
Master Thesis

Mobile 3D Computer Vision:
Introducing a portable system for potato size

grading

Author:

Remco Runge

Department of Artificial Intelligence

Radboud University Nijmegen

Internal supervisor:

dr. L.G. Vuurpijl

Department of Artificial Intelligence

Radboud University Nijmegen

External supervisor:

ir. R. van Tilborg

Smart Technologies

Ordina Nieuwegein

December 10, 2014

Abstract

Computer vision has gained an important place in the agricultural sector. It is used to

measure and grade agricultural products such as potatoes, apples and oranges. Most of

these systems rely upon dedicated and expensive computer vision setups. Within this

thesis, an inexpensive and portable grading system for potato tubers is presented.

The presented system utilises 2D and 3D computer vision techniques to estimate the

length, width and square mesh size of a potato tuber. The rapid adaptation of smartphones

and smartglasses (such as the Google Glass) has made it possible to capture and process

images at relatively low costs. Within this thesis, the use of a smartphone and smartglass

as a inexpensive system for mobile potato grading is investigated.

The results of this thesis show the potential of inexpensive potato grading based on

2D and 3D computer vision for images captured with mobile devices. The future of

agricultural grading can be mobile!

Contents

Abstract i

Contents ii

Acknowledgements vi

1 Introduction 1

1.1 Project introduction . 2

1.2 Research Questions . 3

1.3 Review of the current field of computer vision 4

1.4 Organization of this thesis . 4

2 Research Context 5

2.1 Computer vision in the agricultural sector 5

2.1.1 Potatoes . 5

2.1.2 Apples . 7

2.1.3 Other agricultural products . 8

Watermelons . 8

Oranges . 8

Strawberries . 8

2.2 Square mesh size . 8

3 Methods 10

3.1 Materials . 10

Image capturing devices . 10

Marker board . 10

Central server . 11

3.2 Computer vision system design . 11

OpenCV . 11

ArUco . 12

Point Cloud Library . 12

3.2.1 Camera resectioning . 12

3.2.1.1 Intrinsic parameters . 12

3.3 2D detection of the tubers width . 14

Input . 15

3.3.1 Pre-processing . 15

ii

iii

3.3.1.1 Region of interest detection 16

3.3.1.2 Gaussian smoothing . 16

3.3.1.3 Colour space . 17

3.3.2 Feature detection . 17

3.3.2.1 Thresholding . 17

3.3.2.2 Bounding box . 18

3.4 3D detection of the tubers height . 19

3.4.1 Multi-view stereo vision . 19

Input . 19

3.4.2 Pre-processing . 20

3.4.3 Camera pose estimation . 20

3.4.4 Feature point detection . 22

3.4.5 Triangulation . 23

3.4.6 Bundle adjustment . 24

3.4.7 Cluster extraction . 25

3.5 Experimental setup . 26

3.5.1 Image Acquisition . 27

3.5.2 Data sets . 27

3.5.3 Ground truth data . 28

3.5.4 Testing the system . 28

3.5.5 Evaluation . 28

4 Results 29

4.1 Smartphone . 29

4.1.1 Height measurement . 29

4.1.2 Width measurement . 29

4.1.3 Square mesh size measurement . 30

4.2 Google Glass . 30

4.2.1 Height measurement . 30

4.2.2 Width measurement . 31

4.2.3 Square mesh size measurement . 31

4.3 Multiple potatoes . 32

4.3.1 Height measurement . 32

4.3.2 Width measurement . 32

4.3.3 Square mesh size measurement . 33

5 Discussion 34

5.1 Height measurement . 34

5.2 Width measurement . 35

5.3 Square mesh size measurement . 35

5.4 Multiple potato measurement . 36

5.5 Research Question . 37

5.6 Improvements and future research . 38

A Review 45

A.1 General overview of computer vision . 45

A.1.1 Basic structure of computer vision applications 45

iv

A.2 Image data acquisition . 47

A.3 Pre-processing . 47

A.3.1 Noise Removal . 47

Linear Filter . 47

Median Filter . 48

Gaussian Smoothing . 48

A.3.2 Enhancing Contrast . 48

Histogram Scaling . 48

Histogram Equalization . 48

A.4 Feature Detection . 49

A.4.1 Edge Detection . 49

Edge detection operators . 49

Classical Edge detection . 50

Laplacian Edge Detection 50

Laplacian of Gaussian . 50

Canny Edge Detection . 50

A.4.1.1 Advantage en disadvantages of different edge detection
methods . 51

A.4.1.2 Thresholding . 51

Threshold selection . 52

Region Based Segmentation 53

Watershed . 53

A.4.2 Points of Interest detection . 53

A.4.2.1 Corner . 54

Harris & Stephens / Plessey operator 54

A.4.2.2 Blobs . 54

The Difference of Gaussians approach 54

A.5 Feature Descriptors . 54

Scale invariant feature transform (SIFT) 55

PCA-SIFT . 55

Gradient location-orientation histogram (GLOH) 55

Speeded Up Robust Features (SURF) 55

Global-SIFT (GSIFT) . 56

Coloured-SIFT (CSIFT) . 56

Affine-SIFT (A-SIFT) . 56

Maximally stable extremal regions (MSER) 56

Pros and cons different algorithms 56

A.5.1 Classification . 57

A.5.1.1 k-Nearest Neighbour . 57

A.5.1.2 Artificial Neural Networks 58

A.5.1.3 Decision Tree learning . 58

A.5.1.4 Support Vector Machines 58

A.5.1.5 Boosting . 58

A.6 Libraries, Frameworks and Toolboxes . 59

A.6.1 Libraries . 59

OpenCV . 59

VLFeat . 59

v

A.6.2 Toolboxes . 59

Matlab image Processing Toolbox (IPT) 59

Matlab Computer Vision System Toolbox (CVST) 59

Matlab Machine Vision Toolbox(MVT) 60

A.6.3 Frameworks . 60

SimpleCV . 60

AForge.NET . 60

A.6.3.1 Overview . 60

A.6.4 Decision Matrix . 60

A.6.5 Conclusion . 62

B Plots 64

B.1 Smartphone . 64

B.2 Google Glass . 66

B.3 Multiple potatoes . 67

C Data 69

C.1 Xiaomi RedMi . 69

C.2 Google Glass . 73

C.3 Multiple potatoes . 74

Acknowledgements

First of all, I would like to thank my supervisors Louis Vuurpijl and Richard van Tilborg,

for their guidance and encouragement during my research and my writing. Furthermore,

I would like to thank all my colleagues at Ordina SMART technologies for their help

and advice. I thank my family and friends for their support, feedback and for helping

me structuring my mind.

vi

Chapter 1

Introduction

The world population is ever growing. With every new child born, there is a new mouth

to feed. This puts a high pressure on the agricultural sector to deliver high quality and

affordable products. Automation is therefore key to reduce labour costs and improve

quality. Human operators are gradually being replaced by automated systems which are

in most cases faster and more precise (Narendra and Hareesha, 2010).

To answer this need, computer vision has gained an important role in the agricultural

sector to automate processes. Computer vision is a technique which is used to analyse

images of real scenes by computers in order to derive information which in turn can be

used to control machines or processes. The core of computer vision is related to the field

of image analysis and image processing which is used to quantify and classify images

and objects of interest within images (Sun, 2004).

Within the agricultural sector the use of computer vision is mainly focussed on automating

the quality inspection, classification and evaluation of a wide range of agricultural

products. Agricultural products need to be sorted and graded for commercial and

production purposes. Traditional, grading and inspecting agricultural products is done

by human operators. This manual process is often tedious, inaccurate, time-consuming

and inconsistent. Current research aims at automating this labour intensive process

(Narendra and Hareesha, 2010)

Systems have been developed to sort, inspect and grade a wide variety of agricultural

product such as apples (Li et al., 2002), tomatoes (Jahns et al., 2001), olives (Riquelme

et al., 2008), grains (Paliwal et al., 2003), potatoes (Rios-Cabrera, 2008) etc. In Chapter

2 a more in-depth overview of the use of computer vision in the agricultural sector will

be given.

1

2

1.1 Project introduction

The computer vision systems discussed above all rely upon relatively expensive camera

set-ups. This makes them infeasible to use for automating smaller scale agricultural

processes. One of such problems comes to light when farmers need to determine the

growth of their potatoes. During this process only a small section of the potato field is

harvested after which the size of each potato is measured in order to determine whether

or not the rest of the field is ready for harvest.

Currently, this process is completely performed by hand. Each individual potato needs

to be measured with the help of a square mesh size measuring tool (Fig. 1.1). The

square mesh size is one of the most common criteria for size grading around the world.

The square mesh size of a potato is defined as the smallest square aperture through

which a potato can be pushed lengthwise without effort.

Figure 1.1: Tool to measure the potato square mesh size.

The sampling process is done at a small scale of around 180 potatoes at a time. Although

the sampling and measuring process is quite labour intensive, the small scale does not

justify the high costs of a dedicated computer vision set-up.

With the rapid development of camera equipped mobile devices in the last couple of year,

it has become possible to create mobile and relatively cheap computer vision applications.

Devices such as smartphones, tablets and smart glasses1 are equipped with increasingly

more computational power and better cameras. They have become computationally

powerful enough to handle basic computer vision tasks such as facial recognition (Cheng

and Wang, 2011).

1 Smartglasses are wearable computers in the form of glasses with a display mounted to the frame.
Often these smartglasses are also equipped with a camera. The Google Glass is a well known example
of a smartglass.

3

Thanks to the connectivity of these devices it is also possible to offload the more

computational intensive computer vision tasks to remote resources (Kemp et al., 2012).

Therefore, the use of mobile devices equipped with a camera could, due to their mobility

and relatively low costs, be a viable platform for mobile agricultural product grading on

a small scale.

We therefore propose a low cost computer vision system for potato square mesh size

determination based on images captured with a smartphone or smartglass by measuring

the minor (height) and intermediate (width) axis of a potato tuber. Figure 1.2 gives a

schematic overview of the dimensions of a potato tuber.

Figure 1.2: Schematic overview of the dimensions of a potato: the major axis/length
(L), intermediate axis/width (W) and the minor axis/height (H).

Within this thesis, the implementation of such a system will be described. Furthermore,

the research questions described in the next section will be answered.

1.2 Research Questions

• “What is the viability of a computer vision potato grading system for mobile

devices?”

To assess the viability, the following sub questions should be answered:

• “How accurate can the system measure the length of the minor axis (height) of a

potato tuber?”

• “How accurate can the system measure the length of the intermediate axis (width)

of a potato tuber?”

4

• “How accurate can the system derive the mesh size of a potato based on the

measured length of the intermediate and minor axis of the potato tuber?”

• “How well does the system handle measuring multiple potatoes at the same time?”

Private discussions with relevant experts from the potato industry showed that a mean

absolute error of 3 millimetre for the square mesh size determined by the computer vision

system compared to measurements with the square mesh size measuring tool (Fig. 1.1),

would be an acceptable result. Therefore the system is considered viable when the mean

absolute error is below 3 millimetres.

1.3 Review of the current field of computer vision

The field of computer vision is rapidly developing. The number of available algorithms

and methods for computer vision keeps increasing. These algorithms and methods

have been implemented in a wide variety of computer vision libraries, toolboxes and

frameworks. To investigate which of these software packages would be the best basis

for creating the proposed system, a review of the current field of computer libraries,

toolboxes and frameworks was created preliminary to this study. This review can be

found in Appendix A.

1.4 Organization of this thesis

This thesis is organized in six chapters. Within this chapter, the general introduction

was outlined, and the project and research questions were introduced. In Chapter

2, an overview of the research context is given. The methods, implementation and

experimental setup of the system are described in Chapter 3. In Chapter 4 the results of

this study are presented, which are discussed in Chapter 5. This thesis is organized in six

chapters. Within this chapter, the general introduction was outlined, and the project

and research questions were introduced. In Chapter 2, an overview of the research

context is given. The methods, implementation and experimental setup of the system

are described in Chapter 3. In Chapter 4 the results of this study are presented, which

are discussed in Chapter 5.

Chapter 2

Research Context

In the 1960’s some Artificial Intelligence and Robotics researcher saw the ‘visual input’

problem as a relatively easy step along the path of solving complex problems such as

higher-level reasoning and planning. This is illustrated by a famous story from 1966 in

which Marvin Minsky at MIT asked his undergraduate student Gerald Jay Sussman to

“spend the summer linking a camera to a computer and getting the computer to describe

what it saw” (Boden, 2006). As we now know, learning a computer to describe what it

sees is not just a summer project, but it is a complete field of research.

As noted in the introduction, agricultural computer vision has gained an important place

in the field of computer vision. Within this chapter the current research in the field of

agricultural computer vision will be described.

2.1 Computer vision in the agricultural sector

2.1.1 Potatoes

Potatoes come in all kinds of different shapes and sizes. Different markets demand

differently shaped potatoes. It is therefore necessary to grade the potatoes into different

uniform classes depending on the market.

Tao et al. (1995) developed a Fourier based shape separation method using computer

vision for automatic grading of green and good potatoes. In their work, they defined

a separator based on the harmonics of the Fourier transform. The accuracy of their

system was 89% for 120 potato samples. This result was in line with manual grading

performed by experts and farmers.

5

6

Heinemann et al. (1996) built a prototype inspection station based on the United States

Department of Agriculture (USDA) inspection standards for potato grading. Potatoes

were individual photographed in the systems image chamber after which shape and size

were estimated. The system was able to get a maximum classification rate of 98%.

A high-speed computer vision system capable of classifying 50 potato images per second

has been presented by Zhou et al. (1998). The system evaluated weight, cross-sectional

diameter, colour and shape of three different cultivars of potatoes. An ellipse was

fitted to the image of a potato as a shape descriptor. Colour thresholding in the HSV

(Hue-Saturation-Value) colour space was performed to detect green colour defects. The

system was able to achieve a average success rate of 91.2% for weight inspection and

88.7% for diameter inspection. Furthermore, it was able to achieve a colour inspection

success rate of 78.0% and a shape inspection success rate of 85.5%. Overall the system

had an average success rate of 86.5

More recently Rios-Cabrera et al. (2008) employed Artificial Neural Networks (ANN)

to determine the quality of potatoes by evaluating physical properties and detecting

misshapen potatoes. Three different connectionist models (Backpropagation, Perceptron

and FuzzyARTMAP) were evaluated on speed an stability for classifying extracted

properties. FuzzyARTMAP outperformed the other models on stability and convergence

speed with values lower than 1ms per pattern. The fast processing algorithm makes the

methodology suitable for quality control in production lines.

