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Abstract

Research on the mechanisms behind a sense of agency is important, as it might
give insight into the fundamental structure of intelligent systems. In develop-
mental psychology, infants are hypothesized to develop a sense of agency in the
first months of life. By simulating infants using different learning mechanisms,
we attempt to gain insight into the conditions under which these mechanisms
are distinguishable. This can in turn lead to the specification of which mech-
anisms are necessary for a sense of agency. The project’s goal is to provide a
background for research for explaining the experience of a sense of agency. (99
words)



Contents

1 Introduction 1
1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Simulator 5
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Entity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Formalization of a Simulation . . . . . . . . . . . . . . . . . . . . 13

3 Mechanisms 15
3.1 Operant Conditioning . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Causal Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Results 24
4.1 Normal Condition . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Switch Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Discussion 31
5.1 Scientific Challenges . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Conclusion 34

1 Introduction

A sense of agency is something that we as humans take for granted. Whenever
one knocks on a door, one feels as if the sound was a result of knocking on the
door; a result of one’s action. Such an experience might result from a particular
structure or mechanism, as different structures and mechanisms might underly
different experiences and even different types of experiences [1, 2]. If we know
what kind of mechanism or structure is necessary for an agent to have a sense of
agency, then systems can be created with or without such a sense of agency by
selecting the appropriate mechanisms and structures in the design of the system
[1]. The possibility of creating systems with a sense of agency is of interest to
the field of artificial intelligence, as one of the field’s original goals and one of
the goals of current artificial general intelligence (AGI) research is to create
human-level intelligence [3]. Human-level intelligence does not appear out of
thin air. It develops after years of life, going from behavior that is seemingly
random, to behavior that is typical of humans such as communication through
language and a sense of agency. Then inevitably, during the transition from
infancy to adulthood, there are transitions from the absence of such abilities to
the presence of those same abilities. Studying these transitions could provide
information on these abilities, such as information on the necessary conditions
to develop a particular mechanism or information on the characteristics of the
mechanisms underlying such abilities. Studying the development of a sense of
agency in infancy could be a step in learning about the mechanisms behind a
sense of agency and consequently self-awareness.

1



In the developmental psychology literature, it is claimed that infants develop
a sense of agency within the first months of life [4]. An experiment by Rovee-
Collier et al. had infants lying in a crib, with a mobile positioned above it. In
the experimental group, the right leg was connected to a mobile with a ribbon,
whereas in the control group no limbs were connected to the mobile. Connecting
the leg to the mobile ensures that the infant can directly control when the
mobile moves; whenever the infant kicks, the mobile will move, too. More
specifically, the mobile’s frequency and intensity of movement is proportionate
to the frequency and intensity of the infant’s kicks. Whereas infants in the
experimental group had control over the mobile’s movements, infants in the
control group had the mobile’s movement controlled by the experimenter who
made the mobile move by imitating patterns of kicking produced by infants in
the experimental group. Rovee-Collier et al. found that limb activity of subjects
in the contingent group changed from activity in all limbs to activity of only
the right leg. This was interpreted as infants adopting their limb movements to
move in particular the limb that is connected to the mobile, without external
supervision.

In later research by Watanabe and Taga involving three-month-old infants,
a sense of agency was attributed to this kind of behavior. Here, arm- and
leg-based learning were compared. A different pattern of limb movement was
observed in each conditions: in the arm-based condition the arms’ movement
specifically increases, whereas in the leg-based condition all limbs’ movement
increases. Possible explanations included the fact that the arms’ movements
are visible to the infant, whereas the legs’ movements are not. This was taken
to suggest that a sense of agency influences limb movements in the arm-based
learning condition [6].

There are multiple possible explanations for the infants’ performance, relat-
ing differently to the presence or absence of a sense of agency. Two of these
mechanisms were chosen for comparison based on what these mechanisms learn.
One of these mechanisms is an operant conditioning mechanism that selects ac-
tions that are contingent with a rewarding state. If the patterns can be explained
by such a mechanism, then this implies that the infants do not necessarily have
a sense of agency in the sense described before.

Returning to the definition, a sense of agency is the sense that one’s own ac-
tion causes a change in the world. This requires the ability to recognize changes
in the environment, to recognize one’s actions, and to perceive relations between
changes and these actions. Because the operant conditioning mechanism does
not have the ability to recognize changes in the world other than a particular
reward and does not have any causal representation, the operant conditioning
mechanism does not fulfil the conditions for a sense of agency. Thus, if the
previously mentioned experiment’s data can be replicated by such an operant
conditioning mechanism, then the presence of a sense of agency cannot be in-
ferred from the data alone.

The other mechanism proposed as an explanation for the infants’ movement
patterns is a causal learning mechanism. This mechanism models the environ-
ment and how it changes depending on the actions in a probabilistic model of
the world. Because the probabilistic model is a causal model, the condition of
causality for the sense of agency is fulfilled. In other words the causal learn-
ing mechanism fulfils at least one necessary condition for the sense of agency,
whereas the operant conditioning mechanism does not. Then, if the experi-
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Figure 1: Mean limb movements of right and left arms of 10 infants for the
original experiment. EXP-L indicates the connected right foot. (Reproduced
with permission from Rovee-Collier et al.)
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ment’s data can be replicated by the causal learning mechanism but not by
the operant conditioning mechanism, then this is an indication that a sense of
agency is involved.

1.1 Research Questions

We simulate the infants in the experiment by Rovee-Collier et al. with the
previously introduced operant conditioning and causal learning mechanisms,
described in more detail later. For convenience, the simulated infants will be
called ‘babybots’ in the rest of this thesis. The babybots will be compared
behaviorally with the infants in the original experiment to determine how much
the data can be replicated by these mechanisms. A pattern of behavior, or
pattern of limb movement, is the frequency of the limbs’ movement and the
change in these frequencies over time.

Two main questions arise in the comparison of the two mechanisms and
the infants. First, can the infants’ movement pattern be replicated by the
operant conditioning mechanism? Second, can the infants’ movement pattern
be replicated by the causal learning mechanism?

These two questions might provide evidence to the question of whether a
sense of agency could be inferred from the experimental results. If the answer
to the first question is yes, that is, the data can be replicated by the operant
conditioning mechanism, then no sense of agency can be concluded from the
data, because, as mentioned before, the operant conditioning mechanism lacks
the capacity to produce representations which are necessary for a sense of agency.
If the answer to the first question is no and the answer to the second question
is yes, that is, the data can be replicated by the causal learning mechanism,
then this is an indication that a sense of agency is involved in producing the
infants’ behavior. If the answer to both questions is no, then this could mean
that the mechanisms should be altered or that a different mechanism is required
to produce similar data.

To answer these questions, a simulation environment with a set-up similar
to the experiment by Rovee-Collier et al. is designed. An operant condition-
ing mechanism and causal learning mechanism with the previously mentioned
characteristics are designed that are simulated in the simulation environment
similar to the experiment. The data from these simulations is then compared
to the empirical data.
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2 Simulator

To be able to perform simulations within the context of the experiment, a sim-
ulator was designed and implemented. Here, an overview of the simulator’s
components and the motivation behind them is given.

