
others, feature (c) in Figure 9) seem to be sensitive
to two horizontal bands of activation.

But of course, it is not strange that the features
get more complex from layer to layer. First of
all, the features of the latter layers cover more
frequency bands of the input and thus have more
’space’ to show complex patterns. Second, the
whole point of a convnet is that latter features com-
bine earlier features into a more complex repre-
sentation. If this hypothesis would not have been
confirmed, there would probably be an error in the
implementation of the convnet.

Let us now deal with the more difficult question:
what do the features of the convnet represent? The
hypothesis was that the features in the first layer
represent formants, their onset and end points and
random noise patterns, and that the features in the
latter layers represent the position of noise and for-
mants relative to each other and their frequencies.
When looking at the projections of the features,
formant-like patterns can be found. Also, there
seem to be some features in the latter layers that
show their relative positions. However, these pat-
terns never show clearly in all projections of the

feature. As the similarity measures indeed show,
the projections per feature are only slightly more
similar than the projections of different features.
It is thus difficult to draw conclusions about the
meaning of the features based on their projections.

Experiment 2 was started for this reason. The
idea was that if the input phones would really
match the features, then it would be easier to in-
terpret the feature projections themselves. In the
study of Zeiler & Fergus (2014) this was the case.
They depicted projections of features that are much
more easy to interpret when looking at the input
image that was used for the projection. In the cur-
rent study, the features are slightly more easy to
interpret when also looking at the input phones
that were used for the projections. For example,
for some features the input phones show that they
are mainly sensitive for consonants or for shorter
phones. However, the benefit of seeing the input
phones is not as high as in the study of Zeiler &
Fergus (2014). One reason for this is that visu-
ally depicted sound is not as easy to interpret as
depicted images. Moreover, in the study of Zeiler
& Fergus (2014) there was much more variation
in input images and thus it is informative to see to
what part of the image a feature was most sensi-
tive. Whereas in the current study, most features
are sensitive to the same lower frequencies of the
input phone.

Thus, this research question cannot be answered
based on the results of the current study. How
could this question be answered in future research?
A first suggestion would be to apply deconvolu-
tion to a convnet that has more than 3 convo-
lutional layers. Maybe latter layers will show
more clear patterns. Unfortunately, in the current
study the resources were not available for a larger
network. A second suggestion would be to ap-
ply deconvolution to a convnet that uses convo-
lution across the time-axis instead of across the
frequency-axis. In the current study, convolution
across the frequency-axis was used, which caused
features to have formant-like shapes. This way, it
is very difficult to discriminate between a "regu-

23

lar" feature and a feature that represents a formant.
When using convolution across the time-axis this
problem does not arise. Features will be vertical
bars and formants would be recognizable by hori-
zontal bars of sensitity across the feature. If there
are no horizontal bars of sensitivity, then features
simply do not represent formants.

An advantage of experiment 2 is that the labels
of the phones used for deconvolution vary from
feature to feature and thus can be used for de-
ducing the meaning of the features. Experiment
2 showed that some features were mostly acti-
vated by vowel inputs whereas other features were
mostly activated by consonant inputs. This find-
ing could help explain the results found by Ma et
al. (2014). As described in the introduction, they
trained a deep neural network on phone recogni-
tion and found that the first layers were more re-
sponsible for recognizing back vowels and front
consonants, whereas the latter layers were more
responsible for recognizing front vowels and back
consonants. In the current study, it was found for
the third convolutional layer that there were in-
deed features that were more sensitive to one of
both types of vowels. Moreover, there was a ten-
dency for consonant-sensitive features to be more
sensitive to back consonants than to front conso-
nants. However, there were not enough consonant-
sensitive features to see clear patterns. Further-
more, in the study by Ma et al. (2014) a deep neural
network with seven layers was used, whereas in the
current study, only the three convolutional layers
could be analysed, of which only the third layer
had enough features to draw some conclusions.
Thus, the results of this study cannot be used for
understanding why the responsibility of the fea-
tures differ from layer to layer as found by Ma et
al. (2014). Future research could delve deeper into
this, by applying phone label analysis to convnets
with more convolutional layers and more features.