Two different types of potato inspection approaches were evaluated by Jin et al. (2009).

Adaptive Intensity Interception and Fixed Intensity Intersection were compared for

tubers with defects using Otsu segmentation in combination with morphological operators.

The results showed that the latter method was more effective for tuber defect inspection.

Al-Mallahi et al. (2010) developed a computer vision to automatically detect potato

tubers and lumps of earth and clay (clods). The ultraviolet reflectance of tubers compared

to their background which includes pieces of clods, was used for the detection. The tubers

were segmented by estimating their size by calculating their maximum size and width.

A total of 1171 video frames which included 2233 tubers and 1457 clods were segmented.

The system was able to successfully detect 98.79% of the tubers and 98.28% of the clods.

Hasankhani and Navid (2012) created a computer vision system for grading potatoes into

three categories based on size. The size of the potatoes was determined by thresholding

the image in the HSV (Hue-Saturation-Value) colour space, after which the boundaries

were extracted. A total number of 110 potatoes were sorted by the system with an

average precision of 96.823%.

7

The systems described in this section are all systems that require dedicated and stationary

camera set-ups. This makes these systems relatively expensive. Furthermore, none of

these systems incorporates the 3D shape of the potato.

2.1.2 Apples

Paulus and Schrevens (1999) created an algorithm to determine the phenotypes of an

apple by characterizing objectively the shape of the apple with the help of Fourier

expansion. The dimensionality of the edge points of the image of an apple were reduced

to a set of 24 Fouriers coefficients. Principle component analysis on the set of Fourier

coefficients was used to get two shape variables which were used to measure accurately

the apple profiles described by a subjective descriptor list. Within this research, they

determined the need for at least four images of a randomly chosen apple in order to

quantify its average shape. The algorithm was successfully able to distinguishing the

shape of different apple cultivars.

Research by Paulus et al. (1997) gave insight into the way in which external product

features can affect the human perception of quality. ‘Tree-based modelling’ was used to

simulate apple quality classification using objective measurement of external properties.

It was found that the characteristics which influence the classification differ according

to the variety of the apple. Furthermore, it was found that humans were inconsistent in

their quality estimation. According to this study, the inconsistency is influenced by the

amount and complexity of the product features. The higher the amount and complexity

of the product features became, the error of human classification increased.

Apple defects are an important factor when grading apples. Several studies into analysing

with the help of computer vision have therefore been performed. Leemans et al. (1998)

used computer vision to find and segment defects on ‘Golden Delicious’ apples. Defects

were segmented by comparing the Mahalanobis distance of each pixel of the image of

an apple to a global model of healthy fruits.This method turned out to be effective in

detecting a variation of defects such as bruises, russet, scab, fungi or wounds.

Yang (1996) investigated the feasibility of using computer vision for automatic grading

and coring of apples by detecting stems and calyxes. The proposed method uses a

back propagation neural network to classify each patch as either stem/calyx or patch

like blemish. On a sample of 69 Golden Delicious and 55 Granny smith samples, this

method was able to achieve an overall accuracy of 95%.

Xiao-bo et al. (2010) based their system on three cameras to identify apple stem-ends

and calyxes from defects. By rotating the apple in front of the camera’s a total of

8

9 pictures were taken (three by each camera) to capture the whole apple. The apple

image was segmented from its background by multi-threshold methods, after which the

the defects, including the stem-ends and calyxes were segmented as Regions Of Interest

(ROI’s). Based on the fact that stem-ends and calyxes can not appear in the same

picture, an apple was marked as defected if at least two ROI’s were visible in the image.

2.1.3 Other agricultural products

Watermelons In research by Koc (2007), the volume of a watermelon was estimated

with the help of computer vision and ellipsoid approximation. The resulting estimated

volume by computer vision, did not significantly differ from the volume measured by

water displacement.

Oranges An image processing algorithm to determine the volume and surface area of

oranges was created by Khojastehnazhand et al. (2009). The created system made use

of two cameras and an appropriate lighting system. By placing the cameras at a right

angle to each other, a perpendicular view of the orange was created. The algorithm

segmented the background and divided the image into a number of frustums of right

elliptical cone. The volume and surface area of each of the frustums were then computed

by the segmentation method. By summing all elementary frustum, the total volume and

surface area of the orange was approximated.

Strawberries Liming and Yanchao (2010) developed a computer vision to grade

strawberries based on shape, size and colour. The strawberries were segmented with

the Otsu method. Line sequences were then extracted from the strawberries contours

to express the strawberries shape, after which the shape parameters were clustered with

k-means clustering. The system was able to detect the strawberry size with a detection

error below 5%. Grading based on the colour was done with an accuracy of 88.8% and

the shape classification accuracy was above 90%.

2.2 Square mesh size

The size of a potato is one of the most important grade attributes in the potato

processing industry. In most countries the square mesh size is accepted as a standard

sizing criteria for potato tubers (Struik et al., 1990). The square mesh size is defined

as the smallest square aperture through which a potato tuber can be pushed lengthwise

without any pressure and without damaging the tuber. Potato grades are often expressed

9

by the lower and upper size of a square aperture. A grading of 35/40mm would then

entail that the tuber will not pass a 35mm sized aperture, but will pass a 40mm sized

aperture.

During manual grading, the smallest square mesh size is determined by using trial and

error to fit potatoes through a square mesh size tool such as displayed in Figure 1.1.

This sampling method is based upon the tubers largest transverse cross-section to be

the critical potato characteristic (De Koning et al., 1994). To be more precise, when a

tuber is orientated with its largest cross-sectional dimension on line with the diagonal

of the square aperture, the square mesh size is then defined as the length of the square

that exactly circumscribes the largest transverse cross-section of a tuber.

Research by De Koning et al. (1994) introduced a method to derive the square mesh size

of a potato from the length of its minor-axis (height) and the length of its intermediate

axis (width) (Equation 2.1).

S =

√
W 2 +H2

2
(2.1)

In which:

S = Square mesh size (mm).

L = Length of the major axis of the tuber (mm).

W = Width, the next largest dimension perpendicular to L (intermediate axis of the

tuber).

H = Height, the next largest dimension perpendicular to both L and W (minor axis of

the tuber).

Chapter 3

Methods

Within this chapter, the methods used to create and test the mobile computer vision

system for potato square mesh size detection are discussed.

3.1 Materials

The proposed system to measure the the square mesh size of a potato tuber consists

of a mobile image capturing device, a marker board for camera position tracking and

a central server for processing the images. Furthermore, 10kg potato tubers from the

‘Melody’ variety were used to test the system.

Image capturing devices Within this thesis both a Xiaomi RedMi smartphone and

a Google Glass smartglass were used as image capturing devices. The Xiaomi RedMi

comes equipped with a 8 megapixel camera, while the Google Glass uses a 5 megapixel

camera.

Marker board A special board was designed as a surface on which the potato tubers

were placed (Fig. 3.1). The board consisted of a sheet of A3 sized paper. At the

border of the board, highly reliable fiducial markers were placed (Garrido-Jurado et al.,

2014). Based upon these markers, the location of the board could be detected with high

precision. Furthermore, the markers made it possible to track the relative position of

board in relation to the position of the camera. Tracking of the cameras relative position

to the board was necessary in order to create a three dimensional image of the potato

tuber.

10

11

Within the boarder of highly reliable fiducial markers, a black background was chosen

to help the segmentation of the potatoes from the background.

Figure 3.1: Board with highly reliable fiducial markers based on the ArUco library
(Garrido-Jurado et al., 2014).

Central server A HP MobileWorkstation EliteBook 8740w was used as a central

server to perform the computer vision. This notebook was equipped with a Intel i7

Q840 1.87Ghz quad-core processor and a total of 16GB internal RAM. Windows 7 was

used as the operating system.

3.2 Computer vision system design

To derive the potato square mesh size with the help of the equation created by De Koning

et al. (1994) both the width of the potato (length of the intermediate axis) and the height

(length of the minor axis) of the potato have to be known (Section 2.2). To estimate

the width and height of the potato tuber with computer vision, two different approaches

were taken. The width of the potato was measured by using 2D computer vision. While

the height of the potato was measured by using 3D computer vision.

The system was build in C++ and makes use of three software libraries. All three

libraries are available under the BSD license, which makes the free to use for both for

research as well as commercial use.

OpenCV The OpenCV library (Bradski, 2000) is one of the most widely used

computer vision libraries available. It was originally developed by Intel and is now

supported by Willow Garage and Itseez. It houses a wide variety of computer vision

algorithms as can be seen in the table in section A.6.4. It was chosen as the basis of the

potato square mesh size detection based upon the review of computer vision libraries,

frameworks and toolboxes A.

12

ArUco Both the creation as well as the detection of the fiducial markers on the

marker board were performed with the ArUco software library. Markers created with

this system have high inter-marker distances and lower false negative rates compared to

other fiducial marker systems (Garrido-Jurado et al., 2014). Based upon these markers,

the outline of the board could be detected with hight precision. Furthermore, the relative

position to the board in relation to the camera could be tracked.

Point Cloud Library The Point Cloud Library is a well used library to visualize

three dimensional data into a point cloud (Rusu and Cousins, 2011). Within this thesis

it is used to visualize the three dimensional point cloud of the potatoes.

3.2.1 Camera resectioning

Camera resectioning1 is the process of finding the perspective transformation characteristic

of a camera that produced a given image. Determining these characteristics is key for

accurate computer vision based measurements and for the creation of a 3D model based

on 2D images with multi-view stereo computer vision.

The parameters for the perspective projection can be split into intrinsic parameters and

extrinsic parameters. The intrinsic parameters describe the optical apparatus, the actual

projection mechanism and the distortion, while the extrinsic parameters describe the

camera position and view direction. In the next section, finding the intrinsic parameters

is discussed. Finding the extrinsic parameters is discussed in Section 3.4.3.

3.2.1.1 Intrinsic parameters

The projective transformation are defined by the intrinsic parameters in matrix K.

K =


fx 0 cx

0 fy cy

0 0 1

 (3.1)

In which fx and fy are the focal lengths in pixel unit, cx and cy are the x− and

y−coordinates of the principal point in pixel unit (the intercept point of the optical

axis and the projective plane) as depicted in Figure 3.3.

1Camera resectioning is also often refereed to with the term camera calibration. However the term
camera calibration can also refer to the mapping of colours between two images. Due to this ambiguity,
within this thesis, only the term camera resectioning will be used from now on.)

13

Figure 3.2: Intrinsic parameters

The K matrix can be used to determine the projection coordinate (u, v) of an arbitrary

3D point Mc (expressed in the camera coordinate system):

[
x y w

]
= K ∗Mc =


fx 0 cx

0 fy cy

0 0 1

 ∗

MXc

MYc

MZc

 (3.2)

and 
u

v

1

 = 1/w ∗


x

y

w

 (3.3)

Figure 3.3: Projective transformation

Since smartphone and smartglasses cameras are not perfect pinhole camera models, the

distortion caused by the (often plastic) lenses has also to be taken into account.

The images taken with are affected by both radial and tangential distortion. Radial

distortion will make straight lines appear curved. Tangential distortion makes some

part of the image look nearer then expected and is the result of image lenses not being

14

exactly aligned parallel to the image plane. These distortions vary between different

cameras. A camera’s distortion can be expressed by a one row, five column vector:

Distortioncoefficients = (k1, k2, t1, t2, k3) (3.4)

in which k1, k2, k3 are the radial distortion coefficients and t1, t2 are the tangential

distortion coefficients.

Calculation of the radial distortion coefficients uses the following equation:

xcorrected = x(1 + k1r
2 + k2r

4 + k3r
6) (3.5)

ycorrected = y(1 + k1r
2 + k2r

4 + k3r
6) (3.6)

The tangential distortion coefficients are calculated as follows:

xcorrected = x+ [2p1xy + p2(r
2 + 2x2)] (3.7)

ycorrected = y + [p1(r
2 + 2y2) + 2pyxy] (3.8)

The inbuilt camera resectioning methods of the OpenCV library Bradski (2000) were

used to determine the intrinsic parameters. These methods are based on the work by

Zhang (2000).

3.3 2D detection of the tubers width

Within this section, the techniques used to create an estimation of the width of a

potato based on 2D computer vision are described. Fig. 3.4 describes the computer

vision pipeline used to estimate the width of a potato tuber based on an image taken

perpendicular to the surface of the board.

Three pre-processing steps are taken (Sec. 3.3.1). First, the marker board is used to

detect the region of interest (Sec. 3.3.1.1), followed by Gaussian smoothing (Sec. 3.3.1.2)

of the image to reduce the effect of noise. The last pre-processing step changes the colour

space from RGB (red, green, blue) to the HSV (hue, saturation, value) colour space

(Sec. 3.3.1.3). The feature detection phase (Sec. 3.3.2);consists of first thresholding the

image to make the contours of each potato easy to detect (Sec. 3.3.2.1), followed by

determining the minimum bounding box around those contours (Sec. 3.3.2.2). In the

following sections, these steps are discussed in more detail.

15

Region of interest
detection (3.3.1.1)

Gaussian smoothing (3.3.1.2)

Changing the colour space (3.3.1.3)

Thresholding (3.3.2.1)

Finding bounding box (3.3.2.2)

Pre-processing (3.3.1)

Feature detection (3.3.2)

Figure 3.4: Computer vision pipeline for estimating the potato width on the basis
of an image taken perpendicular to the board. The corresponding subsections are

displayed between the brackets.

Input To estimate the width of a potato tuber, the system uses images taken perpendicular

to the boards surface (Fig. 3.5.). The size of the input images was reduced to 1280*720

pixels to reduce the computational complexity while maintaining enough detail for the

width estimation.

Figure 3.5: To estimate the width of the potato, a picture is taken perpendicular to
the board.

3.3.1 Pre-processing

The first step in most computer vision algorithms is the pre-processing step. The aim of

this step is to remove unwanted variability in the image in order to make the rest of the

computer vision tasks easier. Often, images taken with a cellphone camera can suffer

16

from random noise introduced by the camera sensor or by the compression used when

saving the image.

3.3.1.1 Region of interest detection

The positions of the fiducial markers are used to determine the region of interest. Based

on the coordinates of the recognized markers, the board is segmented from the rest of the

image. After extraction of the region of interest, the region is rotated and transformed

to a consisted rotation and rectangular form as can be seen in Figure 3.6.

(a)
(b)

Figure 3.6: Rotated and transformed region of interest (B) from the original image
(A)

3.3.1.2 Gaussian smoothing

To remove noise in the captured images, Gaussian smoothing was performed. Within

this process, each pixel of the image is transformed with a Gaussian filter in order to

smooth the image. The two dimensional Gaussian filter is described in formula 3.9.