The simulator is created with three points in mind: Firstly, we want to
abstract the experimental environment. Abstracting away details that are not
directly relevant to the experiment, such as how different components inter-
act, has both advantages and disadvantages. An advantage is that abstracting
details can lead to an intuitive description that is easily altered. A major dis-
advantage is that it is not always obvious to decide which aspects are irrelevant
to the experiment and which are not. By abstracting, some complexity of the
real situation is lost. This will be discussed while describing the environment
for the mobile experiment simulation.

Secondly, the simulator has to be general enough to allow for the use of
different kinds of learning algorithms. Because the different algorithms use
different representations, in this case based on probability theory, the simulator
has to be suited to account for this by having a general representation of the
input and output of the algorithms.

Thirdly, the simulator should support data collection and analysis. Specif-
ically in relation to the simulation of the mobile experiment, kicking patterns
should be measurable.

To allow for such abstraction, a general, formal description of the simulator
is provided. Because the experiment with the babybot and the mobile is of
particular interest now, the description of the formalized babybot simulation
will be described as an example.

2.1 Overview

The simulator’s general structure is illustrated in Figure 2. For a more concrete
example describing the environment for the babybot, see Figure 3.
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Figure 2: Overview of the simulator’s structure. The limb positions change over
time. The limb positions are used by the mechanism (i.e. operant condition-
ing or causal learning) to select new motor signals. When the babybot’s limb
positions change, this can cause the mobile to move. The mobile sends signals,
which are received by the babybot and are used together with the limb positions
to select motor signals.
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Figure 3: Overview of the simulator environment with a babybot and mobile.
The babybot has four limbs, each with three possible positions; it learns by
an operant conditioning or causal learning mechanism; and it can observe the
mobile’s movement, which depends on the mobile’s state.
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In the experiment, there are two entities: the babybot and the mobile. The
babybot has four limbs that each have a position: either ‘up,’ ‘middle,’ or
‘down,’ as depicted by the nodes in Figure 4. A limb’s position can be changed
by moving it ‘up’ or ‘down,’ or keeping it ‘still,’ as depicted by the edges in
the same figure. These values depicted by the labels are called ‘motor signals.’
Then, if a limb is already in the ‘down’ position, then a motor signal ‘down’
will not change anything and the limb will remain in the same ‘down’ position.
Similarly for the ‘up’ position. Given the four limbs and three possible positions
for each limb as depicted in Figure 4, the babybot has 3·4 = 12 different possible
motor signals.

At any moment, or iteration, in the simulation, all limbs can be moved. For
example, all limbs can be moved ‘up’ at one point. It is assumed here that a
limb cannot both be moved in more than one direction at the same time, i.e. it
is not possible to move ‘up’ and ‘down’ nor ‘still’ and ‘down’ at the same time,
etcetera. This results in 34 = 81 combinations of motor signals.

A simulation is described in four parts:

• describing the elements in the world that have properties and that (po-
tentially) interact, referred to as ‘entities;’

• describing the mechanisms that control the entities;

• describing which mechanism selects motor signals for which entity;

• describing how entities affect one another, allowing for interactions.

All parts will be described in more detail in their respective sections.
More formally, a simulation W = (EW , CW , γW , LW) is an ordered tuple of

a set of entity descriptions EW = {ε1, . . . , ε|EW |} described in section 2.2 below,
a set of mechanism descriptions CW = {c1, . . . , c|CW |} described in section 2.3,
a relation describing which mechanism selects motor signals for which entity
γW : EW → CW ∪ {∅}, and a set of links, connecting changes in one entity to
changes in another LW = {l1, . . . , l|LW |}, described later.

In describing which mechanisms select motor signals for which entities, γW :
EW → CW ∪ {∅}, ∅ indicates that the entity does not use such a mechanism to
select motor signals. For example, in one simulation the babybot’s motor signals
are selected by an operant conditioning mechanism, and in another simulation
the motor signals are selected by a causal learning mechanism. The mobile does
not observe and act, so there is no mechanism selecting motor signals.

2.2 Entity

The first main component in the simulator is the ‘entity.’ A distinction has to
be made between the description of an entity, ε, and an actual instantiation e:
the description describes how an instantiation’s state changes over time and
under which conditions. In other words, the description does not have a state
and does not change, whereas the instantiation does.

An entity description is of the form ε = (F , DF ,A, DA,M, r, EC, T, init).
Such a description contains a set of attribute symbols F = {f1, . . . , f|F|}, F 6= ∅
and a set of domains of values associated with each attribute symbol DF =
{Df1 , . . . , Df|F|} and each attribute fi has at least one possible value Dfi 6= ∅.
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Figure 4: Finite state machine depicting the dynamics for a single limb. Nodes
represent positions and edges represent motor signals. An edge with motor
signal s from one node a to another node b depicts how the previous position a
results in the current position b given motor signal s. Note that an ‘up’ motor
signal in the ‘up’ position results in the same ‘up’ position and similarly for the
‘down’ position and the ‘down’ motor signal.

The babybot has four limbs, which are modelled by their positions, Fbabybot =
{lhp, rhp, lfp, rfp}, i.e. ‘left hand position,’ ‘right hand position,’ ‘left foot posi-
tion,’ and ‘right foot position’ respectively, abbreviated for convenience. These
limbs can all be in one of three positions, Dlhp = Drhp = Dlfp = Drfp =
{down,middle, up} where down means the limb is on the surface, up means the
limb is at maximum range towards the mobile, and middle means the limb is
somewhere in-between up and down.

The mobile moves ‘forward’ or ‘backward’ with a certain velocity, and has
attributes Fmobile = {vel, pos, dir}, where the velocity ranges from 0 to 10
Dvel = [0, 10], the position also ranges from 1 to 10 Dpos = [1, 10] and there is
a positive and negative direction Ddir = [+,−].

Attributes can combine with a value from the respective domain, resulting
in the set of all possible attribute assignments {(f, d) | f ∈ F , d ∈ Df}. Some
example attribute assignments are (lhp, up) and (vel, 3).

The function init : f → Df describes the initial value for each attribute.
The infant’s initial condition is one where its limbs are in the middle between

the ‘down’ and ‘up’ positions:

initbabybot(lhp) = middle

initbabybot(rhp) = middle

initbabybot(lfp) = middle

initbabybot(rfp) = middle

This position is chosen over the more ‘natural’ position with all limbs down that
would be expected from infants, as such a ‘middle’ starting position provides
for less skew in the initial positions. A different initial position could be one
where all limb positions are randomized, accounting for movement before the
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experiment starts. However, because algorithms are being compared, it seems
beneficial to control for these different initial positions.