To conclude, the current study has explored the
deconvolution method for visualizing the features
of a convnet trained for phone recognition. Visu-
alization was easy, but interpretation was hard. It

could be that features of convnets with other ar-
chitectures are more easy to understand visually.
Moreover, other methods could be considered in
order to understand what the features represent.
For instance, one could explore the types of phones
that each feature is sensitive to. Despite all ques-
tions that still remain, this study has contributed to
the small field of research on the representations
of speech in convnets and hopefully it has taken us
one small step closer to the answers.

References

Abdel-Hamid, O., Deng, L., & Yu, D. (2013). Ex-
ploring convolutional neural network structures
and optimization techniques for speech recogni-
tion. INTERSPEECH, 3366-3370.

Abdel-Hamid, O., Mohamed, A., Jiang, H., &
Penn, G. (2012). Applying convolutional neural
networks concepts to hybrid nn-hmm model for
speech recognition. Proc. ICASSP, 4277-4280.

Churchman, T. J. (2015). Reconstructing speech
input from convolutional neural network activity
(Unpublished bachelor thesis). Radboud Uni-
versity Nijmegen, The Netherlands.

Deng, L., Hinton, G., & Kingsbury, B. (2013).
New types of deep neural network learning
for speech recognition and related applications:
An overview. IEEE International Conference
on Acoustics, Speech, and Signal Processing
(ICASSP).

Dyer, C. (n.d.). Notes on adagrad. Retrieved 2015-
05-27, from www.ark.cs.cmu.edu/cdyer/
adagrad.pdf

Garofolo, e. a., John. (1993). TIMIT acoustic-
phonetic continuous speech corpus LDC93S1.
Web Download. Philadelphia: Linguistic Data
Consortium.

Gibiansky, A. (2014a). Convolutional
neural networks. Retrieved 2015-03-13,
from http://andrew.gibiansky.com/

www.ark.cs.cmu.edu/cdyer/adagrad.pdf
www.ark.cs.cmu.edu/cdyer/adagrad.pdf
http://andrew.gibiansky.com/blog/machine-learning/convolutional-neural-networks/

24

blog/machine-learning/convolutional
-neural-networks/

Gibiansky, A. (2014b). Fully connected neural
algorithms. Retrieved 2015-03-13, from
http://andrew.gibiansky.com/blog/
machine-learning/fully-connected
-neural-networks/

Harley, T. A. (2008). The psychology of language:
From data to theory (3rd ed.). Hove, East Sus-
sex, UK: Erlbaum (UK): Taylor & Francis.

Hinton, G., Deng, L., Yu, D., Dahl, G., Mo-
hamed, A., Jaitly, N., . . . Kingsbury, B. (2012).
Deep neural networks for acoustic modeling in
speech recognition: The shared views of four re-
search groups. IEEE Signal Processing Maga-
zine, 29(6), 82-97.

Krizhevsky, A., Sutskever, I., & Hinton, G. E.
(2012). Imagenet classification with deep con-
volutional neural networks. Neural Informa-
tion Processing Systems (NIPS), Lake Tahoe,
Nevada.

Ladefoged, P., & Johnson, K. (2011). A course in
phonetics (6th ed.). Cengage.

LeCun, Y., & Bengio, Y. (1995). The handbook of
brain theory and neural networks. In M. A. Ar-
bib (Ed.), (chap. Convolutional networks for im-
ages, speech, and time-series). MIT Press.

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P.
(1998). Gradient-based learning applied to doc-
ument recognition. Proceedings of the IEEE,
2278-2324.

Lee, K. F., & Hon, H. W. (1988). Speaker-
independent phone recognition using hidden
markov models. IEEE Transactions on Au-
dio, Speech and Language Processing, 37(11),
1641-1648.

Lopes, C., & Perdigao, F. (2011). Speech
technologies (P. I. Ipsic, Ed.). InTech.

(ISBN: 978-953-307-996-7, Available from:
http://www.intechopen.com/books/speech-
technologies/phoneme-recognition-on-the-
timit-database)

Ma, Y., Dang, J., & Li, W. (2014). Research on
deep neural network’s hidden layers in phoneme
recognition. Chinese Spoken Language Process-
ing (ISCSLP), IEEE, 19-23.

Matlab audio database toolbox. (n.d.). Retrieved
2015-03-21, from http://nl.mathworks
.com/matlabcentral/fileexchange/
23843-matlab-audio-database-toolbox

Ng, A., Ngiam, J., Foo, C. Y., Mai, Y., Suen, C.,
Coates, A., . . . Tandon, S. (n.d.). Ufldl tutorial.
Retrieved 2015-03-13, from http://ufldl
.stanford.edu/tutorial/supervised/
ConvolutionalNeuralNetwork/

Riemens, J. M. (2015). Using convolutional
autoencoders to improve classification perfor-
mance (Unpublished bachelor thesis). Radboud
University Nijmegen, The Netherlands.