Within this formula, the x describes the distance from the origin of the horizontal axis,

while the y describes the distance from the vertical axis, and the σ is the Gaussian

distributions standard deviation.

The resulting Gaussian distribution from this filter can was then used to build a convolution

matrix which was applied to the original image. This matrix was then used to set each

pixels value to the weighted average of its self and its neighbours. Due to the bell shape

nature of the Gaussian filter, the new value receives the heaviest weight from its original

value, and lower weights from neighbouring pixel depending on the distance (the larger

the distance, the smaller the weight).

17

G(x) =
1√

2πσ2
e−

x2+y2

2σ2 (3.9)

The result of Gaussian smoothing is an image in which smaller details such as noise are

removed, while at the same time edges and boundaries of larger objects are preserved.

3.3.1.3 Colour space

The colour space of the image was transformed from the RGB (Red, Green and Blue)

colour space to the HSV (Hue, Saturation and Value) colour space (Fig. 3.7). The HSV

colour space relies upon the hue, saturation and brightness (value) of each pixel instead

of their red, green and blue value. This colour space was developed to make it easier to

handle illumination within the image. Within the HSV colour space, the potato can be

easier segmented from its background as work by Zhou et al. (1998) shows.

Figure 3.7: Image in the HSV colour space

3.3.2 Feature detection

3.3.2.1 Thresholding

To segment the potato tubers from their background, thresholding on the saturation

channel of the HSV image was used (Fig. 3.8). Thresholding is a technique used to

segment an object from its surrounding. In its most basic form pixels are categorized

into one of two categories based on whether their value lies below or above a certain

threshold.

Since this system has to be able to handle changes in lighting conditions, the well-established

Otsu method (Otsu, 1975) was used to automatically determine the threshold which

segments the potato tuber from its background. This method tries to segment the image

18

in to two clusters by finding the threshold that minimizes the weighted within-class

variance in the histogram. The within-class can be defined as the weighted sum of

variance of each cluster:

σ2Within(t) = w1(t)σ
2
1 + w2(t)σ

2
2(t) (3.10)

in which the weights wi are the probabilities of the two clusters separated by a threshold

t and class variance σ2i

Work by Jin et al. (2009) showed that the using the Otsu method for thresholding is a

viable way of segmenting a potato tuber from its background.

Figure 3.8: Thresholded image on the saturation channel.

3.3.2.2 Bounding box

To measure the width of each potato tuber, a bounding box was fitted around the

contours of each group of pixels. This bounding box was rotated in all directions until

the box with the minimum surface area was found (Fig. 3.9).

Figure 3.9: Finding the minimum bounding box (the number 3.96 depicts the width
of the potato in centimetres).

19

Pre-processing (3.4.2)

Camera pose estimation (3.4.3)

Feature point detection (3.4.4)

Triangulation (3.4.5)

Bundle adjustment (3.4.6)

Cluster extraction (3.4.7)

Figure 3.10: Computer vision pipeline for estimating the 3D shape of a potato on
the basis of multiple 2D images. The corresponding subsections are displayed between

the brackets.

3.4 3D detection of the tubers height

3.4.1 Multi-view stereo vision

In order to create a three dimensional model from multiple images, a technique called

multi-view stereo vision can be utilized. Multi-view stereo vision makes use of multiple

2D images from the same object to derive a 3D view of the object. Figure 3.10 gives a

schematic overview of the computer vision pipeline for creating a 3D model of a potato

on the basis of multiple 2D images.

During the first step, the image is pre-processed to remove parts of the image that are of

no use for the system to reduce the computational complexity (Sec. 3.4.2). The second

step is estimating the camera pose relative to the marker board (Sec. 3.4.3). Third,

feature points are detected and matched between images (Sec. 3.4.4), after which these

feature points are triangulated based on the camera pose in step four (Sec. 3.4.5).

During the fifth step, bundle adjustment is used to improve the triangulation of the

found feature points (Sec. 3.4.6). Finally, the potato tubers are extracted from the

resulting point cloud with the help of cluster extraction (Sec. 3.4.7).

Input To estimate the height of a potato tuber, the system uses multiple images

taken at an angle between 40 and 90 degrees to the board (Fig. 3.5.). The size of the

20

input images was reduced to 1280*720 pixels to reduce the computational complexity

while maintaining enough detail for the feature point detection step.

Figure 3.11: To estimate the height of the potato, multiple images are taken at angles
ranging between 40 and 90 degrees to the board.

3.4.2 Pre-processing

The highly reliable fiducial square markers generated with the ArUco library (Garrido-Jurado

et al., 2014) were used to find the outer contours of the board. Since we are only

interested in recreating the board and the potato in 3D, pixels outside of the board

contours were set to black to reduce the computational complexity.

3.4.3 Camera pose estimation

In Section 3.2.1 finding the intrinsic parameters of the camera was discussed. For

multi-view stereo vision also finding the extrinsic parameters is needed. The extrinsic

parameters describe the relative position of the camera and its view direction.

The extrinsic parameters can be expressed by the similarity transformation matrix Tcm,

in which the position of the camera are the translation elements tx,y,z and the view

direction is the rotation part r11−33.

Tcm =

[
R

0

∣∣∣∣∣T1
]

=


r11 r12 r13

r21 r22 r23

r31 r32 r33

0 0 0

∣∣∣∣∣∣∣∣∣∣∣

tx

ty

tz

1

 (3.11)

The estimation of the camera pose was based on the highly reliable fiducial square

markers generated with the ArUco library (Garrido-Jurado et al., 2014) of which the

size is known. Based on these markers, the transformation matrices from the markers

coordinates to the camera coordinates (Tcm) can be calculated (Equation 3.12). Xc

21

,Yc and Zc describe the coordinates of the camera and Xm, Ym and Zm describe the

coordinates of the marker. Matrix R describes the rotation between the coordinate

system of the marker and the coordinate system of the camera. The translation between

the two coordinate sets is described by vector T .

Other methods exist for estimating the camera position without using markers such

as Structure From Motion (SFM). These methods rely upon using the correspondence

between images to estimate the camera’s relative position. An advantage of square

marker based camera position tracking is that it does not rely on correspondence between

images. Furthermore, the square markers could also be used to easily determine the

region of interest.


Xc

Yc

Zc

1

 =


r11 r12 r13

r21 r22 r23

r31 r32 r33

0 0 0

∣∣∣∣∣∣∣∣∣∣∣

tx

ty

tz

1




Xm

Ym

Zm

1

 =

[
R T

0 0 0 1

]
Xm

Ym

Zm

1

 = Tcm


Xm

Ym

Zm

1

 (3.12)

Figure 3.12: Relation between the marker coordinates and camera coordinates.

To determine the transformation matrix Tcm the a binary thresholded version of the

input image is used to identify and locate each marker. Based on the found markers, the

rotation matrix is calculated using the line segments of the marker, while the translation

matrix is calculated based on the four corner points of the markers (the intersection

points of the line segments).

Combining the intrinsic and extrinsic parameters gives the camera matrix P .

22

P = KTcm (3.13)

The camera matrix P is used to project a point from the real world X and project it

into image coordinates x (both in homogenous coordinates).

x = PX (3.14)

The result of the pose estimation can be seen in Figure 3.13.

Figure 3.13: Camera pose estimation by using the maker board.

3.4.4 Feature point detection

The next step in the process of creating a 3D representation of a set of 2D images is

finding and matching feature points between images. ORB (Rublee et al., 2011) was

used as the feature detector and descriptor. ORB stands for Oriented FAST and Rotated

BRIEF. As the name already suggests it builds on the FAST keypoint detector (Rosten

and Drummond, 2006) and BRIEF descriptor (Calonder et al., 2010). ORB performance

on par with the well known keypoint detectors and descriptors SIFT (Lowe, 1999)and

SURF (Bay et al., 2006), while at the same time being more efficient (Rublee et al., 2011).

Furthermore, it free to use in contrast to SIFT and SURF which are both restricted by

licences.

For each image, a set of keypoints was determined by using FAST to find corners. Fast

uses a series of comparisons between a pixel and a ring around the radius of the pixel to

find corners. Harris corner measure was then used to find the top N points among the

found keypoints.

23

FAST does not include any information about the rotation of the corner. To include

rotation invariance, the ORB computes the intensity weighted centroid of the found

keypoint patch with the located corner in the centre. The orientation is given by the

direction of the vector of this corner point to the centroid. This calculation is depicted

in the following equations:

mpq =
∑
x,y

xpyql(x, y) (3.15)

C =

(
m10

m00
,
m01

m00

)
(3.16)

θ = arctan
(
m01
m10

)
(3.17)

in which x and y represent the pixel location, mpq represent the moment, l(x, y) the

intensity of a given point, C the centroid and finally θ the orientation.

Since BRIEF performs poorly with rotation, ORB uses the orientation of keypoints to

‘steer’ BRIEF. For any feature set of n binary tests at location (xi, yu) a 2xn matrix (S)

is defined which contains the coordinates of these pixels. Based on the orientation of

the patch (p) the rotation matrix is calculated which is used to rotate S to the steered

(rotated) version Sp.

The BRIEF descriptor is then applied on Sp and records the binary string as ORB

descriptor. Since ORB is a binary descriptor, the Hamming distance was used to match

keypoints between images.

3.4.5 Triangulation

The next step taken to create a 3D representation based on the 2D images, was the

triangulation of the found matching keypoints using the camera matrices. Triangulation

is performed by Direct Linear Transform (DLT) Hartley and Sturm (1997).

From equation 3.14 it follows that:

x× PX = 0 and x’× PX’ = 0 (3.18)

Therefore it is possible to obtain a new set of linear equations AX = 0 where

24

A =


xp3T − p1T

yp3T − p1T

x′p3T − p′1T

y′p3T − p′1T

 (3.19)

and piT is the i-th row of P . X can then be determined by finding the unit singular

vector corresponding to the smallest singular value of A.

Using DLT the system created an initial point cloud by matching keypoints between

pairs of images, and iteratively triangulate each matching pair of keypoints.

3.4.6 Bundle adjustment

The initial point cloud created in the triangulation step, might still contain a number

of errors. A point triangulated using images form cameras 1 and 2 might not give the

same 3D coordinate as the triangulation of the same point using images from camera 2

and 3 due to, for example, noise or errors in the measurement of the camera’s position.

Bundle Adjustment (BA) was used to rectify theses errors. BA minimises the sum

of the square distance between the i-th 3D points projection in image j (xi
j) and its

reprojection PjXi. In other by simultaneous adjusting the camera parameters BA tries

to minimize:

n∑
i=1

m∑
j=1

vijd(Q(aj ,bi),x
i
j)

2 (3.20)

in which n is the number of available points in m views, vij is a binary variable indicating

whether or not point Xi is visible in camera, Q(aj ,bi) represents the reprojection, the

vector aj contains the camera parameters of camera j and the vector bi contains the

estimated non-homogenous 3D coordinates of the i-the point j (Triggs et al., 2000).

Minimizing formula 3.20 was performed with the Levenberg-Marquardt algorithm. This

algorithm is a combination of the steepest decent and Gauss Newton methods for

minimization (Marquardt, 1963).

The resulting point cloud was then visualized in the Point Cloud Library as can be seen

in Figure 3.14.

25

(a) (b) (c)

Figure 3.14: Three views from a point cloud after BA. The red pyramids represent
the camera positions.

3.4.7 Cluster extraction

The next step in the process is determining which points of the point cloud belong are

part of a potato, and which points belong to the board. Since their might be more than

one potato at a time, it is also important to determine which point belongs to which

potato. This is achieved by clustering the total point cloud into separate point clouds

for the board and point clouds for each potato.

First the point cloud data representing the board is segmented from the rest of the point

cloud. Next, the points from the remaining cloud belonging to an individual potato are

clustered.

Random sample consensus (RANSAC) (Fischler and Bolles, 1981) was used to find the

points in the point cloud that belong to the board. RANSAC iteratively estimates the

parameters of a mathematical model on the basis of a set of observed data which includes

outliers.

For the point cloud resulting from the BA step, the points belonging to the board should

be considered as inliers, while the point belonging to potatoes or noise are outliers.

The basic RANSAC algorithm is defined in Algorithm 1.

Algorithm 1 RANSAC

1: repeat
2: Select a random subset of hypothetical inliers from the original dataset
3: Fit a model to the set of hypothetical inliers
4: Test the rest of the dataset against this model. Points that fit the dataset well

with a predefined tolerance ε are considered as part of the consensus set.
5: until The percentage of fitted points exceeds a predefined threshold θ or n ≥ N
6: Re-estimate the model parameters using all the fitted inliers and terminate

26

One of the advantages of RANSAC is its ability to generate a robust estimation of the

model parameters even when a significant number of outliers is present.

The Point Cloud Library was used to perform RANSAC to segment the board from the

rest of the cloud. Since the board is a planar component, the build in model for planar

segmentation was used.

To cluster the potatoes in the point cloud 3D grid subdivision based on Euclidean

distances using an octree data structure was used (Rusu, 2010). The used algorithm is

as follows:

Algorithm 2 Clustering

1: Create a Kd-tree representation for the input cloud dataset P .
2: Create an empty list of clusters C, and a queue Q of points which need checking.
3: for every point pi ∈ P do
4: Add pi to Q
5: for every point pi ∈ Q do
6: Search for the set P k

i of neighbouring points of pi in a sphere with radius
r < dth

7: Create an empty list of clusters C, and a queue Q of points which need
checking.

8: end for
9: if every point in Q has been processed then

10: Add Q to the list of clusters C and empty Q.
11: end if
12: end for

An implementation of this algorithm in PCL was used to cluster the potatoes within

the point cloud.

Based on the clustered potatoes, the size of each potato was calculated. Of each potato

point cloud cluster, the maximum z-value was determined. By relating the real-world

size of the board to the point cloud representation of the board, a relation between the

point cloud coordinates and real world coordinates could be defined. Using this relation,

the height of each potato was calculated.

In Figure 3.15 an impression of the system in use is given.

3.5 Experimental setup

Within this section, the experimental setup is described which was used to evaluate the

systems performance. Three separate experiments were conducted. The first experiment

was aimed at testing the accuracy of the system while using a smartphone. The second

part of the experiment was aimed at testing the accuracy while using the Google Glass.

27

Figure 3.15: Impression of the system in use.

The third experiment how well the system performs when estimating the size of multiple

potatoes at the same time.