The initial state of the mobile, is one where the mobile does not move:

initmobile(vel) = 0

initmobile(pos) = 5

initmobile(dir) = +

Similar to the attributes, the set of motor signal symbolsAε = {α1, . . . , α|A|}
and respective domains DA = {Dα1

, . . . , Dα|A|}, Dαi 6= ∅ can combine to form
motor signals {(α, d) | α ∈ A, d ∈ Dα}.

All the babybot’s limbs can move, Ababybot = {lh, rh, lf, rf}, i.e. ‘left hand,’
‘right hand,’ ‘left foot,’ and ‘right foot,’ in the direction ‘up’ or ‘down,’ or
held ‘still’ in the position the limb is already in Dlh = Drh = Dlf = Drf =
{up, down, still}. Note that it is possible to have an entity without motor sig-
nals, or in other words, an entity that cannot ‘act.’ The mobile is one such entity,
Amobile = ∅. A combination of motor signals σ, is a set of motor signals with
all motor signal symbols appearing exactly once, σ = {(α1, d1), . . . , (α|A|, d|A|)}
with αi ∈ A and di ∈ DAi . The enumeration of all possible combinations form
the set Σ.

Now, let Eε be the set of possible instantiated entities from a description ε.
An entity instance eε ∈ Eε, or entity for short, is a set of attribute assignments
eε = {(f1, d1), . . . , (f|F|, d|F|)} for fi ∈ Fε, di ∈ Dfi .

2.2.1 Changing an entity’s state

The values of an instantiated entity’s attribute assignments can change in three
ways. First, a rule in the entity description r : E → E describes how an entity’s
attributes changes over time, by specifying how the attribute assignments at
time t are a function of attribute assignments at time t − 1. An example of
such a change for velocity and acceleration attributes, denoted by vel and acc
respectively, could be:

r([(acc = a, vel = v]) = [acc = a, vel = a+ v]

The mobile has several such rules. Over time, the velocity decreases until it
reaches 0, rvel([vel = v]) = [vel = v − 1]. The position changes as a function
of the velocity, where the direction is reversed at the extremes as if bouncing
between two walls to get movement that resembles a simplified pendulum. Take
p to be the mobile’s current position, then in the case where 0 < p+ v < 10:

rpos([pos = p, dir = d]) = [pos = p+ v, dir = d]

and in the case where p+ v ≤ 0 or p+ v ≥ 10:

rpos([pos = p, dir = d]) = [pos = abs(p+ v), dir = inv(d)]

where inv(−) = + and inv(+) = −.
Second, whenever a motor signal is sent, the entity’s resulting state is given

by the function in the entity description α : E × (A×DA)→ E that computes
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the new attributes’ values from an instantiation and an action, i.e. change in
state. For example,

α([vel = v, acc = a], [acc = x]) = [vel = v, acc = a+ x]

The babybot sends motor signals that in turn change the babybot’s limbs’
positions given certain constraints, as illustrated in Figure 4. If a limb is either
already in the lowest position and moved down, or in the highest position and
moved up, then the position for that limb does not change. Yet, in all other
cases, the change in position corresponds to the change defined by the motor
signal. Formally:

αp(a = up, p = up) = up

αp(a = down, p = down) = down

αp(a = still, p = p′) = p′

αp(a = up, p = down) = middle

αp(a = up, p = middle) = up

αp(a = down, p = up) = middle

αp(a = down, p = middle) = down

where p ∈ F , p′ ∈ Dp and a ∈ A and a and p are related so that they
represent the same limb, i.e. if p = lhp then a = la and so forth. For all
p ∈ F , a ∈ F where p and a are for different limbs, the position does not
change:

αp(a = a′, p = p′) = p′

for all a′ ∈ Da, p
′ ∈ Dp.

Third, if a trigger was activated, this might change an entity’s attributes in
a way similar to a rule, τε : E ×T ×DT → E . A trigger t ∈ T , T = {t1, . . . , t|T |}
with values DT = {Dt1 , . . . , Dt|T |}, DTi 6= ∅ is a symbol that can have a value
with it, similar to attributes. An example for activation of a trigger for a ball:

τ([vel = v], kicked, forward) = [vel = v + 5]

Whenever the mobile is moved, in this case by the babybot, the velocity is
increased by some fixed amount ∆v if the movement is in the same direction,
and decreased otherwise. If movement is down and the direction is negative:
tvel([vel = v, dir = −],moved, down) = [vel = min(10, v + ∆v), dir = −]. If
movement is in the opposite direction, i.e. the mobile’s movement is positive,
then the velocity is set to the negative velocity instead: tvel([vel = v, dir =
+],moved, down) = [vel = ∆v, dir = −].

2.2.2 Changing another entity’s state

The first way in which one entity’s attributes can change another entity’s at-
tributes, is through sending and receiving signals, such as a beam of light
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or a sound. These signals are considered to be in some kind of modality,
such as light, sound or smell, and are assumed to move through space at a
certain speed. Given the set of possible modalities M = {m1, . . . ,m|M|},
the set of signal types for each modality Sm = {Sm1 , . . . , Sm|M|}, mi ∈ M
where Smi = {sm1

i
, . . . , s

m
|Smi |
i

}, and the set of values for every signal DM =

{Ds
m1

1

, . . . , Ds
m
|Sm|M| |

|M|

}, then a signal (m, s, d), m ∈ M, s ∈ Sm, d ∈ Ds de-

scribes the modality, type and value of the signal. When a signal is emitted, its
modality is checked against all entities’ modalities and added to the observations
O of an entity e if the entity can sense the modality, i.e. m ∈Mεe .

The infant in the experiment is assumed to be able to see the mobile’s
movement, so Mbabybot = {sight}. The mobile does not have eyes, Mmobile =
∅.

The sensing of signals could have been modelled as changes in attributes
instead, i.e. similar to a rule or action Eε × Σ → Eε. However, the current
representation allows a bit more freedom in designing and describing an envi-
ronment, as designing sensors and signal types is more modular than specifically
designing all attributes for a particular entity. Still, it is unclear how impor-
tant modularity is in the design of this simulator for the mobile experiment in
particular, compared to potential problems that this representation brings. For
example, one disadvantage of this approach is that there is a conceptual distinc-
tion between sensing the other entities, and sensing the entity’s own attributes.
However, this problem is solved in the interaction between an entity and its
action-selecting component, as described below.

Signals are emitted by checking the emission η : e→ (M×S×DS)N0 which
returns a set of signals, if any, depending on the entity’s attribute values. The
babybot does not send any such signals, as there are no other entities to receive
them. The mobile sends signals indicating changes in its movement. These are
observed by the babybot and are what the babybot uses to learn. The mobile
can send three possible signals:

• (movement, faster)

• (movement, slower)

• (movement, none)

Which are sent respectively when the mobile’s current vel is higher than the
previous vel, lower than or equal to the previous vel, and when vel is 0.