Springenberg, J. T., Dosovitskiy, A., Brox, T., &
Riedmiller, M. (2015). Striving for simplicity:
the all convolutional net. arXiv:1412.6806v3.

Vedaldi, A., & Lenc, K. (2014). Matconvnet – con-
volutional neural networks for matlab. CoRR,
abs/1412.4564. (version from February, 2015)

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K.,
& Lang, K. J. (1989). Phoneme recognition us-
ing time-delay neural networks. IEEE Transac-
tions On Acoustics, Speech, and signal process-
ing, 37(3), 328-339.

Zeiler, M., & Fergus, R. (2014). Visualiz-
ing and understanding convolutional networks.
arXiv:1311.2901.

http://andrew.gibiansky.com/blog/machine-learning/convolutional-neural-networks/
http://andrew.gibiansky.com/blog/machine-learning/convolutional-neural-networks/
http://andrew.gibiansky.com/blog/machine-learning/fully-connected-neural-networks/
http://andrew.gibiansky.com/blog/machine-learning/fully-connected-neural-networks/
http://andrew.gibiansky.com/blog/machine-learning/fully-connected-neural-networks/
http://nl.mathworks.com/matlabcentral/fileexchange/23843-matlab-audio-database-toolbox
http://nl.mathworks.com/matlabcentral/fileexchange/23843-matlab-audio-database-toolbox
http://nl.mathworks.com/matlabcentral/fileexchange/23843-matlab-audio-database-toolbox
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/

25

Appendix

Mathematical background of deep neural net-
works and convolutional neural networks

In this section, the mathematical background of
deep neural networks and convolutional neural net-
works is described. This section is mainly based on
Andrew Gibiansky’s work (Gibiansky, 2014b,a).
Moreover, the part about backpropagation for sub-
sampling layers is also based on the UFLDL tuto-
rial of Stanford University (Ng et al., n.d.). First,
the mathematics behind ordinary deep neural net-
works is described. Then, the math behind con-
vnets is described.

The following mathematical notations will be
used:

• xl
i refers to the total input of unit i in layer l.

• yl
i refers to the output of unit i in layer l.

• wl
i j refers to the weight from unit i in layer l

to unit j in layer l + 1.

• As can be seen in the notations, the layers are
numbered. If we exclude the input layer, the
total number of layers is equal to L. Thus L
refers to the output layer.

Deep neural networks. A Deep neural net-
work is a network that has multiple layers of units.
All the units of a layer are connected to all units
of the subsequent layer. Each of these connections
has its own weight. The input layer is a ’special’
layer. It is there to represent the input of the net-
work. The units in this layer do not have any in-
put, they only give output to the subsequent layer.
Namely, their output is the input of the network.
For example, if the input of the network is an im-
age, the output of an individual input unit is the
gray-value of a pixel. For all ’normal’ subsequent
layers, the input and output of unit i in layer l are
computed as follows:

x(l)
i =
∑

j

w(l−1)
ji y(l−1)

j

y(l)
i = f (x(l)

i)

The input of a unit is thus computed by summing
over all units of the previous layer. Function f () is
the activation function of the layer. This function
is the same across all units of the layer. In the cur-
rent study the rectified linear function is used as the
activation function for all layers of the network.

The output of the last layer is the output of the
whole network. During training, the network is
given multiple example inputs for which the cor-
rect output is known. Every time the network has
runned through all example inputs, the weights of
the network are changed in such a way that the er-
ror of the network decreases. The error of the net-
work is based on the difference between the correct
output and the output that the network has given.
There are multiple possible definitions for this er-
ror, but for now those are not important. From now
on, E refers to the error function.

To make the error of the network decrease, the
weights are trained using the gradient descent al-
gorithm. This algorithm makes use of a method
called backpropagation. Backpropagation happens
in six steps:

1. The forward pass. Compute the input and out-
put of all layers for all training examples.

2. For all output units i, compute the derivates of
the error with respect to the output yi of that
unit:

δE

δy(L)
i

=
δE(y(L))

δy(L)
i

3. Compute the deltas of the current layer. The
deltas are the partial derivates of the error
with respect to the inputs of the layer. These
deltas will later be used for computing the
derivatives with respect to the weights of this
layer. , The deltas can be computed using the
following formula.