3.5.1 Image Acquisition

The experimental data for both experiments consisted of images of potatoes which were

placed upon the marker board (Paragraph 3.1). Images were acquired using a Xiaomi

RedMi smartphone equipped with a 8 megapixel camera, as well as a Google Glass

equipped with a 5 megapixel camera.

For the first and second experiment, sequences of five picture were captured of each

individual potato. These pictures were taken at increasing angles between 40 degrees

and 90 degree to the to the centre of the board as depicted in Fig. 3.11. At least one

picture of the sequence was taken perpendicular to the board in order to be able to

assess the width of the potato in the 2D computer vision stage.

For the third experiment, multiple potatoes were placed on the board at the same time.

Again pictures were taken at increasing angles between 40 degrees and 90 degree to the

to the centre of the board as depicted in Fig. 3.11.

All images were taken during daytime in indirect sunlight without artificial lighting.

3.5.2 Data sets

Three data sets were collected. For the first dataset a sample of 10kg of potatoes was

used. This sample contained 111 potatoes which resulted in a dataset consisting of 111

28

individual potatoes captured in sequences of 5 images taken with the Xiaomi RedMi

smartphone. The second dataset consisted of 20 (2kg) individual potatoes captured in

sequences of 5 images taken with the Google Glass, while the third dataset consisted of

54 potatoes (5kg) captured with the Xiaomi RedMi smartphone camera in 9 sequences

of 5 images in which 6 potatoes were presented simultaneously the board. Within the

last dataset, occlusion was present in a subset of the images due to the larger number

of potatoes on the board.

Due to the quality sensors of the used cameras, motion blur could occur when the camera

was slightly moved during the image capturing. Since these images can not be used to

accurately estimate the 2D and 3D shape of the potato tuber, they were removed from

the datasets.

3.5.3 Ground truth data

To be able to verify the accuracy of the system, ground truth data was collected. A

calliper was used to accurately measure the length and width of each potato by hand.

Furthermore, the square mesh size of each potato was measured with a square mesh size

measuring tool (Fig. 1.1). All three measurements were performed with a precision of 1

millimetre.

3.5.4 Testing the system

The developed computer vision system was used to determine the width, height and

square mesh size of each potato for all three datasets.

3.5.5 Evaluation

To evaluate the accuracy of the system for all three data sets, the measurements by

the system were compared to the ground truth data. Both the mean absolute error in

millimetres as the mean error as percentage were used to evaluate the performance of

the computer vision system.

For the third dataset, the number of measured potatoes were compared to the actual

number of potatoes present in the photographs to estimate the effect of the occlusion.

For each dataset, paired samples t-test were performed to determine whether the data

measured with computer vision system significantly differed from the data measured

with the calliper and square mesh size measuring tool.

Chapter 4

Results

4.1 Smartphone

In this section the results of the potato measurements based on images taken with the

smartphone are discussed. In Appendix C the a complete overview of the research data

can be found. Appendix B contains plots of the by hand measured data versus the

computer vision data.

4.1.1 Height measurement

To compare the by calliper measured potato height with the potato height as measured

by the computer vision system, a two-tailed paired-sample t-test was conducted. The

by calliper measured potato heights (M = 44.46, SD = 5.82) did not significantly differ

from the heights measured by the computer vision system (M = 43.77, SD = 6.26);

t(110) = 1.45, p = 0.15.

The mean absolute error of the height measurement by the computer vision system was

3.91mm to the calliper measurements which is a mean percentage error of 8.80% (Table

4.1).

4.1.2 Width measurement

A two-tailed paired-samples t-test was conducted to compare by calliper measured

potato widths to the potato widths as estimated by the computer vision system. The

by calliper measured potato widths (M = 52.50, SD = 7.33) did significantly differ

29

30

from the widths measured by the computer vision system (M = 53.78, SD = 9.57);

t(110) = −2.97, p = 0.04.

The computer vision system was able to measure the potato widths with a mean average

error of 3.63mm to the calliper measurements and a percentage error of 6.86% (Table

4.1).

4.1.3 Square mesh size measurement

A two-tailed paired-samples t-test was also conducted to compare the square mesh sizes

measured with the square mesh size tool were also compared to the measured square

mesh sizes by the computer vision system. The square mesh sizes measured with the

square mesh size tool (M = 50.41, SD = 6.76) did significantly differ from the square

mesh size as measured by the computer vision system (M = 49.16, SD = 7.20); t(110) =

3.36, p < 0.01.

The computer vision system had a mean absolute error of 2.75mm when measuring

the square mesh size of a potato compared to the calliper measurements, which is a

percentage error of 5.55% (Table 4.1).

Computer vision Computer vision Computer vision

height width square mesh size

N 111 111 111

Mean absolute error (mm) 3.91 3.63 2.75

Mean percentage error (%) 8.80 6.86 5.55

Table 4.1: Deviation of the computer vision measurements based on smartphone
images from the calliper measurements.

4.2 Google Glass

The results based on images taken with the Google Glass are discussed in this section.

4.2.1 Height measurement

A two-tailed paired-samples t-test was conducted to compare the by calliper measured

potato heights to the potato heights as estimated by the computer vision system.

There was no significant difference in the score for the calliper measured width (M =

31

42.00, SD = 5, 75) compared to the computer vision measured width (M = 42, 18, SD =

6, 98); t(19) = −0.24, p = 0.81.

The computer vision system had a mean absolute error of 3.33mm when measuring

the square mesh size of a potato compared to the calliper measurements, which is a

percentage error of 7.97%

4.2.2 Width measurement

Of the total dataset of 20 potatoes, the system was unable to measure the width of two

potatoes. Analysis of the used images showed that the automated thresholding with the

Otsu method did not result in a clear segmentation between the board and the potato.

The lack of a clear segmentation was caused by slight changes in the lighting condition.

A two-tailed paired-samples t-test indicated that the by calliper measured potato widths

(M = 50.94, SD = 6, 32) did significantly differ from the potato widths as measured by

the computer vision system (M = 52.87, SD = 7.26); t(17) = −3.48, p = 0.03.

The measured mean absolute error of the height measurement by the computer vision

system compared to the calliper measurements was 3.99mm, which is a percentage error

of 7.82% (Table 4.2).

4.2.3 Square mesh size measurement

The calliper measured potato square mesh sizes were also compared to the measured

square mesh sizes by the computer vision system by conducting a two-tailed paired-samples

t-test. It showed that the potato square mesh sizes measured with the potato square

mesh size tool (M = 50.94, SD = 6.53) did significantly differ from the measured square

mesh sizes by the computer vision system (M = 48.18, SD = 6.55); t(17) = 0.71, p =

0.49.

For the square mesh size measurement, the mean absolute error of the computer vision

measurements was 2.37mm compared to the calliper measurements. The mean percentage

error was 4.75% (Table 4.2).

Computer vision Computer vision Computer vision

height width square mesh size

N 20 18 18

Mean absolute error (mm) 3.33 3.99 2.37

Mean percentage error (%) 7.97 7.82 4.75

32

Table 4.2: Deviation of the computer vision measurements based on Google Glass
images from the calliper measurements.

4.3 Multiple potatoes

In this section an overview is given of the results from measuring multiple potatoes at

the same time by the computer vision system.

4.3.1 Height measurement

Of the total number of 54 potatoes, the system was able to estimate the height for 52

potatoes (96.29%). Analysis of the used images showed that due to occlusion, the system

was unable to create a 3D model of the missing potatoes due to a lack of keypoints.

A two tailed paired samples t-test was performed to compare the by calliper measured

height and the height measured by the computer vision system. The by calliper measured

height (M = 45.12, SD = 4.97) did significantly differ from the height determined by

the computer vision system (M = 41.65, SD = 6.44); t(51) = 5.13, p < 0.01.

The mean absolute error for the height as determined by the computer vision system

compared to the calliper height measurements was 4.81mm (10.82%) (Table 4.3).

4.3.2 Width measurement

The system was able to estimate the width of 53 of the total of 54 potatoes (98.18%).

Analyses of the images showed that the system was unable to determine the width of

one potato due to slight changes in lighting condition preventing a correct threshold

determination and therefore prevented a correct segmentation of the potato from the

background.

A two tailed paired samples t-test showed that the by calliper measured width (M =

54.02, SD = 4.97) did not significantly differ from the width determined by the computer

vision system (M = 53.27, SD = 9.27); t(52) = 0.67, p = 0.51.

The mean absolute error for the width as determined by the computer vision system

compared to the calliper width measurements was 5.63mm (10.45%) (Table 4.3).

33

4.3.3 Square mesh size measurement

Due to missing the height of 2 potatoes and the width of 1 potato, the system was able

to estimate a square mesh size for 51 of the total of 54 potatoes (94.4%).

A two tailed paired samples t-test showed that the square mesh size measured with

the tool (M = 51.54, SD = 5.89) did significantly differ from the square mesh size as

determined by the system (M = 48.02, SD = 7.32); t(50) = 5.02, p < 0.01.

The mean absolute error for the width as determined by the computer vision system

compared to the calliper width measurements was 4.44mm (8.60%) (Table 4.3).

Computer vision Computer vision Computer vision

height width square mesh size

N 53 54 52

Mean absolute error (mm) 4.81 5.63 4.44

Mean percentage error (%) 10.82 10.45 8.60

Table 4.3: Deviation of the computer vision measurements images from the calliper
measurements during the simultaneous measurement of 6 potatoes.

Chapter 5

Discussion

Within this thesis we presented a system to measure potato tubers heights, widths and

square mesh sizes based on images taken with a smartphone and Google Glass. Within

this section the research question and sub-questions will be answered.

5.1 Height measurement

The first research sub-question was:

• “How accurate can the system measure the length of the minor axis (height) of a

potato tuber?”

The results show that the computer vision system had an mean absolute error of 3.91mm

(8.80%) for the Google Glass and 3.33mm (7.97%) for the smartphone.

For both the images taken with the Google Glass and the images taken with the

smartphone, the measurements of the length of the minor axis by our computer vision

system does not significantly differ from the hand measurements with the calliper. For

parts, the mean average errors of 3.91mm (8.80%) and 3.33mm (7.97%) can be explained

by measuring errors in the calliper measurements. Due to the irregular shape of potatoes,

the calliper might not have been perfectly placed at the highest point of the potato.

Furthermore, the quality of the camera and the sharpness of the pictures influenced

the photos. The Google Glass seemed to take slightly sharper pictures, compared to the

Xiaomi RedMi which can explain the smaller average error of 3.33mm versus 3.91mm for

the Xiaomi RedMi. Slight motion blur can cause distortion of the photo which influences

the triangulation of the keypoints, and therefore the height measurement.

34

35

5.2 Width measurement

The second research sub-question was:

• “How accurate can the system measure the length of the intermediate axis (width)

of a potato tuber?”

The computer vision system was able to measure the width of the potatoes with a

mean absolute error 3.99mm (7.82%) for the Google Glass and 3.63mm (6.86%) for the

smartphone datasets.

For both the width measurements based on the Google Glass images, as well as the

smartphone images, the width measurements by the computer vision system differed

significantly from those of the calliper measurements. The difference in measurements

and average error for the Google Glass and smartphone were in parts caused by slight

measurement errors in the calliper measurements.

Furthermore, the width measurements relied on images taken perpendicular to the

surface of the board. Since the pictures were taken with the smartphone in the hand

slight deviations from the desired angle occurred. Deviations were even bigger for the

Google Glass since it is head-mounted which makes it more difficult to take perfect

perpendicular images. This can explain the higher absolute mean error of the Google

Glass compared to the Xiaomi RedMi.

Slight changes in lighting conditions hindered a perfect segmentation at times. Due to

these changes, the outline of the potato was sometimes less clear in the saturation image,

which caused slight deviations in the width estimation.

5.3 Square mesh size measurement

Our third sub-question was:

• “How accurate can the system derive the mesh size of a potato based on the

measured length of the intermediate and minor axis of the potato tuber?”

The computer vision system was able to derive the square mesh size with an absolute

mean errors of 2.75mm (5.55%) for the Google Glass and 2.37mm (4.75%)

The computer vision square mesh size measurements did not significantly differ from the

hand measurements with the square mesh size tool for the Google Glass images, while it

36

did significantly differ for the smartphone images. This difference can be explained by

the lower number of samples in the Google Glass dataset compared to the smartphone

dataset.

Furthermore, in order to approximate the square mesh size the formula created by

De Koning et al. (1994) was used (Section 2.2). This formula also introduced a small

error. Even when using the widths and heights as measured with the calliper as input

for the formula, the resulting square mesh sizes have an absolute mean error of 1,82mm

(3.74%).

The mean absolute errors of 2.75mm (5.55%) for the Google Glass and 2.37mm (4.75%)

for the smartphone show that on average the error becomes smaller in comparison to

the individual width and height measurements due to the combination the width and

height measurements for the square mesh in the formula by De Koning et al. (1994).

Both mean absolute errors are within the range of the 3mm mean average error which

was deemed acceptable in private discussions with the potato industry.

5.4 Multiple potato measurement

The fourth research sub-question was:

• “How well does the system handle measuring multiple potatoes at the same time?”

The results show that the system was able to handle multiple potatoes quite well. In

96.29% of the cases the system was able to estimate a potatoes height, in 98.18% of

the cases the system was able to estimate a potatoes width, and in 94.4% of the cases

a square mesh size could be determined. That the height of two potatoes could not be

measured was caused by occlusion. Due to the occlusion, parts of the potato were not

visible in some of the pictures, which reduced the number of keypoints that could be

matched, which prevented the potato from being segmented from the board.

In contrast to the results of the Xiaomi RedMi when measuring one potato at a time, the

estimated height of the potato, when measuring multiple potatoes at the same time by

the computer vision system, did significantly differ from the measurement taken width

the calliper.

Occlusion reduced the number of keypoints available per potato for the triangulation

and bundle adjustment, which resulted in a less complete 3D model. Since the height

measurement relies on the 3D model, an incomplete 3D model can cause a deviation in

the height estimation.

37

There was no significant difference in the widths measured by the computer vision system

compared to the widths measured by the calliper when measuring multiple potatoes

at the same time. As with the width measurements of the single potatoes, the mean

absolute error of 5.63mm (10.45%) was partly caused by the used images not being taken

perfect perpendicular to the board. Furthermore, slight deviations in the detection of

the outline of the potato on the board can further explain the mean absolute error.

The square mesh size as measured by the computer vision system did significantly

differ from the square mesh size as determined by hand with the square mesh size tool.