The second way in which one entity’s attributes can change another entity’s
attribute values, is by activating triggers through events. By having a (‘physi-
cal’) link between two entities, these changes can be triggered. A link l ∈ L is a
tuple l = (ec, f, t, ea) describing which entity ec’s change in attribute f causes
the trigger t to trigger in affected entity ea. The value that is sent together
with the trigger is calculated from the change in the causing entity’s attribute’s
value with a function ∆F : F × Df → Df where f is the domain of the first
parameter.

Although this resembles signals, triggers are mostly physical of nature, such
as pushing and pulling of objects, whereas signals were considered to be trans-
mitted through air. Moreover, next to having descriptions of events and triggers
in entities, there is a description to connect them in the world description di-
rectly.
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For example, there might be an infant that can push forward and a ball that
rolls when pressure is applied, but if the infant is not in front of the ball then
the ball will not roll regardless of the infant pushing.

In the original experiment, the infant’s right leg is connected to the mobile
by a ribbon. Up-down movement of the leg results in movement of the mobile
through the connection made by the ribbon. Similarly, in the simulator, right
leg movements trigger movement of the mobile. This can be accomplished by a
link between the babybot’s right foot and the mobile’s move trigger,

lribbon = (babybot, rfp,moved,mobile)

2.3 Mechanism

The second main component is the mechanism, which is a ‘black box,’ receiving
observations as input and giving motor signals as output at every time step. A
mechanism c = (M,Act) has some kind of (minimal) memory representation
M that is used by the mechanism’s algorithm Act and can be empty, and a
function or algorithm Act : M × O × Σ → Σ that returns one of the possible
motor signal combinations given a set of observations.

Descriptions and pseudo code of the specific algorithms used can be found
in Section 3.

2.4 Formalization of a Simulation

To run a simulation, a world description W, and the entities’ initial states,
describing values for all attributes, are required. The algorithm that is used for
the simulation is described in Algorithm 1.

The world state W0 is initialized by instantiating the entities with the initial
states, after which the mechanism’s memory is initialized with its associated
entity’s state. This results in world state W0. A world state at time t is Wt =
(Et, Ct) describes the entities’ and mechanisms’ states at any time point.

From this initial state a simulation proceeds sequentially, updating the next
state Wt+1 from the latest state Wt. Every iteration, the same steps are com-
puted. First, the entities’ rules are processed, which change the entity’s at-
tributes. Second, entities that have triggers are changed by computing their
effects. Third, signals that are emitted in the current iteration are checked with
the entities that have the appropriate modality. Fourth, motor signals are se-
lected by entities with mechanisms. Then, the results of those selected motor
signals are computed.
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Algorithm 1 Running the simulation

procedure RunSimulation(W, E0, n)
. W, the world description
. E0, entities with initial states
. n, the number of iterations to run the simulation for

t← 0
while t < n do

. Change each entity’s attributes according to its rule
for e ∈ Et do

Et+1 ← Et+1 ∪ {re(e)}
end for
. Trigger events
for e ∈ Et, (e, f, t, ec) ∈ LW do

. The event is triggered if the entity’s attribute’s value changed
if e(f) 6= e′(f), e′ ∈ Et−1 then

Et+1 ← Et+1 \ {ec}
Et+1 ← Et+1 ∪ τ(ec, t,∆F (f, e(f), e′(f)))

end if
end for
. Queue signals
for e ∈ Et do

St ← ηe(e)
end for
. Add signals as observations to entities that match modality
for s ∈ St, e ∈ Et do

if ms ∈Me then
Oe ← Oe ∪ {s}

end if
end for
. Queue actions for entities with agents
At = {Ae1t , . . . , A

e|E|
t } ← {∅, . . . , ∅}

for e ∈ Et do
a← γ(e)
if a 6= 0 then

Aet ← Aet ∪ {Acta(Me, Oe,Σe)}
end if

end for
. Execute actions
for eε ∈ Et, a ∈ Aeεt do

Et+1 ← Et+1 ∪ αε(eε, a)
end for
t← t+ 1

end while
end procedure
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3 Mechanisms

These are descriptions of the Act algorithm introduced in Section 2.3. All
algorithms return a set of motor signals a = (α, v), α ∈ A, v ∈ Dα. On the
first iteration, at t0, the algorithms receive initial parameters. Then, parameters
for the t-th iteration of the algorithm should be set in a previous iteration of
that algorithm.

All algorithms for an entity have as parameters at least:

• the motor signal symbols and domains, A and DA, or the set of possible
motor signals derived from it A, where a = (α, v), a ∈ A, α ∈ A, v ∈ Dα

• the observations at time t, Ot

3.1 Operant Conditioning

In the operant conditioning mechanism, behavior is reinforced by the presence of
a rewarding stimulus. When a certain motor signal is followed by an observation
that is ‘rewarding,’ then the probability of sending that motor signal will be
increased. Conversely, when a motor signal is not followed by such a reward,
this probability is decreased.

To produce this behavior, the algorithm maintains a probability distribution
over all possible combinations of motor signals, P : Σ → [0, 1], selects motor
signals by sampling from this distribution, and updates the distribution based
on the experience resulting from the previously selected motor signal. For the
babybot, there are four limbs that each have three possible directions of move-
ment, resulting in probability distribution over 34 = 81 possible combinations
of motor signals.

The algorithm starts with the uniform distribution over these combinations.
Every iteration of the algorithm, the probability of the combination of motor
signals that was selected in the previous, t − 1-th, iteration σt−1 is updated
dependent on the current observation Ot. If the observation contains at least
one of a set of ‘rewards’ R ⊂ O, then the particular probability is increased by a
certain amount δ+. Otherwise, the probability is decreased by a certain amount
δ− instead. After changing the probability, all probabilities in the distribution
are renormalized to sum up to a probability of 1 again. The set of rewards that
is used for the babybot consists only of the (movement = faster) observation.
Fictional examples of the initial distribution and a possible distribution after
an update can be found in Figure 5 and Figure 6.

The motor signal at iteration t is selected by sampling from the distribution.
This means that any combination of motor signals is selected with the proba-
bility that is stored with it. For example, an combination of motor signals with
a its probability set to 1

81 will be selected with probability 1
81 .

Probabilities are forced to a minimum value pmin during the decreasing step
of the algorithm for two reasons. First, the minimum value prevents the al-
gorithm from excluding a combination of motor signals for selection in future
iterations. If at one point a probability is set to 0, then that probability will
remain 0 for the subsequent iterations. A motor signal with probability 0 will
not be selected, as the probability for selection would be 0, and consequently is
not updated. The probability will also not change during normalization. As a
consequence, once a particular motor signal’s probability reaches 0, changes in
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Figure 5: An example of an initial, uniform distribution for the babybot. There
are 34 = 81 possible combinations, so all combinations start with a probability
of 1

81 of being selected.
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Figure 6: After a reward for combination s2, the probability for s2 is updated
and the distribution is normalized, resulting in lower probabilities for all other
combinations.
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the environment that would cause that motor signal to be reinforced normally
would instead not cause the motor signal to be reinforced. An example of such
a change is one where the limb that is connected to the mobile is switched, for
example from the right foot to the left hand. Second, a conceptual constraint
requires probabilities to be positive values.