26

δE

δx(l)
i

=
δE

δy(l)
i

δy(l)
i

δx(l)
i

=
δE

δy(l)
i

δ f (x(l)
i)

δx(l)
i

=
δE

δy(l)
i

f ′(x(l)
i)

4. In order to compute the deltas for the previous
layers, the error of the current layer must be
backpropagated to the previous one. This can
be done by using the following formula. Note
that the formula sums over the inputs of all
units j of layer l because all units in layer l
use the output of unit i in layer l − 1.

δE

δy(l−1)
i

=
∑

j

δE

δx(l)
j

δx(l)
j

δy(l−1)
i

=
∑

j

δE

δx(l)
j

δw(l−1)
i j y(l−1)

i

δy(l−1)
i

=
∑

j

δE

δx(l)
j

w(l−1)
i j

5. Repeat steps 3 and 4 to compute all errors and
deltas for all layers besides the input layer.

6. Compute the derivatives of the error with re-
spect to the weights for each layer, by us-
ing the deltas that were computed in step 3.
These derivatives will later be used to update
the weights.

δE

δw(l)
i j

=
δE

δx(l+1)
j

δx(l+1)
j

δw(l)
i j

=
δE

δx(l+1)
j

δw(l)
i j y(l)

i

δw(l)
i j

=
δE

δx(l+1)
j

y(l)
i

The results of the backpropagation algorithm are
used in the gradient descent algorithm. This algo-
rithm is as follows:

1. Set ∆W (l) := 0 for all layers l.

2. For all m training examples and for all layers
l do:

• Use backpropagation to compute the
gradients ∇W (l). Note that ∇W (l) is the
matrix of all gradients of layer l.

• Set ∆W (l) := ∆W (l) + ∇W(l) .

3. Update the parameters by using the following
formula, in which α is the learning rate and m
is the number of training examples.

W (l) = W (l) − α(
1
m

∆W (l))

Convolutional neural networks. Convolu-
tional neural networks have two types of distinc-
tive layers: convolutional layers and sub-sampling
layers. First, the math behind both kinds of layers
is described. Then, it is described how backpropa-
gation works for these layers.

Suppose that we have a convolutional neural net-
work of which a part is shown in Figure 21. Its
input layer has size N × N and its first convolu-
tional layer has four feature maps, each with its
own weight matrix, which are called filters. All
filters have size m × m. The input for a unit in one
of the feature maps within this convolutional layer
is given by the following formula.

xl
i j =

m−1∑
a=0

m−1∑
b=0

waby(l−1)
(i+a)(j+b)

Note that wab refers to the weight on location
(a, b) in filter w, the filter that belongs to the fea-
ture map of this unit. As can be seen in Figure 21,
the size of the filter w determines the size of the
receptive field of the unit. Thus, what this formula
does is computing the input of the unit within the
convolutional layer by going through all the units
within its receptive field, multiply their outputs by
the corresponding weights of filter w and summing
over all these results.

The output yl
i j of the unit within the convolu-

tional layer is computed by applying the activation
function to the input of this unit:

yl
i j = f (xl

i j)

27

Figure 21. The receptive field of a unit within a
convolutional layer.

Compared to the convolutional layer, the math-
emetical methods of the sub-sampling layer is
quite easy. As can be seen in Figure 22, each
feature map in the convolutional layer has its sub-
sampled version in the sub-sampling layer. Each
unit in the sub-sampling layer has a receptive field
within the corresponding feature map in the convo-
lutional layer. The output of the sub-sampling unit
is either the average (in case of average pooling)
or the maximum (in case of max pooling) of the
outputs of all units within its receptive field. Of-
ten, the receptive fields of the sub-sampling units
within one feature map do not overlap. Suppose
the size of the feature maps is N × N and the size
of the receptive fields of the sub-sampling units is
k × k. Then, given that the receptive fields do not
overlap, the feature maps within a sub-sampling
layer have a size of N/k × N/k.

Also for the training of a convolutional neural
network the backpropagation algorithm is used to
compute the needed gradients. For all fully con-
nected layers within the convolutional neural net-
work, backpropagation works as was explained in
the previous section. For the convolutional and
sub-sampling layers the algorithm is slightly dif-
ferent.