The mean absolute error of 4.44mm (8.60%) lies outside the range of 3mm as deemed

acceptable in private discussions with the potato industry. Like the square mesh size

measured with the Google Glass, the mean absolute error can be explained by deviations

in the measurement of the potatoes widths and heights, as well as deviations resulting

from the used formula (De Koning et al., 1994) for the square mesh size estimation.

5.5 Research Question

The main research question was:

• “What is the viability of a computer vision potato grading system for mobile

devices?”

The answers on the sub-question show that the computer vision potato grading system

was able to determine the square mesh size of a single potato within the acceptable

range of 3mm for the mean absolute error as determined in private conversations with

representatives from the potato industry. Although the accuracy declines when more

than one potato is measured at a time, the results show that mobile computer vision

could be a viable option for automated potato grading.

This thesis shows that a dedicated computer vision setup does not have to be necessary

for potato size grading. By using images captured with a relatively cheap smartphone

or smartglass, the system was able to size grade potatoes at a much lower cost than a

dedicated computer vision setup. Although smartglasses such as the Google Glass are

at the time of writing more expensive than most smartphones, they make it possible

to capture the images while keeping your hands free. Using the smartphone has as

advantage of grading potatoes at an even lower cost.

We can conclude that the system presented in this thesis is a viable way to grade potatoes

based on their square mesh size. Future work might further improve the accuracy and

usability of the system. The future of agricultural grading can be mobile!

38

5.6 Improvements and future research

One of the main reasons for the estimation error of the square mesh size seems to be

the quality of the camera. Lower quality cameras suffer from more blur and noise which

influence the size estimation. In recent years, the quality of smartphone/smartglasses

cameras have been rapidly increasing, while the costs dropped. For future research,

using cameras that produce sharper images in might further improve the accuracy of

the system. When the images are sharper, the keypoint detection will be more precise,

resulting in a better triangulation.

Furthermore, sharper images can also improve the segmentation of the potato from the

board in the 2D computer vision phase. The outline of the potato on the board will

be clearer on sharper images, which makes the segmentation, and therefore the width

estimation, more precise.

The width measurement accuracy can also be improved by using segmentation methods

which are less influenced by the lighting conditions. K-means segmentation or watershed

can further improve the quality of segmentation since they are less prone to error due

to changes in lighting conditions, although the computation load will increase.

This thesis has shown the possibility of estimating potato sizes based on 2D and 3D

computer vision in a mobile application. Since the 3D computer vision step relies on

non-potato specific keypoints, the system should be easily adaptable for grading other

kind of agricultural products. Future research is necessary to investigate whether this

is indeed possible.

Bibliography

E. Abdel-Hakim and A. Farag. CSIFT: A SIFT Descriptor with Color Invariant

Characteristics. 2006 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition - Volume 2 (CVPR’06), 2:1978–1983, 2006. doi: 10.1109/CVPR.

2006.95.

A. Al-Mallahi, T. Kataoka, H. Okamoto, and Y. Shibata. Detection of potato tubers

using an ultraviolet imaging-based machine vision system. Biosystems Engineering,

105(2):257–265, Feb. 2010. ISSN 15375110. doi: 10.1016/j.biosystemseng.2009.11.004.

H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up robust features. Computer

Vision–ECCV 2006, 3951:404–41, 2006.

S. Beucher and C. Lantuejoul. Use of watersheds in contour detection. In Int. Workshop

Image Processing, pages 2.1 –2.12. Real-Time Edge and Motion Detection/Estimation,

1979.

M. A. Boden. Mind as machine: A history of cognitive science, volume 1. Oxford

University Press, 2006.

G. Bradski. Opencv. Dr. Dobb’s Journal of Software Tools, 2000.

M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: Binary robust independent

elementary features. In Computer Vision–ECCV 2010, pages 778–792. Springer, 2010.

J. Canny. A computational approach to edge detection. IEEE transactions on pattern

analysis and machine intelligence, 8(6):679–98, June 1986. ISSN 0162-8828.

K.-T. Cheng and Y.-C. Wang. Using mobile gpu for general-purpose computing–a case

study of face recognition on smartphones. In VLSI Design, Automation and Test

(VLSI-DAT), 2011 International Symposium on, pages 1–4. IEEE, 2011.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297,

Sept. 1995. ISSN 0885-6125. doi: 10.1007/BF00994018.

39

40

C. De Koning, L. Speelman, and H. De Vries. Size grading of potatoes: Development

of a new characteristic parameter. Journal of agricultural engineering research, 57(2):

119–128, 1994.

M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model fitting

with applications to image analysis and automated cartography. Communications of

the ACM, 24(6):381–395, 1981.

Y. Freund and R. Schapire. A desicion-theoretic generalization of on-line learning and

an application to boosting. Computational learning theory, pages 1–34, 1995.

S. Garrido-Jurado, R. M. noz Salinas, F. Madrid-Cuevas, and M. Maŕı-Jiménez.

Automatic generation and detection of highly reliable fiducial markers under occlusion.

Pattern Recognition, 47(6):2280 – 2292, 2014. ISSN 0031-3203.

J. Gauch. Investigations of image contrast space defined by variations on histogram

equalization. CVGIP: Graphical Models and Image Processing, 54(4):269–280, 1992.

C. Harris and M. Stephens. A Combined Corner and Edge Detector. Procedings of the

Alvey Vision Conference 1988, pages 23.1–23.6, 1988. doi: 10.5244/C.2.23.

R. I. Hartley and P. Sturm. Triangulation. Computer vision and image understanding,

68(2):146–157, 1997.

R. Hasankhani and H. Navid. Potato Sorting Based on Size and Color in Machine Vision

System. Journal of Agricultural Science, 4(5):235–244, Mar. 2012. ISSN 1916-9760.

doi: 10.5539/jas.v4n5p235.

P. H. Heinemann, N. P. Pathare, and C. T. Morrow. An automated inspection station

for machine-vision grading of potatoes. Machine Vision and Applications, 9(1):14–19,

1996.

G. Jahns, H. Møller Nielsen, and W. Paul. Measuring image analysis attributes

and modelling fuzzy consumer aspects for tomato quality grading. Computers

and Electronics in Agriculture, 31(1):17–29, Mar. 2001. ISSN 01681699. doi:

10.1016/S0168-1699(00)00171-X.

J. Jin, J. Li, G. Liao, X. Yu, and L. C. C. Viray. Methodology for potatoes

defects detection with computer vision. In International Symposium on Information

Processing, Huangshan, pages 346–351, 2009.

L. Juan and O. Gwun. A comparison of sift, pca-sift and surf. International Journal of

Image Processing (IJIP), 3(4):143–152, 2009.

41

M. Juneja and P. S. Sandhu. Performance evaluation of edge detection techniques for

images in spatial domain. methodology, 1(5):614–621, 2009.

Y. Ke and R. Sukthankar. Pca-sift: A more distinctive representation for local

image descriptors. In Computer Vision and Pattern Recognition, 2004. CVPR 2004.

Proceedings of the 2004 IEEE Computer Society Conference on, volume 2, pages

II–506. IEEE, 2004.

R. Kemp, N. Palmer, T. Kielmann, and H. Bal. Cuckoo: a computation offloading

framework for smartphones. In Mobile Computing, Applications, and Services, pages

59–79. Springer, 2012.

M. Khojastehnazhand, M. Omid, A. Tabatabaeefar, et al. Determination of orange

volume and surface area using image processing technique. International Agrophysics,

23(3):237–242, 2009.

A. B. Koc. Determination of watermelon volume using ellipsoid approximation and

image processing. Postharvest Biology and Technology, 45(3):366–371, Sept. 2007.

ISSN 09255214. doi: 10.1016/j.postharvbio.2007.03.010.

V. Leemans, H. Magein, and M.-F. Destain. Defects segmentation on ‘Golden Delicious’

apples by using colour machine vision. Computers and Electronics in Agriculture, 20

(2):117–130, July 1998. ISSN 01681699. doi: 10.1016/S0168-1699(98)00012-X.

Q. Li, M. Wang, and W. Gu. Computer vision based system for apple surface defect

detection. Computers and Electronics in Agriculture, 36(2-3):215–223, Nov. 2002.

ISSN 01681699. doi: 10.1016/S0168-1699(02)00093-5.

X. Liming and Z. Yanchao. Automated strawberry grading system based on image

processing. Computers and Electronics in Agriculture, 71:S32–S39, Apr. 2010. ISSN

01681699. doi: 10.1016/j.compag.2009.09.013.

D. Lowe. Object recognition from local scale-invariant features. Proceedings of the

Seventh IEEE International Conference on Computer Vision, pages 1150–1157 vol.2,

1999. doi: 10.1109/ICCV.1999.790410.

D. W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters.

Journal of the Society for Industrial and Applied Mathematics, 11(2):pp. 431–441,

1963. ISSN 03684245.

J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-baseline stereo from

maximally stable extremal regions. Image and Vision Computing, 22(10):761–767,

Sept. 2004. ISSN 02628856. doi: 10.1016/j.imavis.2004.02.006.

42

K. Mikolajczyk and C. Schmid. Performance evaluation of local descriptors. IEEE

transactions on pattern analysis and machine intelligence, 27(10):1615–30, Oct. 2005.

ISSN 0162-8828. doi: 10.1109/TPAMI.2005.188.

H. P. Moravec. Obstacle avoidance and navigation in the real world by a seeing robot

rover. Technical report, DTIC Document, 1980.

J.-M. Morel and G. Yu. ASIFT: A New Framework for Fully Affine Invariant Image

Comparison. SIAM Journal on Imaging Sciences, 2(2):438–469, Jan. 2009. ISSN

1936-4954. doi: 10.1137/080732730.

E. N. Mortensen, H. Deng, and L. Shapiro. A sift descriptor with global context.

In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer

Society Conference on, volume 1, pages 184–190. IEEE, 2005.

V. Narendra and K. Hareesha. Quality inspection and grading of agricultural and

food products by computer vision-a review. International Journal of Computer

Applications, 2(1):43–65, 2010.

N. Otsu. A threshold selection method from gray-level histograms. Automatica, 20(1):

62–66, 1975.

J. Paliwal, N. Visen, D. Jayas, and N. White. Cereal Grain and Dockage Identification

using Machine Vision. Biosystems Engineering, 85(1):51–57, May 2003. ISSN

15375110. doi: 10.1016/S1537-5110(03)00034-5.

I. Paulus and E. Schrevens. Shape Characterization of New Apple Cultivars by Fourier

Expansion of Digitized Images. Journal of Agricultural Engineering Research, 72(2):

113–118, Feb. 1999. ISSN 00218634. doi: 10.1006/jaer.1998.0352.

I. Paulus, R. De Busscher, and E. Schrevens. Use of Image Analysis to Investigate Human

Quality Classification of Apples. Journal of Agricultural Engineering Research, 68(4):

341–353, Dec. 1997. ISSN 00218634. doi: 10.1006/jaer.1997.0210.

J. Prewitt. Object enhancement and extraction. Picture processing and Psychopictorics,

10(1):15–19, 1970.

T. Ridler and S. Calvard. Picture thresholding using an iterative selection method.

IEEE transactions on Systems, Man and Cybernetics, 8(8):630–632, 1978.

R. Rios-Cabrera. ANN analysis in a vision approach for potato inspection. Journal of

applied . . . , 6(2):106–119, 2008.

R. Rios-Cabrera, I. Lopez-Juarez, and H. Sheng-Jen. Ann analysis in a vision approach

for potato inspection. Journal of applied research and technology, 6(2):106–117, 2008.

43

M. Riquelme, P. Barreiro, M. Ruiz-Altisent, and C. Valero. Olive classification according

to external damage using image analysis. Journal of Food Engineering, 87(3):371–379,

Aug. 2008. ISSN 02608774. doi: 10.1016/j.jfoodeng.2007.12.018.

E. Rosten and T. Drummond. Machine learning for high-speed corner detection.

Computer Vision–ECCV 2006, pages 1–14, 2006.

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: An efficient alternative to

SIFT or SURF. 2011 International Conference on Computer Vision, pages 2564–2571,

Nov. 2011. doi: 10.1109/ICCV.2011.6126544.

R. B. Rusu. Semantic 3d object maps for everyday manipulation in human living

environments. KI-Künstliche Intelligenz, 24(4):345–348, 2010.

R. B. Rusu and S. Cousins. 3d is here: Point cloud library (pcl). In International

Conference on Robotics and Automation, Shanghai, China, 2011 2011.

R. E. Schapire. The strength of weak learnability. Machine learning, 5(2):197–227, 1990.

P. C. Struik, J. Haverkort, D. Vreugdenhil, C. B. Bus, and R. Dankert. Manipulation of

tuber-size distribution of a potato crop. Potato Research, 33(4):417–432, Dec. 1990.

ISSN 0014-3065. doi: 10.1007/BF02358019.

D.-W. Sun. Computer vision––an objective, rapid and non-contact quality evaluation

tool for the food industry. Journal of Food Engineering, 61(1):1–2, Jan. 2004. ISSN

02608774. doi: 10.1016/S0260-8774(03)00182-1.

Y. Tao, C. Morrow, P. Heinemann, and H. Sommer. Fourier-based separation technique

for shape grading of potatoes using machine vision. Transactions of the ASAE, 38(3):

949–957, 1995.

B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle adjustment — a

modern synthesis. In Vision Algorithms: Theory and Practice, volume 1883 of Lecture

Notes in Computer Science, pages 298–372. Springer Berlin Heidelberg, 2000. ISBN

978-3-540-67973-8. doi: 10.1007/3-540-44480-7 21.

L. Vincent and P. Soille. Watersheds in digital spaces: an efficient algorithm based

on immersion simulations. IEEE transactions on pattern analysis and machine

intelligence, 13(6):583–598, 1991.

J. Wu, Z. Cui, V. S. Sheng, P. Zhao, D. Su, and S. Gong. A Comparative Study of

SIFT and its Variants. Measurement Science Review, 13(3):122–131, Jan. 2013. ISSN

1335-8871. doi: 10.2478/msr-2013-0021.

44

Z. Xiao-bo, Z. Jie-wen, L. Yanxiao, and M. Holmes. In-line detection of apple defects

using three color cameras system. Computers and Electronics in Agriculture, 70(1):

129–134, Jan. 2010. ISSN 01681699. doi: 10.1016/j.compag.2009.09.014.

Q. Yang. Apple Stem and Calyx Identification with Machine Vision. Journal of

Agricultural Engineering Research, 63(3):229–236, Mar. 1996. ISSN 00218634. doi:

10.1006/jaer.1996.0024.