3.1.1 Pseudo Code of Operant Conditioning

Algorithm 2 Operant conditioning algorithm

procedure OperantConditioning(Ot,Σ, R, Pt, σt−1, δ+, δ−, pmin)
. Ot, the observed variables and their values
. Σ, the possible combinations of motor signals
. R, the set of rewarding variable assignments
. Pt, the current probability distribution
. σt−1, previously selected combination of motor signals
. δ+, amount to increase probability with
. δ−, amount to decrease probability with
. pmin, minimum probability

Pt+1 ← Pt
. Determine whether a reward is observed
if R ∩Ot 6= ∅ then

. When the previously sent motor signal was followed by a reward,

. increase the probability for that motor signal
Pt+1(σt−1)← Pt(σt−1) + δ+

else
. When the motor signal was not followed by a reward,
. decrease the probability for that motor signal
Pt+1(σt−1)←max(pmin, Pt(σt−1)− δ−)

end if
. Normalize the probabilities
ptotal ←

∑
σ∈Σ Pt+1(σ)

for σ ∈ Σ do
Pt+1 ← Pt+1(σ)

ptotal
end for

. Select a combination of motor signals by sampling from the probability
distribution

return SampleWithProbability(Σ, Pt+1)
end procedure

3.2 Causal Learning

The causal learning mechanism learns the causal relations between variables
from probabilistic data. New motor signals are selected as those motor signals
that have the maximum likelihood of resulting in faster mobile movement, given
the data.
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By computing the (conditional) probabilities of variables from observations,
a causal Bayesian network representing the causal relations of the data can be in-
ferred from the conditional dependencies of variables through a constraint-based
algorithm [7]. A Bayesian network represents the conditional dependencies of
probabilistic variables as a directed acyclic graph; a causal Bayesian network
represents causal relations between variables as a directed acyclic graph, where
nodes represent variables and directed edges represent the causal relations be-
tween variables [8]. A causal Bayesian network differs from a Bayesian network
in the way it is interpreted, i.e. causally. In case of the babybot, the variables
that make up the probability distribution and thereby the causal Bayesian net-
work, consist of the motor signal variables S, the limb position variables L,
and the mobile movement variables M . and motor signals, where each has two
instances to denote a time relation, as a ‘previous’ instance denoted by Prev(·)
and as a ‘current’ instance denoted by Curr(·).

The constraint-based algorithm is a computationally intensive algorithm,
as (conditional) dependencies between all variables are considered, resulting in
exponential time complexity in the number of variables. Additionally there
was difficulty of updating the network with new data points, as a new data
point could entail change in any previously found (conditional) dependency.
This demands the necessity to recalculate the whole network at every iteration,
which, as mentioned before, is computationally intensive. This led us to con-
sider whether the constraint-based algorithm is necessary to represent the causal
relations in the data. Since the probability distribution over all the variables,
P (L,M,S), already encodes the causal relations, this probability distribution
can be used for computations concerning these causal relations without the
need of the constraint-based algorithm. The probability distributions used for
the constraint-based algorithm and the method without the constraint-based
algorithm are the same, although the latter does not have an explicit model
of the causal relations in that it does not explicitly store the causal relations
between variables, but that the causal relations are inferred from the (condi-
tional) independencies in the observed probability distribution over all variables
P (L,M,S). Variables that are (conditionally) dependent of one another are in-
terpreted as being causally related to each other. In this, the mechanism has
a causal representation of the world, distinguishing it from the operant condi-
tioning mechanism that does not have such a causal representation.

The algorithm starts an exploration phase that consists of ‘motor babbling’
to collect data. Then, the probability of mobile movement given the limb posi-
tions and motor signals is computed. Because the full probability distribution
would be too large, the distribution is factorized into two tables to reduce the
computational complexity. In assuming that the limbs’ positions are condi-
tionally dependent on the motor signals, the full probability distribution can

be factorized using Bayes’ rule: P (A|B) = P (A)P (B|A)
P (B) . Let L be all the limb

position variables, M be the mobile movement variables, and S be the motor
signal variables. Then the conditional probability of interest is the probability
of mobile movement given the other variables: P (M | L, S). After factorization,
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this becomes:

P (M | L, S) =
∑
l∈L

P (M | L = l) · P (L = l | S)

P (L | S) is the distribution over the limb positions, given the motor signals.
This is a probability distribution of sixteen variables, i.e. the previous and
current four limb positions, 2 · 4 variables, and the previous and current four
motor signals, 2 · 4 variables, resulting in 2 · 4 + 2 · 4 = 16 variables. Each
variable has three possible values, resulting in a table with 316 = 43105770
probabilities. Potentially, the limb positions are dependent on any combination
of motor signals. That is why the entire conditional probability table should be
considered.

P (M | L) is the distribution over the mobile movement variables given the
limb position variables. This is a probability distribution over ten variables, i.e.
the previous and current four limb positions, 2·4 variables, and the previous and
current mobile movement, 2 · 1 variables, resulting in 2 · 4 + 2 · 1 = 10 variables.
Each variable has three possible values, resulting in a table with 310 = 59049.

This factorization reduces the number of entries that make up the probability
table. In this case, the factorization into these two probabilities reduces the
number of entries from a table of 18 variables, meaning 318 entries, to two tables

of individually 316 and 310 entries. This is a reduction by a factor of 318

316+310 ≈ 9.
This reduces the amount of data that is necessary to be able to learn the causal
relations between the variables. However, regardless of this slight reduction,
the probability table is very large, still requiring a large amount of data before
probabilities can be computed that approximate the real probabilities.

New motor signals are selected from the conditional probability distribution
by selecting the set of motor signals with the maximum likelihood of resulting in
faster mobile movement. In calculating the maximum likelihood, values of the
limb positions are marginalized over. The variables are assigned the values that
are appropriate at the current iteration by retrieving them from memory, i.e.
the previous motor signals, and mobile movement, and the previous and current
limb positions, then the current mobile movement value is set to ‘faster’ and the
set of current motor signals is selected that results in the highest conditional
probability over this complete set of variables.

An example of the kind of structure that this mechanism learns is indicated
below. Consider a babybot with just one arm with a position F = {ap}, and
motor signal A = {a}, which is connected to a mobile, as described before
where m is the mobile’s movement signal. Initially, the probability distribution
is uniform, meaning all variables are independent, depicted as a causal Bayes
net in Figure 7. For a visual representation of the possible dependencies in the
Bayesian network for the babybot, see Figure 9

After some iterations, the infant could learn a causal relation as depicted in
Figure 8.

3.2.1 Pseudo Code of Causal Learning

The set of motor signals A and observations O are combined into a single set of
variables that will be used in the probability distributions. The variable symbols
V ′ = {v1, . . . , v|V′|}. and domains D = {D1, . . . , D|V′|} of values Di of vi ∈ V ′.