Backpropagation for sub-sampling layers is very
easy, because sub-sampling layers do not have any
weights that need to be learned. Therefore, the er-
ror should only be backpropagated to the layer in
front of the sub-sampling layer. In case of max
pooling, only the unit that had the highest out-

Figure 22. The receptive field of a unit within a
sub-sampling layer.

put value of all units within the receptive field of
the sub-sampling unit influences the output of the
sub-sampling unit. Thus, all error is backpropa-
gated to this unit. In case of average pooling, all
units within the receptive field of the sub-sampling
units have equal influence on the output of the sub-
sampling layer. And thus, every unit within the
receptive field gets an equal share of the backprop-
agated error.

Backpropagation for convolutional layers is
more difficult. As can be seen in the previous de-
scription of backpropagation we need three partial
derivatives of the error in order to both train the
weights of the convolutional layer and backprop-
agate the error to the previous layer. These three
partial derivatives are:

1. The deltas, which are the partial derivatives of
the error with respect to the input of the layer:

δE
δxl

i j

=
δE
δyl

i j

δyl
i j

δxl
i j

=
δE
δyl

i j

δ f (xl
i j)

δxl
i j

=
δE
δyl

i j

f ′(xl
i j)

2. The partial derivatives of the error with re-
spect to the output of the previous layer:

δE
δyl−1

i j

=

m−1∑
a=0

m−1∑
b=0

δE
δxl

(i−a)(j−b)

δxl
(i−a)(j−b)

δyl−1
i j

=

m−1∑
a=0

m−1∑
b=0

δE
δxl

(i−a)(j−b)

δwabyl−1
i j

δyl−1
i j

28

=

m−1∑
a=0

m−1∑
b=0

δE
δxl

(i−a)(j−b)

wab

Note that, just like with normal backpropaga-
tion, the formula sums over the inputs of all
units in layer l that use the output of unit (i, j)
in layer l − 1. Figure 23 explains where the
coordinates (i−a) and (j−b) come from. Sup-
pose the red unit in the input layer has output
yl−1

i j . This output is used by the four orange
units in the convolutional layer, given that the
size of the receptive field is m × m = 2 × 2.
For example, for the upper left orange unit,
the red unit is in the lower right corner of its
receptive field. Since the output of the red unit
is used by the four orange units, the gradient
of the error with respect to the output of the
red unit should be computed by back propa-
gating the error through the four orange units.
Note that the coordinates of the lower right
orange unit are (i, j) and therefore the coordi-
nates of all orange units can be described as
(i − a, j − b) with a and b ranging from 0 to
m − 1.

Also, note that this formula does not work for
the derivatives of the error with respect to the
output of the units at the left or upper edge.
Take for example the upper left unit in the in-
put layer in Figure 23. The output of this unit
only has an influence on the input of the upper
left unit in the convolutional layer. This prob-
lem is solved by padding the left and upper
edges of the convolutional layer with zeros.
This way, the formula also works for units at
the left or upper edge.

Figure 23. The output of the red unit in the input
layer is used by the four orange units in the convo-
lutional layer, given that the size of the receptive
fields of the convolutional units is 2 × 2.

3. The derivatives of the error with respect to the
weights:

δE
δwab

=

N−m∑
i=0

N−m∑
j=0

δE
δxl

i j

δxl
i j

δwab

=

N−m∑
i=0

N−m∑
j=0

δE
δxl

i j

δwaby(l−1)
(i+a)(j+b)

δwab

=

N−m∑
i=0

N−m∑
j=0

δE
δxl

i j

y(l−1)
(i+a)(j+b)

Note that the formula sums over the inputs of
all units in layer l that use weight wab from
layer l − 1.

Besides these three partial derivates, a convolu-
tional neural network can be trained in the same
way as a deep neural network. Use these three par-
tial derivates in the backpropagation algorithm as
described in the previous section. Then, use the
gradient descent algorithm to train the network.

	Introduction
	Convolutional Neural Networks
	Visualizing the features
	Application to audio
	Research questions

	Materials and Methods
	Preprocessing the auditory data
	Convnet architecture and training
	Visualizing features by using a deconvnet
	The current study

	Results
	Experiment 1
	Experiment 2
	Projections
	Phone label analysis

	Discussion
	References
	Appendix
	Mathematical background of deep neural networks and convolutional neural networks
	Deep neural networks
	Convolutional neural networks