Z. Zhang. A flexible new technique for camera calibration. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 22(11):1330–1334, 2000.

L. Zhou, V. Chalana, and Y. Kim. PC-based machine vision system for real-time

computer-aided potato inspection. International Journal of Imaging Systems and

Technology, 9(6):423–433, 1998. ISSN 0899-9457. doi: 10.1002/(SICI)1098-1098(1998)

9:6〈423::AID-IMA4〉3.0.CO;2-C.

Appendix A

Review

A.1 General overview of computer vision

The field of computer vision has been expanding at a rapid rate in the last couple of

decades. Digital cameras have become cheap and widespread. This has resulted in a

large availability of image data which can be processed by computer vision for automatic

detection, recognition and classification purposes. Combined with the ever increasing

computer power at decreasing costs, this trend has made it possible to use computer

vision for more and more applications.

Applications of computer vision include inspecting and measuring products, recognizing

faces and license plates and classifying images based upon the scene they depict. While

these application vary widely, they are often build upon the same principals and techniques.

Therefore a lot of libraries, toolkits and frameworks have been built to facilitate the

implementation of computer vision techniques. In this appendix an overview of different

basic computer vision techniques is described. Furthermore, an overview is given of a

wide variation of well-known computer vision libraries, toolboxes and frameworks. At

the end of this appendix a decision matrix is given which is based upon the functionality

of each of the libraries, toolboxes and frameworks. This decision matrix is built to

facilitate the decision upon which software package could be used for specific computer

vision purposes.

A.1.1 Basic structure of computer vision applications

Most computer vision applications use the same basic structure. During the first step,

images or video has to be acquired. This can be done with the help of all kinds of video

and image taking equipment. While the process of capturing image data might seem

45

46

Image data acquisition

Image pre-processing

Feature detection

Feature description

Classification

Figure A.1: Processing steps on which most computer vision applications are based.

straight forward, it can suffer from the large variability within image data. Changes in

lighting conditions, changes in the angle of the camera, noise and occlusion by other

objects can make the task of computer vision a lot harder. If possible, it is therefore

necessary to create a set-up in which the acquisition of the image data facilitates the

future computer vision processes by keeping the image data as constant as possible.

This might be challenging however in some cases. Especially if the camera for image

acquisition is mobile.

The next step in often taken by computer vision applications is eliminating the variability

as best as possible with the help of pre-processing. The effect of noise is cancelled out as

best as possible, as well as the effect of differences in the image data caused by changing

lighting conditions.

During the third step in most computer vision applications, key regions or key points in

an image are detected based upon features such as edges, corners and connected regions.

The keypoints detected in the third step are described in the fourth step with feature

descriptors in order to be able to compare the keypoints to other images or known models

of objects.

Based on the keypoint detection and descriptor steps, a classification can then be made

of what is actually depicted in (parts of) the image data.

The steps most often taken in computer vision are depicted in Figure A.1.

47

A.2 Image data acquisition

The first step within computer vision applications is most of the times the acquisition of

image or video data, although in some cases the image/video data might be pre-existing.

Depending on the source, this data can be either in the form of still images, or in the

form of video. If the data is not pre-existing, the choice for which type of image data

(video/still images) depends on the specific computer vision application. In essence

though, video data is build up from still images, which means that a lot of the same

computer vision techniques can be used for both still images, as well as video (in the

form of a sequence of still images). Therefore, in this section the focus will lie upon the

usage of computer vision techniques for still images.

When capturing image data, one has to take into account the variabilities that come into

play. The device that is used to capture image data can be an important factor in the

rest of the computer vision process. Depending on the application the quality demands

for the capturing device can vary. Capturing images with high detail and a low noise

ratio can aid the rest of the computer vision process since less pre-processing steps are

necessary. Furthermore, variability can be introduced by changes in the environment

such as the illumination conditions. Keeping this variability as low as possible is often

preferable to aid the computer vision process since less pre-processing steps are necessary.

A.3 Pre-processing

As described in the introduction, the pre-processing step is often necessary to remove

variability (in the form of noise or changes in lighting) from an image. Several different

algorithms have been developed to this extend.

A.3.1 Noise Removal

Digitally captured images contain almost always some noise. These random fluctuation

in image colour and brightness can be a product of the sensor or circuitry of the capturing

device due to electronic noise. The more noise an image gets, the harder it can become

to use the image in computer vision applications such as object recognition. Therefore,

several techniques have been developed that try to remove or reduce the amount of noise.

One of the most basic ways to remove noise is by averaging the image.

Linear Filter Applying a linear filter is a very simple way of removing noise by

averaging an image. The linear filter averages the intensity value of a pixel by using

48

the intensity value of its neighbours. By increasing the the filter size a less noise and

smoother image can be created, though at the same time details will be lost. By adjusting

the filters weighting value, the filter can be used to remove different types of noise.

Increasing the weighting value of the central pixel will make the central pixel dominate

the averaging.

Median Filter The median filter uses the median intensity value of pixels in the

filter size to determine the intensity value for the central pixel. The median filter will

leave the brightness differences in the picture intact and will, in contrast to the linear

filter, not shift the edges of the image.

Gaussian Smoothing Gaussian smoothing removes noise within an image by using

a Gaussian function. The effect of Gaussian smoothing is a less detailed image in

which larger structures within the image can become more enhanced. The effect can be

visualized as looking through a translucent window at the image.

A.3.2 Enhancing Contrast

When an image has low contrast, there are several techniques to boost the contrast.

Histogram Scaling Histogram Scaling is used most often used to increase the

contrast of an image by increasing the difference between two neighbouring intensity

values. Although it can also be used the other way round. The transform function

that is used for the histogram scaling can be linear, as well as non-linear, and can be

one-to-one or multiple-to-one.

Histogram Equalization Most transform functions for histogram scaling are limited

to proposed cases. Histogram equalization has been developed to create a flexible

and optimal function that can be employed for different types of images. Histogram

equalization generates a much more uniform histogram by spreading out the number of

pixels at the peaks of the original histogram and selectively compressing the number of

pixels at the valleys (Gauch, 1992).

49

A.4 Feature Detection

Processing visual data can be quite computer intensive due to the large input size.

Reducing the size of the input data can therefore be useful. Feature detection techniques

can be used to reduce the input size by making use of the fact that often only parts of

the image are of interest. Feature detection tries to find those parts of the visual input

data that contain information that is of interest. This prevents wasting computational

resources on data which is not of interest.

A.4.1 Edge Detection

One important feature of most objects, are the edges of the object. They can define

the difference between the object and its background. Furthermore, they can be used

to distinguish characteristic patterns, such as the stripes of a zebra, of an object. In

an image, these edges are defined as those places in which the image brightness has

discontinuities.

Multiple different methods to find edges have been developed. One big advantage of

using edge detection, is that the redundancy of an image is reduced by a large vector.

This reduction is useful since it reduces both the storage space of the image, as well as

the computational complexity for future operations on the image.

Edge detection operators A classical method for detecting edges is by convolving

an image with a edge detection operator (a 2D-filter). These operators are constructed

in such a way that they are sensitive to large gradients in the image, while they return

zero values for the uniform regions of the image. More formally, an edge operator is a

neighbourhood operation which determines to which extend a simple arc passing through

the pixel can partition each pixel’s neighbourhood in such a way that pixels on one side

of the arc will have one predominant value, while the pixels in the neighbourhood on

the other side will have another classes predominant value.

Several different types of edge detection operators exist such as gradient operators and

Laplace Operator. Gradient operators use the first or second derivative of the grey level

of an image as basis. The first derivative will mark edge points of varying strength

depending on the steepness of the grey level changes. The second derivative will return

an impulse on either side of the edge. A line can then be drawn between the two

impulses. The point at which the line crosses the zero axis is then at the centre of the

edge. This makes it possible to detect edges on a sub-pixel scale.

50

Classical Edge detection Most traditional edge detection operators, such as the

Prewitt (Prewitt, 1970) and Sobel operator, use the first derivative is used to detect

edges. If the gradient is above a certain threshold, there is an object in the image.

The Prewitt and Sobel operator both use two 3x3 kernels, one for the x axis and one

for the y axis, to approximate the first order derivative. This approximation is done

by convolving the image with these two kernels. These operators are relatively simple

and are able to also detect the orientation of the edges, but are sensitive to noise which

introduces inaccuracy.

Laplacian Edge Detection Laplacian operators use the second derivative of the

grey level of an image to determine the edges. In contrast to the Prewitt and Sobel

operator it only uses one kernel which is convolved with the image. This makes it faster

to run compared to the Prewitt and Sobel operator. By testing a wider area around

each pixel, Laplacian operators are able to find edges and there orientation with more

precision but suffer but are very sensitive to noise.

Laplacian of Gaussian In order to tackle the problem of noise for the Laplacian

operator, the Laplacian of Gaussian (LOG) was developed. This operator first uses a

Gaussian filter to smooth the image, after which the Laplacian operator can be used to

detect the edges. An example of an edge detection algorithm that makes use of LOG is

the Marr-Hildreth algorithm (Prewitt, 1970).

Canny Edge Detection One of the most well used edge detectors was developed by

Canny (1986). This detector uses a couple of step to determine the edges in an image.

Since edge detection can be heavily influenced by image noise, the first step of the canny

edge detector is to remove noise with the help of a Gaussian filter. Next, the Canny

edge detector tries to find the intensity gradient of the image using four filters to detect

horizontal, vertical and diagonal edges since an image can contain edges in multiple

directions. In order to thin the edges, non-maximum suppression is used.

The larger the intensity gradients within the image, the larger the change that that

image gradient is an edge. Determining the threshold at which a given intensity grading

switches from corresponding to an edge or not can be hard. Canny Edge detection

uses thresholding with hysteresis in order to circumvent this problem. This technique

requires both a low and a high threshold. It is based on the assumption that important

edges are along continuous curves in the images and that therefore faint lines can be

followed and that pixels that do not constitute a line but do produce a high gradient

difference can be discarded.

51

A.4.1.1 Advantage en disadvantages of different edge detection methods

Table A.1 gives an overview of the pros and cons of different well used edge detection

operators. As can be seen in this table each edge detection technique has its own pros

and cons. Based on the demands of the specific computer vision application a choice for

a technique can be made.

Operator Advantages Disadvantages

Classical

(Prewitt,

Sobel)

Relatively simple,detects edges

and their orientations

Inaccurate and sensitive to noise

Laplacian Detects edges and their

orientations.

Inaccurate and sensitive to noise

LOG

(Marr-Hildreth)

Finds correct location of edges

(to a sub-pixel scale). Tests a

wider area around the pixel.

Tends to malfunction at corners,

curves and where the grey level

intensity function varies. Due to

the use of the Laplacian filter, it

is unable to find the orientation

of edges

Gaussian

(Canny,

Shen-Castan)

Makes use of probability to find

the error rate, localization and

response. Improves signal to

noise ratio for better detection in

noise conditions.

Due to its complexity

computationally intensive.

Suffers from false zero crossings

Table A.1: An overview of the pros and cons of different edge detection operators.

An overview of the result of the different edge detection algorithms can be seen in Figure

A.2.

A.4.1.2 Thresholding

Thresholding divides the histogram in one (bi-level thresholding) or multiple (multilevel

thresholding) values depending on the characteristics of the histogram. In bi-level

thresholding, pixels with intensity values below the threshold are considered as background,

while pixels with intensity values above the threshold are considered as objects. In

52

Figure A.2: A comparison of the different edge detection techniques, Sobel (b),
Prewitt (c), Laplacian (d), Laplacian of Gaussian (e) on an image (a) (Juneja and

Sandhu, 2009).

multilevel thresholding, different classes of objects can be defined for intensity values

between two thresholds. In theory, the number of thresholds can be increased indefinitely,

though due to the exponential increase in computer load with each additional threshold,

usually only bi- and tri-level thresholding is used.

The value used as threshold can be either a fixed value (global thresholding), or a value

that depends on the local characteristics of the pixels (adaptive thresholding). Since the

local threshold does not only depend on the histogram of the image but also the size of

the image, it is more computational intensive compared to fixed value thresholding. Since

adaptive thresholding takes into consideration the local characteristics of the pixels, it

is better able to cope with changes in illumination throughout the image.

Threshold selection The used global threshold for segmentation can either be chosen

manually or automatic. Manual threshold selection is the most basic and simple method.

It depends on the researcher/user to select the threshold with the help of a graphical user

interface. The dependency of this method on the researcher/user is also the downside

of this method. It needs human supervision.

Several different techniques have been developed to automatically determine the threshold.

One of the earliest methods is the isodata algorithm which was originally proposed by

Ridler and Calvard (1978). In the isodata algorithm, the initial threshold is first guessed

(often on base of the average intensity value of the image) and then used to segment the

image into two classes(class A and class B). The algorithm then computes the average

intensity value for both classes (ma and mb). The average of ma and mb is used to

update the threshold. This update process is repeated until convergence is achieved.

53

Automatically determining the threshold can also be done with the help of clustering.

The main clustering method for threshold selection is k-means clustering. K-means

clustering tries to select threshold(s) which divides the image in k classes. Pixels are

assigned to each class in such a way that the intensity of the pixel is closer to the average

intensity of the assigned class then to all the other classes.

Region Based Segmentation Growing-and-merging (GM) and splitting-and merging

(SM) are two region based segmentation techniques that are well known. GM works by

selecting an initial pixel as start point of a growing region. Neighbouring pixels with

similar characteristics (such as intensity and texture) are iteratively merged with growing

region until no more pixels can be merged. In the next step, a pixel which has not been

merged with a region, is selected as the start point of a new growing region. This

procedure is repeated until there are no more pixels left that do not belong to a region.

SM regards the whole image initially as one big region. Iteratively SM splits this

region in smaller regions with uniform image characteristics such as colour, gradient and

texture. The segmentation stops when there are no more regions that have non-uniform

characteristics to split.

Watershed The technique of Watershed was first introduced by Beucher and Lantuejoul

(1979). The idea behind the technique of Watershed is to see an image as a topographical

surface in which the elevation of each point depends upon the intensity value of the

corresponding pixel. The watershed algorithm developed by Vincent and Soille (1991)

works by flowing ‘water’ over the topographical surface. The local mini will become

basins. When water from two basins meets, a damn is build. This way regions are

created, and the image is simultaneously segmented.

A.4.2 Points of Interest detection

When humans look at a certain scene, they automatically focus upon certain parts of

this scene. For example if there is a person in a scene, we normally tend to focus more

upon the face of that person instead of focussing on his hands. Within this face we often

focus more upon the eyes instead of the chin. Within computer vision, these points are

called points of interest. Corners and blobs are such points of interest.