19



Prev(a) Curr(a)

Prev(ap) Curr(ap)

Prev(m)

Curr(m)

Figure 7: A Bayes net representing the underlying structure of an initial uniform
probability distribution of a babybot. All variables are independent of each
other. ap is the arm’s position. a is the arm’s motor signal. m is the mobile’s
movement.

Prev(a) Curr(a)

Prev(ap) Curr(ap)

Prev(m)

Curr(m)

Figure 8: A fictional example Bayes net representing the underlying structure
of an initial uniform probability distribution of a babybot. A causal relation
between the previous arm motor signal and the current arm position, and the
current arm position position and the current mobile’s movement is learned.
Edges are undirected because the direction of the causality cannot be inferred
directly from the probability distribution. ap is the arm’s position. a is the
arm’s motor signal. m is the mobile’s movement.
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Prev(rf)

Prev(lf)

Prev(rh)

Prev(lh)

Prev(rfp)

Prev(lfp)

Prev(rhp)

Prev(lhp)

Curr(rf)

Curr(lf)

Curr(rh)

Curr(lh)

Curr(rfp)

Curr(lfp)

Curr(rhp)

Curr(lhp)

Curr(m)

Prev(m)

Figure 9: Bayesian network for the babybot. Given the assumptions, a variable
can be dependent on variables on the left, but not on variables on the right side
of that variable.
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The motor signal symbols V ′M ⊆ V ′, V ′M = A and the sensory, i.e. non-
motor signal symbols, V ′S ⊆ V ′, V ′S = O and the motor signal symbols and the
sensory symbols are unique V ′M ∩ V ′S = ∅.

These variable symbols are altered to represent a relation in time between
variables by adding a ‘current’ or ‘previous’ denominator. This results in the
variable symbols V where v ∈ V ′ → Prev(v) ∈ V, Curr(v) ∈ V with domains
Prev(v) ∈ V → DPrev(v) = Dv and Curr(v) ∈ V → DCurr(v) = Dv.

An assignment of a value to a variable (vi, di,j) ∈ (V × Di) is denoted as
vi = di,j , and the set of all possible variable assignments is V .

The memory M = {(t1, c1), . . . , (t|M |, c|M |)} from the set of all possible
memories M, is the set of ordered pairs of time ti and the assignment of values
over variables ci at time ti. The notation M i denotes the conjunction ci at time
ti.

The point in time t ∈ N0 is a number that is used within the algorithm to
store new observations in memory, implicitly storing time information as t is
incremented every iteration.

P is a probability distribution over the observed variables, P : (v×Dv)
N →

R. A probability over variables with specified values is denoted as P (vi =
di,j , . . . , vn = dn,k), a conditional probability is denoted as P (vi = di,h, . . . , vj =
dj,k] | vj+1 = dj,p, . . . , vn = dn,k) and the marginalized probability is denoted
with a variable name without value P (v).

The state s ∈ S = {sexplore, sexperiment} is used as an indicator of the stage
of the algorithm that we are in, as different things are calculated at different
times t.

SelectRandomMotorSignals : Σn → Σ is a function that selects a com-
bination of motor signals at random. This is only used in the exploration phase
of the algorithm to gather an initial set of data. ConditionalProbabilities :
M × V × V → P is a function that computes the conditional probability dis-
tribution P (A|B) given a memory, the variables B ⊂ V that are conditioned
on and the other variables A ⊂ V. In the algorithm, this function is used to
compute the probability distribution from the observations that are in memory
up to that point in time.

22



Algorithm 3 Causal Learning Algorithm

procedureCausalLearning(t, Ot,Σ,V ′M ,V ′S ,Mt, st, nexplore, Pmotor, (vr, dr))
. t, current iteration
. Ot, current observations
. Σ, all possible motor signals, i.e. combinations of motor signal symbols

and values
. V ′M ∪ V ′S , all variable symbols, divided into motor symbols and sensory

symbols respectively
. Mt, the memory so far, a set of previous experiences
. nexplore, number of iterations in the exploration phase
. Pmotor, conditional probability distribution calculated from exploration
. (vr, dr), variable and value used for maximizing calculation

VM = {Prev(v) | v ∈ V ′M} ∪ {Curr(v) | v ∈ V ′M}
VS = {Prev(v) | v ∈ V ′S} ∪ {Curr(v) | v ∈ V ′S}

if t > nexplore then
. Change state, end the exploration phase
st+1 ← sexperiment

. Compute the conditional probability distribution, without mobile
movement

V− ← VS \ {Prev(vr),Curr(vr)}
Pmotor ← ConditionalProbabilities(Mt,V−,VM )
. Clear memory, but keep a minimum to have data for the other con-

ditional probability table
Mt ←Mt \Mt−3

end if

if st = sexplore then
. Explore by random selection of actions
σsel ← SelectRandomMotorSignals(Σ)

else if st = sexperiment then
. Select the combination of motor signals with the highest probability

of resulting in (vr, dr)
. Calculate the conditional probability distribution
Plimb ← ConditionalProbabilities(Mt, {vr},VS \ {vr})
V ′−S ← (V ′S \ {vr})
. Compute for the predefined variable for the current time, and take

the stored value for the previous time
XA ← {(Curr(vr), dr), (Prev(vr),M

t−1

t (vr))}
. Compute for the stored values for the previous time, and sum over

those for the current time
XB ← {Curr(v) | v ∈ V ′−S } ∪ {(Prev(v′),M t−1

t (v′)) | v′ ∈ V ′−S }
. Compute for the stored values of previous motor signal selections
XC ← {(Prev(v),M t−2

t (v)) | v ∈ V ′M}
σsel ← argmaxσ4∈Σ4Plimb(XA | XB) · Pmotor(XB | XC ∪

{(Curr(v), d) | (v, d) ∈ σ4})
end if

. Add the new experience to memory
Mt+1 ←Mt

AddExperience(Mt+1, Ot, σ
sel)

return σsel

end procedure
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4 Results

Simulations were run with both the operant conditioning and causal learning
mechanisms. Simulations ran for 300 iterations each and changes in limb posi-
tion were recorded for every limb and grouped into 50 blocks of six iterations
each. For every group, the resulting patterns of ten simulations were averaged
to control for random effects. A size of ten was chosen as a compromise between
number of simulations and simulation time, as the causal learning simulations
took in the range of twenty minutes to an hour to simulate in a python simula-
tion on a 3 GHz processor. The results are presented in the following plots.

4.1 Normal Condition

To compare how the mechanisms’ pattern of behavior changes in an unchang-
ing environment, both mechanisms were simulated in a condition in which the
mobile’s movement is controlled by movement of the right foot.
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Figure 10: Operant conditioning mechanism. The mobile was connected to the
right foot. Results averaged over 10 runs.
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(d) Right foot

Figure 11: Causal learning mechanism. The mobile was connected to the right
foot. Results averaged over 10 runs.
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Figure 12: Operant conditioning mechanism, with only single limb movements.
The mobile was connected to the right foot. Results averaged over 10 runs.
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Figure 13: Causal learning mechanism, selecting for single limb movements.
The mobile was connected to the right foot. Results averaged over 10 runs.
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In the operant conditioning mechanism, Figure 10, the frequency of move-
ment of the limbs does not go to zero. This could be because the distribution
over the combinations of motor signals is approximately uniform because of the
large number of combinations, causing the algorithm to select motor signals
approximately at random if there is no combination of motor signals that was
reinforced in the previous iteration. The frequency of movement of the right
foot (mrf = 3.31, srf = 0.46) is higher than that of other limbs (mlh = 2.14,
slh = 0.48, mlf = 2.35, slf = 0.38, mrh = 2.18, srh = 0.44). This is similar to
the empirical results, where the frequency of movement of the connected limb
is higher than the frequency of movement for the other limbs [5].

In the causal learning mechanism Figure 11, the limbs move with the same
frequency (mlh = 2.53, slh = 0.43, mlf = 2.50, slf = 0.47, mrf = 2.46, srf = 0.56,
mrh = 2.44, srh = 0.41). This indicates that the causal learning mechanism
has not learned the causal relation between the right foot movement and the
movement of the mobile. A possible explanation for this is that there was not
enough data to learn this causal relation. This is not similar to the empirical
results, as the empirical results showed an increase in the frequency of movement
for the limb that was connected to the mobile.

In the operant conditioning mechanism where movement is constrained to
a single limb, Figure 12, frequency of movement of the right foot (mrf = 2.06,
srf = 0.61) is higher than that of other limbs (mlh = 0.41, slh = 0.25, mlf = 0.41,
slf = 0.18, mrh = 0.52, srh = 0.28). Other limbs’ frequencies, i.e. not the
right foot, are near zero from the start; which is different from the empirical
data where all limbs have an initial period of high frequency movement. The
global pattern is similar to the pattern in Figure 10. This is again similar to the
empirical results, although the low frequency of the limbs that are not connected
to the mobile is lower.

In the causal learning mechanism where motor signals are constrained to
single limb movement, Figure 13, the limbs move with the same frequency, as
was also observed in Figure 11, mlh = 1.30, slh = 0.48, mlf = 1.33, slf =
0.41, mrf = 1.37, srf = 0.51, mrh = 1.37, srh = 0.41. The initial period of
higher frequency movement indicates the exploration phase, after which the
selected motor signals are selected from the previous data resulting in a drop
in movement frequency. A possible explanation of why this pattern is different
from the condition in which movement with any number of limbs is selected,
is that the reduction in the number of possible combinations of motor signals
causes the probability table to be filled faster. This would cause motor signals to
be selected less frequently if there has already been an experience where almost
all variables had the same value, as this would skew the conditional probability
toward selecting the motor signal for that experience.

4.2 Switch Condition

To compare how the mechanisms adapt to changes in the environment, both
mechanisms were also simulated in a condition where the limb that controls
the mobile’s movement is changed from the right foot to the left hand at the
midpoint of the simulation.
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Figure 14: Operant conditioning mechanism. The mobile was connected to the
right foot, then switched to be connected to the left hand (indicated by the
vertical line). Results averaged over 10 runs.
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Figure 15: Causal learning mechanism. The mobile was connected to the right
foot, then switched to the left hand (indicated by the vertical line). Results
averaged over 10 runs.
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Figure 16: Operant conditioning mechanism. Only one limb is moved at the
same time. The mobile was connected to the right foot at first, then switched
to the left hand (indicated by the vertical line). Results averaged over 10 runs.

0 10 20 30 40 50
0

2

4

6

Time (blocks of 6 iterations)

K
ic

k
in

g
F

re
q
u

en
cy

(k
ic

k
s/

b
lo

ck
)

(a) Left hand

0 10 20 30 40 50
0

2

4

6

Time (blocks of 6 iterations)

K
ic

k
in

g
F

re
q
u

en
cy

(k
ic

k
s/

b
lo

ck
)

(b) Right hand

0 10 20 30 40 50
0

2

4

6

Time (blocks of 6 iterations)

K
ic

k
in

g
F

re
q
u

en
cy

(k
ic

k
s/

b
lo

ck
)

(c) Left foot

0 10 20 30 40 50
0

2

4

6

Time (blocks of 6 iterations)

K
ic

k
in

g
F

re
q
u

en
cy

(k
ic

k
s/

b
lo

ck
)

(d) Right foot

Figure 17: Causal learning mechanism, selecting for single limb movements.
The mobile was connected to the right foot, then switched to be connected to
the left hand (indicated by the vertical line). Results averaged over 10 runs.
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In the operant conditioning mechanism, Figure 14, before the switch the
frequency of movement of the right foot (mrf = 3.16, srf = 0.40) is higher than
that of other limbs (mlh = 2.17, slh = 0.68, mlf = 2.26, slf = 0.41, mrh = 2.22,
srh = 0.48). After switching, the left hand’s frequency of movement (mlh = 3.18,
slh = 0.65) is higher than before switching (mlh = 3.18 > mlh = 2.17) and it is
higher than the frequencies of other limbs after switching (mlf = 2.20, slf = 0.54,
mrf = 2.61, srf = 0.52, mrh = 1.81, srh = 0.54). This indicates that before
switching motor signals of right foot movement are reinforced, whereas after
switching the motor signals of left hand movement are reinforced, causing the
previously reinforced right foot movement’s probabilities to decrease.

In the causal learning mechanism, Figure 15, all frequencies are similar.
Before switch: mlh = 2.36, mlf = 2.35, mrf = 2.32, mrh = 2.38, slh = 0.44,
slf = 0.38, srf = 0.45, srh = 0.45. After switch: mlh = 2.54, mlf = 2.54,
mrf = 2.52, mrh = 2.56, slh = 0.42, slf = 0.45, srf = 0.32, srh = 0.46. This is
again an indication that the causal relations are not learned.

In the operant conditioning mechanism selecting for single limb movements,
Figure 16, a pattern similar to the one in Figure 14 is observed. Before switching,
the frequency of movement of the right foot (mrf = 2.42, srf = 0.46) is higher
than that of other limbs (mlh = 0.42, slh = 0.30, mlf = 0.33, slf = 0.12,
mrh = 0.22, srh = 0.22). After switching, the left hand’s frequency of movement
(mlh = 1.86, slh = 0.56) is higher than before switching (mlh = 1.86 > mlh =
0.42) and higher than that of other limbs (mlf = 0.40, slf = 0.18, mrf = 0.60,
srf = 0.50, mrh = 0.51, srh = 0.23).