54

A.4.2.1 Corner

A corner in an image can be defined as the point at which there is a strong two-dimensional

intensity change which makes the point well distinguishable from its neighbouring points.

Corners are widely used as points of interest since they correspond with image locations

with a high information content which can be matched between images. Moravec Corner

Detector

Moravec (1980) developed one of the first corner detectors. Its method considers a local

window in the image which is shifted by small amount in four different directions. The

sum of square differences is then used to calculate the error between shifted patches with

the original image. A flat patch will produce a low value for all the shift, straight edge

will only yield a large error in the direction perpendicular to the edge, while a corner

should produce a large change in any direction since it has two non-parallel edges.

Harris & Stephens / Plessey operator Harris and Stephens (1988) build a corner

detector which is based upon Moravec corner detector. Instead of directly computing

the sum of squared differences, the Harris detector uses a first order approximation of

patch shift to calculate the sum of squared differences.

A.4.2.2 Blobs

Within computer vision, blobs are regions of pixels which differ in properties, such as

colour or brightness, from the surrounding area of pixels.

The Difference of Gaussians approach The difference of Gaussian approach for

blob detection works by smoothing the image multiple times with a Gaussian filter at

different scales. The filtered images at each scale will be subtracted from the image at

the previous scale. Blobs can then be detected based on the local extrema.

A.5 Feature Descriptors

Feature descriptors are used to describe and extract the keypoints and regions of interest

of an image in order to be able to compare those keypoints and regions to other keypoints

and regions.

55

Scale invariant feature transform (SIFT) Scale invariant feature transform was

developed by Lowe (1999). It is a feature descriptor which is able to robustly detect

objects in an image, even if these objects are partly occluded or among clutter. The

four major stages of SIFT are: scale-space extrema detection, keypoint localization,

orientation assignment and keypoint descriptors. During the first stage, a Difference-of-Gaussian

(DOG) function is used to identify potential points of interest which are invariant to

both scale and orientation. DoG was chosen to be used instead of Gaussian due to the

lower demand it poses on computational resources.

During the the keypoint localization step, the points that are low of contrast, and the

ones which are edge responses, are eliminated. Next, the dominant orientation of each

keypoint is determined based on its local image patch. Based on the orientation, scale

and location of each keypoint SIFT contracts a canonical view for the keypoints which

is invariant to similarity transform.

In the final stage, a local image descriptor is built for each keypoint based upon the

image gradients in its local neighbourhood. The summation of gradients strengths of a

keypoint is used by SIFT to vote in a histogram for every neighbourhood according to

the gradient directions.

PCA-SIFT Ke and Sukthankar (2004) developed an adaptation of SIFT based on

Principal Component Analysis (PCA) called PCA-SIFT. PCA is a widely used effective

method for data dimensionality reduction. The first three stages of PCA-SIFT are

the same as the first three stages of SIFT (scale-space extrema detection and keypoint

localization). In the final stage (keypoint descriptors) PCA-SIFT uses PCA instead of

the gradient histogram method of SIFT.

Gradient location-orientation histogram (GLOH) Gradient location-orientation

histogram (GLOH) is an extension to the SIFT descriptor in which the size of the

descriptor is reduced with Principal Component Analysis (Mikolajczyk and Schmid,

2005).

Speeded Up Robust Features (SURF) Inspired by SIFT, Bay et al. (2006) created

a feature descriptor called Speeded Up Robust Features (SURF). SURF can be divided

into two stages, namely, keypoint detection and keypoint description. At its first stage

it uses integral images which give a fast approximation of the Laplacian of Gaussian

using a box filter. In order to detect the keypoints, determinants of the Hessian matrix

are used. This way, SURF builds its scale space by keeping the image size constant and

56

only varying the filter size. The result of this first stage makes SURF invariant to both

scale as well as location.

During the second and final stage, each keypoint gets assigned a reproducible orientation

with the help of Haar wavelets to make the keypoints orientation invariant. To extract

the descriptors, the sum of the wavelets response is used.

Global-SIFT (GSIFT) Mortensen et al. (2005) proposed a variation on SIFT called

GSIFT which takes into account the global context by adding a global texture vector to

the basis of SIFT.

Coloured-SIFT (CSIFT) During keypoint detection, SIFT uses only grayscale

information of an image. Abdel-Hakim and Farag (2006) developed CSIFT is an adaptation

of SIFT which uses the colour invariance of the image during keypoint detection.

Affine-SIFT (A-SIFT) Another feature descriptor based upon SIFT is Affine-SIFT

(ASIFT) proposed by Morel and Yu (2009). ASHIFT follows affine transformation

parameters to correct images and is intended to resist strong affine issues.

Maximally stable extremal regions (MSER) The blob detection method Maximally

stable extremal regions was developed by Matas et al. (2004). MSER regions are

areas of connected pixels which are characterized by an almost uniform intensity and

are surrounded by contrasting backgrounds. These regions are found by applying a

multitude of thresholds over the image. Those regions of which the shape remains

unchanged over a large set of thresholds are selected as MSER regions. A key property

of MSER is that it is invariant to affine transformation of image intensities.

Pros and cons different algorithms Juan and Gwun (2009) compared the performance

of SIFT, PCA-SIFT and SURF on deformed images. They concluded that there is no

method which performs best on all transformations. The results of Juan & Gwun are

summarized in Table A.2.

Method Time Scale Rotation Blur Illumination Affine

SIFT Common Best Best Best Common Good

PCA-SIFT Good Common Good Common Good Good

SURF Best Good Common Good Best Good

Table A.2: Results from Wu et al. (2013) of different SIFT variations on images with
different transforms.

57

Wu et al. (2013) also compared the performance of SIFT, PCA-SIFT and SURF on

deformed images. In addition they also tested the SIFT variants GSIFT, CSIFT and

ASIFT. Their results underline the findings of Juan & Gwun, each algorithm has its

own applications in which it performs best. It is therefore import to choose the correct

algorithm depending on the type of deformation of the image.

The results show that SIFT and CSIFT have the best performance under scale and

rotation changes. CSIFT outperforms CSIFT under blur and affine changes, but not

under illumination changes. ASIFT has the best performance under affine changes,

while GSIFT has the best performance under blur and illumination changes. PCA-SIFT

always the second best in different situations. SURF has the fastest performance, but

performs the worst in different situations.

Method Time Scale &Rotation Blur Illumination Affine

SIFT Better Best Good Better Good

PCA-SIFT Better Better Better Better Good

SURF Best Common Common Common Common

GSIFT Better Good Best Best Good

CSIFT Good Best Better Good Better

ASIFT Common Good Common Common Best

Table A.3: Results from Wu et al. (2013) of different SIFT variations on images with
different transforms.

A.5.1 Classification

After describing and extracting regions of interest, it is often useful to classify and label

those extracted regions. Often techniques borrowed from Machine Learning are used for

the classification.

A.5.1.1 k-Nearest Neighbour

The k-Nearest Neighbour algorithm is a non-parametric method which can be used to

classify data into a number of classes. Basically, an object is classified according to the

majority vote of its k closest neighbours. Often a weighing is added to make the vote

stringer of neighbours that are the closest to the object. Determining which objects are

the closest is done with distance measures such as the Euclidean distance. One of the

downsides of k-Nearest Neighbours is that it is relatively sensitive to local structures in

the data.

58

A.5.1.2 Artificial Neural Networks

Artificial Neural Networks is a well-known method for the classification of data, such

as visual data. Artificial Neural Networks aim at simulating the neural networks of

our brain at a very basic level. Within the brain, neurons are interconnected with

each other. They send out signals to each other called synapses. When the sum of all

incoming synapses for a node exceeds a certain threshold, that node will ’fire’ and send

synapses to its connected nodes.

A artificial neural network emulates this behaviour. The neurons of the brain are

simulated with nodes that are connected to each other. Incoming signals from the

other nodes are summarized and a certain activation function is used to determine if the

node should fire.

A.5.1.3 Decision Tree learning

Decision trees are tree-like graphs or models of decisions and the consequences of these

decisions. Within decision tree learning, these trees are used to map observations about

an item to conclusion about the items target value. Leaves of the trees represent class

labels, while branches represent the conjunctions of features that lead to the class labels.

A.5.1.4 Support Vector Machines

Support Vector Machines (SVMs) (Cortes and Vapnik, 1995) can be used to classify

data, such as visual data, into two classes. Based on a set of labelled training data,

SVM tries to find a pair of parallel hyperplanes that lead to a maximum separation

between the two classes. If the data is not linearly separable, SVM transforms the

training and test data to a higher dimension in which non-linear classification with a

kernel function is performed.

A.5.1.5 Boosting

The technique of boosting was developed by Schapire (1990). The basic idea behind

boosting, is combining multiple weaker classifiers to create one strong classifier. New

weak classifiers are iteratively learned and added to the final strong classifier. These weak

classifiers are often weighted based upon their accuracy. In order to let the new classifiers

mainly focus upon the incorrectly classified data, the data is reweighed after the addition

of each classifier. Misclassified examples gain weight, while correctly classified examples

lose weight.

59

A multitude of boosting algorithms have been developed in the last couple of decades.

One of the most well-known boosting method, is the method of Adaptive Boost (AdaBoost)

developed by (Freund and Schapire, 1995). ?

A.6 Libraries, Frameworks and Toolboxes

Over the years, a large variety of libraries, toolboxes and frameworks have been developed

to aid the use of computer vision for a wide variety of applications. In this section, an

overview of the most well used software package (libraries, toolboxes and frameworks) for

computer vision will be given. Furthermore, the functionality of these software packages

will be compared in a decision matrix.

A.6.1 Libraries

OpenCV OpenCV, which is short for Open Source Computer Vision, is a computer

vision library originally developed by Intel and which is now supported by Willow Garage

and Itseez. It is a platform independent and open-source library which is released under

a BSD license which makes it free to use for both commercial and academic use. It has

been written in optimized C/C++ and is able to take advantage of multi-core processors.

VLFeat VLFeat is a different open-source library aimed a computer vision. It is

written in C, and is able to interface with MATLAB and Octave. It is released under

de BSD license which makes It free to use for commercial and academic applications.

A.6.2 Toolboxes

Matlab image Processing Toolbox (IPT) The Matlab Image Processing toolbox

which has been developed by Mathworks, provides a wide range of functions and apps for

image processing tasks such as image analysis, image segmentation, image enhancement,

image registration and noise reduction.

Matlab Computer Vision System Toolbox (CVST) The Matlab Computer

Vision System toolbox, developed by Mathworks, delivers a variation of functions and

apps for computer vision systems. These include object detection and tracking, feature

detection and extraction, feature matching and stereo vision.

60

Matlab Machine Vision Toolbox(MVT) The Machine vision toolbox for Matlab

was developed by Corke (2007). It contains a wide range of functions that are useful in

both machine vision as well as computer vision.

A.6.3 Frameworks

SimpleCV SimpleCV, which stand for Simple Computer Vision, is a computer vision

framework aimed at making computer vision easy (Demaagd, Oliver, Oostendorp & Scott

2012). It bundles together open-source computer vision libraries such as, the earlier

discussed, OpenCV and algorithms to solve computer vision problems. It is written in

Python and released under a BSD license.

AForge.NET Aforge.NET is computer vision and Artificial Intelligence framework

written in C#. It is open-source and available under the Lesser GPL license which

makes it free for both commercial and academic use. Overview

A.6.3.1 Overview

An overview of the difference licence options and API’s for the discussed computer vision

software package is given in Table A.4.

API Licence

OpenCV C++, C#, Java, Python BSD

VLFeat Matlab/Octave, C BSD

Matlab IPT Matlab Commercial

Matlab CVST Matlab Commercial

Matlab MVT Matlab Lesser GPL

SimpleCV Python BSD

Aforge.NET C# Lesser GPL

Table A.4: Overview of the different API’s and licences offered by the different
software packages.

A.6.4 Decision Matrix

Continues on the next page.

61

OpenCV VLFeat
Matlab

IPT

Matlab

CVST

Matlab

MVT

Simple

CV

Aforge

.Net

Noise removal

Linear Filter x x

Median Filter x x x x

Gaussian Smoothing x x x x x

Contrast enhancement

Histogram Scaling

Histogram

Equalization
x x x x

Feature detection

Prewitt x x x

Sobel x x x x

Laplacian x x

LOG x x

Canny x x x x

Isodata thresholding x x

K-means clustering x x x x

Growing-and-merging

Splitting-and-merging x

Watershed x x x

Corner detection

Moravec Corner

Detection
x

Harris &

Stephens
x x x

Blob detection

Difference of

Gaussian
x

Feature detectors

SIFT x x x x

PCA-SIFT

GLOH

SURF x x x

GSIFT

CSIFT

ASIFT

MSER x x x x x

Classification

K-nearest neighbours

classification
x x x

Artificial Neural

Networks
x x

Decision Tree

Learning
x x

Support Vector

Machine
x x x

Boosting x

62

A.6.5 Conclusion

The Decision matrix gives an overview of the availability of the techniques discussed

in section.. within each library/framework/toolbox. As can be seen from this matrix,

all libraries, frameworks and toolboxes offer a different set of implemented computer

vision algorithms. Depending on the requirements of the project, the decision matrix

can be used to find the most suitable library, framework or toolbox. Although it can

be important to also take into consideration the license (and price of the license) and

programming language that can be used.

Overall, the matrix shows that OpenCV offers the most complete package of implemented

computer vision algorithm. Furthermore, since it is offered under a BSD licence it is

free to use for researchers and businesses for their own software. Another advantage of

the BSD license is that, unlike the GPL license, it does not require the build software

to be released under the BSD license.

The toolboxes offered by Mathworks complement each other to offer a broad selection

of computer vision algorithms. Additional classification algorithms can be found in

other toolboxes offered by Mathworks such as the Statistics Toolbox, Neural Network

Toolbox and Fuzzy Logic Toolbox. The downside of using the Mathworks toolboxes is

the relatively high licensing costs for each toolbox, and the Matlab environment.

The Matlab Machine vision toolbox, offers a broad range of computer vision algorithms

including widely used feature detection algorithms. However, it does not offer any

classification algorithms. The Matlab Machine vision toolbox is released under the

Lesser GPL license. The lesser GPL license requires that any improvement of the Matlab

Machine vision toolbox code by the user, has to be made publicly available. Though,

unlike the GPL license, it does not require for the source of any software which is

only linked to the Matlab Machine vision toolbox framework to be publicly released as

open-source.