In the causal learning mechanism selecting for single limb movement, Fig-
ure 17, a pattern similar to that in Figure 13 is observed. Limbs’ movement
frequencies are similar before switching: mlh = 1.44, mlf = 1.51, mrf = 1.50,
mrh = 1.43, slh = 0.43, slf = 0.55, srf = 0.44, srh = 0.60. And after switch-
ing mlh = 1.10, mlf = 1.30, mrf = 1.03, mrh = 1.32, slh = 0.24, slf = 0.25,
srf = 0.29, srh = 0.28. As in the normal condition, the initial period of higher
frequency movement indicates the exploration phase, after which the selected
motor signals are selected from the previous data resulting in a drop in move-
ment frequency.
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5 Discussion

To gain evidence for whether the experiment by Rovee-Collier et al. can be used
to determine presence of a sense of agency, a comparison was made between the
behavioral patterns of an operant conditioning and a causal learning mechanism
in relation to the empirical data. These two mechanisms were selected because
one fulfilled no necessary conditions for a sense of agency while the other does
fulfil such a condition. The comparison’s results implied that data such as in
[5] cannot be used to conclude a sense of agency in infants.

Movement patterns resulting from the operant conditioning mechanism are
similar to movement patterns resulting from the infants in the experiment in that
the frequency of movement of the limb that is connected to the mobile is higher
than the frequency of movement of the other limbs. A difference between the two
mechanisms and the infants is that in the patterns resulting from the infants,
the movement frequency of the limbs that were not connected to the mobile
decreased. In the operant conditioning mechanism, this decrease in frequency is
absent. This could indicate that the operant conditioning mechanism could be
changed to result in more similar movement patterns. One such change could be
a different, more sophisticated reinforcement scheme that reinforces individual
motor signals instead of combinations of motor signals. One explanation for the
operant conditioning mechanism’s results is that the reduction of the complex
world into the presence or absence of a reward, essentially a binary value, greatly
reduces the complexity of the learning problem.

Movement patterns resulting from the causal learning mechanism are not
similar to the movement patterns resulting from the infants. There is no shift
to relative high frequency movement of the connected limb. This is consistent
with the observation that there is no shift after changing the connected limb.
which could indicate that more time is needed to learn the causal relations. One
explanation for the causal learning mechanism’s results is that the world model’s
complexity is too high: the number of experiences necessary to fill the proba-
bility table is exponential in the number of variables, which is intractable even
for simple worlds. For the babybot in this thesis, the probability distribution
contained eighteen variables, requiring in the order of 318 experiences to com-
pletely fill the table. This is clearly much more than the number of simulated
iterations. However, this mechanism should not be dismissed completely, as an
infant might collect enough data during infancy to have a meaningful proba-
bility distribution. An exploration phase has been included in the algorithm,
but it might have been too short. Future research could include a separate,
extended exploration phase that learns the causal representation of the ‘body’
before entering the experiment environment. Infants might also constrain the
causal model further, for example by only allowing a particular limb’s motor
signal variable to be connected to that same limb’s position variable.

From these two observations, it follows that the operant conditioning mech-
anism which does not have a representation of the relation between the actions
and the environment results in pattern similar to the infants’ movement pat-
terns. Conversely, the causal learning mechanism which does have such a rep-
resentation results in a different pattern. Thus, this implies that data such as
in [5] cannot be used to conclude a sense of agency in infants.

By designing a simulation of the mechanisms behind infant behavior, insight
was gained into the problems that appear if infants actually implement these
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mechanisms. This can be used in the generation of hypotheses, and the resulting
mechanisms can be used to test hypotheses in developmental research. In turn,
the knowledge that results from this can be used in developmental research
to explore and develop models, and in artificial intelligence to develop new
techniques, including learning mechanisms.

5.1 Scientific Challenges

During the research project, we encountered several scientific challenges. One
challenge was the dynamic updating of a causal Bayes net. In an earlier stage
of describing the causal learning mechanism, the algorithm calculated a causal
Bayes network from the gathered observations. Because no method for dynam-
ically updating such a network was available and recalculating the network was
too computationally intensive, part of this algorithm was abandoned. This is
an indication that there might be benefits to research on dynamic updating of
such models; in general and perhaps specifically for developmental science.

Another big challenge was the problem of having the mechanisms consider
only the relevant models or relations, being reminiscent of the frame problem
in first-order logic [9]. For example, for the causal learning mechanism, even
in a seemingly simple world as the one that was presented in this project, the
number of experiences that is necessary to have enough data to be able to
predict causal relationships suffers from a learnability problem. In the context
of developmental research and AGI, this could be considered as another piece
of evidence for the idea that the complexity of human intelligence might not
(only) be found in the adult stage of life, but also in the stages before that. This
involvement of the frame problem suggests that artificial intelligence research
might benefit from developmental research. By exploring solutions that actual
humans use to solve these hard problems, we could advance further towards
artificial human-level intelligence.

Some decisions were made to reduce the complexity of the real problem,
both for feasibility and because of time constraints. First, even though the
original problem’s complexity is underestimated by simplifying the infant’s body
and senses, there is still a problem of determining how much of the world is
relevant. Four 1-dimensional ‘limbs’ are not as complex as four limbs that have
joints and that are controlled by muscles that are in turn controlled by electrical
signals. Still then, the causal learning mechanism, when considering all possible
combinations of variables, requires a lot of data to learn the causal relations.
In further research, more complex models could be explored to approach the
real complexity of the problem, which includes continuous models and models
in 3-dimensional space. This would entail different control mechanisms, and
different feedback that might include noise.

Second, related to the first point, no interactions between limbs have been
modelled, whereas in real infants movement of the right leg might cause the left
leg’s position to change also. Future research could include simple probabilistic
models of these interactions or models of the infant’s body.

Third, the babybot is assumed to always observe the mobile. This is not
realistic, as infants move their head, blink, and move their arms in front of
their eyes. Further research could explore models that introduce noise in this
observation in some way, or that include head movement into the variables that
are to be learned.

32



Fourth, there is no feedback from pressure when a limb is moved against the
crib. Including this and other kinds of feedback could speed up learning of the
inability to move a limb in the ‘down’ position and perhaps the ‘up’ position.

Fifth, in the current model, there is no speed component to the babybot’s
movements. Different limb movement speeds affect the mobile’s speed differ-
ently, which adds complexity to the learning problem. However, for the pur-
poses of this experiment, i.e. regarding learning contingencies between actions
and effects, a constant speed allowed for comparing the algorithms.
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6 Conclusion

We investigated the differences between operant conditioning and causal learn-
ing mechanisms in how far these mechanisms can explain behavior in infants
during a learning task. These two mechanisms were selected because one ful-
filled no necessary conditions for a sense of agency while the other does fulfil
such a condition. Data obtained from the simulation of these two mechanisms
were compared to the empirical data. These data implied that data such as in
[5] cannot be used to conclude a sense of agency in infants.

During the research project, we encountered several fundamental scientific
challenges. This indicates that interdisciplinary research between developmental
research and artificial intelligence research is beneficial for both fields.
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