Since SimpleCV is based upon OpenCV it has the same license advantages as OpenCV.

Furthermore, it also offers a broad variety of computer vision algorithms, which are,

according to the creators, easier to use compared to OpenCV and other packages.

Aforge.NET offers an implementation of most basic computer vision algorithms, but

offers only Neural Networks for classification purposes. Furthermore it does not offer

any of the discussed feature detection algorithms. Like the Matlab Machine vision

toolbox, Aforge.net is also released under the Lesser GPL license.

VLFeat strength lies mainly in its feature detection and classification algorithms. It does

not offer algorithms for basic computer vision task such as noise removal. Like OpenCV

63

and SimpleCV, it license gives its user the freedom to use the framework without the

need to pay, or make their own code open-source.

Appendix B

Plots

B.1 Smartphone

25

30

35

40

45

50

55

60

65

70

25 30 35 40 45 50 55 60 65 70

C
V

H
ei

gh
t

(m
m

)

Calliper height (mm)

+

+

+

+

+

+

++

+

+

+

+

+

+

+
+

++

+
++

+

+
++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+ +
+

+

+

+

+

+
+

+
+

+

+
+

+

++

+

++

+

+

+

+

+

+

+

+

+
+ +

+

+

+

+

+

+

+
+

++
+

+

+

+

+

+
+ ++

+

+

+

+

+
+

+

+

+ +
+

+
+

+ +

+

+

+

+

Figure B.1: Height measurements by calliper versus height measurements by the
computer vision (CV) system for the single potato condition based on images taken

with the Xiaomi RedMi

64

65

25

30

35

40

45

50

55

60

65

70

25 30 35 40 45 50 55 60 65 70

C
V

W
id

th
(m

m
)

Calliper width (mm)

++

+
+

+

+

+

+ +

+
+

+

+

+
+

+

+
+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++
++

+

+

+

+

+

+
+

+

+

+
+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+ +

+

+

+
+

++

+

+
+

+

+

+
+

+

++

Figure B.2: Width measurements by calliper versus width measurements by the
computer vision (CV) system for the single potato condition based on images taken

with the Xiaomi RedMi

25

30

35

40

45

50

55

60

65

70

25 30 35 40 45 50 55 60 65 70

C
V

S
q
u

a
re

m
es

h
si

ze
(m

m
)

Tool square mesh size (mm)

+
+++

+

+

+

+
+

+
+

+

+

+ +

+

++

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+
+
+

+

+

+
+

+
+

+
+

+

+

+

+

++
+

+

+

+
+ +

+

+

+
+

+

+

+

+

+
+

+

+

+ +

+

+

+

+
++

+

+

+

+ +

+

+

+

+

+
+

+

+ ++ +

+
+

+

+
+

+

+

+

+

+

+

+

Figure B.3: Square mesh size measurements with the square mesh size tool versus
square mesh measurements by the computer vision (CV) system for the single potato

condition based on images taken with the Xiaomi RedMi

66

B.2 Google Glass

25

30

35

40

45

50

55

60

65

70

25 30 35 40 45 50 55 60 65 70

C
V

H
ei

g
h
t

(m
m

)

Calliper height (mm)

+

+

+

+

++
+

+

+

+

+

+

+

+

+
+

+

+

+
+

Figure B.4: Height measurements by calliper versus height measurements by the
computer vision (CV) system for the single potato condition based on images taken

with the Google Glass

25

30

35

40

45

50

55

60

65

70

25 30 35 40 45 50 55 60 65 70

C
V

W
id

th
(m

m
)

Calliper width (mm)

+

+

+

+

+

+

++

+

+

+

+

+++

+

+

+

Figure B.5: Width measurements by calliper versus width measurements by the
computer vision (CV) system for the single potato condition based on images taken

with the Google Glass

67

25

30

35

40

45

50

55

60

65

70

25 30 35 40 45 50 55 60 65 70

C
V

S
q
u

ar
e

m
es

h
si

ze
(m

m
)

Tool square mesh size (mm)

+

+

+

+

+

+

++

+

+

+

+

+++

+

+

+

Figure B.6: Square mesh size measurements with the square mesh size tool versus
square mesh measurements by the computer vision (CV) system for the single potato

condition based on images taken with the Google Glass

B.3 Multiple potatoes

25

30

35

40

45

50

55

60

65

70

25 30 35 40 45 50 55 60 65 70

C
V

H
ei

gh
t

(m
m

)

Calliper height (mm)

+
+

+

+
+

+

+

+
+

++

+

++

+

+

+

+ +

+

+
+

+

+

++

+

+

+

+

+

+
+

+ +
+ +

+
+

+

++

+

+ +
+

+

+

+

+

+

Figure B.7: Height measurements by calliper versus height measurements by the
computer vision (CV) system for the multiple potato condition based on images taken

with the Xiaomi RedMi

68

25

30

35

40

45

50

55

60

65

70

25 30 35 40 45 50 55 60 65 70

C
V

W
id

th
(m

m
)

Calliper width (mm)

++
+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+
+

+ +

+

+

+

+
+ +

+

+

+

++
++ +

+ +

+
+

+

+ +
+

+
+

+

+

+

+

+

+

Figure B.8: Width measurements by calliper versus width measurements by the
computer vision (CV) system for the multiple potato condition based on images taken

with the Xiaomi RedMi

25

30

35

40

45

50

55

60

65

70

25 30 35 40 45 50 55 60 65 70

C
V

S
q
u

a
re

m
es

h
si

ze
(m

m
)

Tool square mesh size (mm)

++
+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+
+

+ +

+

+

+

+
+ +

+

+

+

++
++ +

+ +

+
+

+

+ +
+

+
+

+

+

+

+

+

+

Figure B.9: Square mesh size measurements with the square mesh size tool versus
square mesh size measurements by the computer vision (CV) system for the multiple

potato condition based on images taken with the Xiaomi RedMi

Appendix C

Data

C.1 Xiaomi RedMi

Calliper Calliper Tool CV CV CV

ID Height Width Square mesh size Height Width Square mesh size

X1 39 49 45 38.08 49.03 43.90

X2 37 48 44 33.34 48.36 41.53

X3 36 41 40 39.34 41.77 40.57

X4 37 44 39 35.56 44.96 40.54

X5 30 39 36 30.91 37.21 34.21

X6 44 53 50 43.12 52.62 48.11

X7 40 35 39 38.28 38.76 38.52

X8 41 52 47 37.41 54.07 46.49

X9 43 54 50 44.77 54.17 49.69

X10 38 43 43 39.83 43.61 41.76

X11 36 43 40 35.47 41.18 38.43

X12 41 49 47 39.92 49.32 44.87

X13 50 63 58 47.77 62.99 55.90

X14 35 42 39 35.95 44.38 40.39

X15 38 41 41 39.83 42.74 41.31

X16 42 46 45 41.48 48.06 44.89

X17 35 42 40 31.20 40.41 36.10

X18 33 38 37 32.17 38.37 35.41

X19 45 51 49 38.67 52.33 46.01

X20 38 48 44 36.63 51.17 44.50

X21 39 43 43 36.05 44.77 40.64

69

70

Calliper Calliper Tool CV CV CV

ID Height Width Square mesh size Height Width Square mesh size

X22 52 64 62 48.74 68.90 59.68

X23 47 58 55 44.67 61.34 53.66

X24 46 54 52 47.39 55.62 51.67

X25 46 58 55 47.77 60.95 54.76

X26 58 61 62 54.07 67.74 61.29

X27 35 40 40 37.31 42.83 40.17

X28 39 50 47 43.22 55.62 49.81

X29 47 61 58 49.13 64.34 57.25

X30 46 53 54 44.38 55.72 50.37

X31 51 63 59 50.78 65.31 58.50

X32 36 44 42 31.98 46.13 39.69

X33 47 57 55 42.06 60.95 52.36

X34 54 65 60 48.74 70.55 60.63

X35 43 51 49 53.78 54.36 54.07

X36 45 54 50 47.00 61.05 54.48

X37 40 45 44 37.79 48.16 43.29

X38 54 66 60 54.17 68.32 61.65

X39 37 43 43 42.64 44.48 43.57

X40 51 63 60 49.71 69.00 60.13

X41 43 46 45 42.64 49.32 46.10

X42 45 55 50 40.31 56.30 48.96

X43 48 50 50 50.10 53.69 51.92

X44 52 54 55 49.03 58.53 53.99

X45 41 45 45 50.49 49.42 49.96

X46 50 57 55 45.84 60.76 53.82

X47 47 56 55 39.54 59.89 50.74

X48 44 59 55 47.48 62.79 55.67

X49 50 60 57 52.23 61.92 57.28

X50 52 55 55 47.48 58.14 53.08

X51 50 62 60 44.58 65.41 55.97

X52 40 48 45 41.09 48.74 45.08

X53 47 53 54 43.03 53.69 48.65

X54 43 46 45 40.41 42.83 41.64

X55 42 51 49 47.39 56.01 51.88

X56 50 64 60 44.38 72.10 59.87

X57 52 55 55 58.92 58.63 58.77

71

Calliper Calliper Tool CV CV CV

ID Height Width Square mesh size Height Width Square mesh size

X58 55 57 58 49.71 61.83 56.10

X59 42 47 46 50.20 48.45 49.33

X60 55 62 62 54.36 68.22 61.68

X61 48 61 57 45.74 64.73 56.05

X62 49 60 57 46.42 60.95 54.17

X63 52 61 59 42.06 63.18 53.67

X64 50 58 55 60.37 59.89 60.13

X65 42 47 46 37.70 47.87 43.08

X66 49 56 54 44.19 58.34 51.75

X67 47 63 58 37.41 68.41 55.13

X68 57 61 61 53.01 65.22 59.43

X69 46 51 51 42.54 56.11 49.79

X70 47 51 50 38.52 52.52 46.06

X71 45 59 54 51.55 63.57 57.87

X72 37 48 44 49.52 49.52 49.52

X73 52 62 60 48.65 53.88 51.33

X74 35 40 39 32.85 42.25 37.84

X75 46 59 55 42.06 61.63 52.76

X76 44 56 52 35.56 57.08 47.55

X77 48 56 55 47.68 48.55 48.12

X78 38 45 44 39.73 34.11 37.03

X79 47 54 50 45.74 47.10 46.42

X80 40 41 43 41.18 29.46 35.81

X81 42 52 47 44.29 45.16 44.72

X82 51 56 55 42.74 41.28 42.01

X83 46 56 52 42.64 41.28 41.97

X84 44 53 51 45.35 55.91 50.91

X85 52 62 60 47.10 65.31 56.94

X86 43 49 58 31.88 37.41 34.75

X87 43 47 47 50.97 42.93 47.12

X88 42 51 50 39.92 55.33 48.25

X89 50 60 57 43.80 68.32 57.38

X90 43 51 48 40.31 50.88 45.90

X91 49 58 55 41.18 60.95 52.02

X92 41 57 51 40.99 46.71 43.94

X93 48 49 47 44.67 51.65 48.29

72

Calliper Calliper Tool CV CV CV

ID Height Width Square mesh size Height Width Square mesh size

X94 42 53 49 40.31 52.04 46.55

X95 40 52 49 45.25 56.69 51.29

X96 45 56 52 58.43 60.27 59.36

X97 50 62 58 50.68 67.64 59.76

X98 50 57 54 52.23 65.90 59.46

X99 52 67 62 42.64 71.90 59.11

X100 49 58 55 48.74 59.31 54.28

X101 43 56 52 43.32 59.98 52.32

X102 52 61 59 42.44 65.41 55.14

X103 40 48 44 45.45 50.06 47.81

X104 41 48 46 42.44 47.87 45.24

X105 45 47 47 44.87 49.52 47.25

X106 35 40 39 31.98 37.50 34.85

X107 37 49 45 33.24 45.06 39.59

X108 37 47 43 44.67 47.29 46.00

X109 42 50 51 48.84 53.59 51.27

X110 43 48 47 44.48 40.60 42.59

X111 40 42 42 50.39 41.77 46.28

Table C.1: Data from the hand measurements and the computer vision measurements
for the Xiaomi RedMi dataset.

73

C.2 Google Glass

Calliper Calliper Tool CV CV CV

ID Height Width Square mesh size Height Width Square mesh size

G1 37 46 43 40.89 49.32 45.31

G2 44 56 52 44.77 57.08 51.29

G3 40 48 45 39.83 51.65 46.12

G4 48 53 52 55.62 55.91 55.77

G5 44 46 56 39.73 49.03 44.63

G6 44 60 54 40.02 62.21 52.31

G7 40 51 47 41.48 47.68 44.68

G8 40 46 44 36.63 50.78 44.27

G9 51 60 57 49.03 62.31 56.07

G10 42 51 49 43.51 56.30 50.31

G11 58 64 63 60.76 66.09 63.48

G12 45 56 53 47.00 60.86 54.37

G13 43 49 47 40.12 49.62 45.12

G14 41 52 48 34.98 54.27 45.65

G15 40 48 45 40.99

G16 39 47 44 44.19 49.03 46.67

G17 34 43 40 35.76 42.93 39.51

G18 41 49 46 42.35 49.42 46.02

G19 36 40 39 31.88

G20 33 40 37 34.21 37.21 35.74

Table C.2: Data from the hand measurements and the computer vision measurements
for the Google Glass dataset.

74

C.3 Multiple potatoes

Calliper Calliper Tool CV CV CV

ID Height Width Square mesh size Height Width Square mesh size

M1 48 61 57 42.44 65.70 55.31

M2 49 60 57 45.35 65.70 56.45

M3 52 61 59 50.97 66.77 59.40

M4 50 58 55 62.02

M5 42 47 46 41.18 53.20 47.57

M6 49 56 54 43.80 57.66 51.20

M7 47 63 58 39.15 65.12 53.73

M8 57 61 61 49.13 65.90 58.12

M9 46 51 51 37.11 53.20 45.87

M10 47 51 50 40.12 46.51 43.43

M11 45 59 54 35.47 64.44 52.01

M12 37 48 44 34.79 36.73 35.77

M13 52 62 60 59.31 65.51 62.48

M14 35 40 39 19.67 41.86 32.71

M15 46 59 55 42.54 63.09 53.80

M16 44 56 52 41.38 54.17 48.20

M17 48 56 55 48.26 58.34 53.54

M18 38 45 44 33.53 43.41 38.79

M19 47 54 50 45.45 54.36 50.10

M20 40 41 43 35.85 58.53 48.54

M21 42 52 47 36.44 60.57 49.98

M22 51 56 55 51.65 50.49 51.07

M23 46 56 52 43.32 45.06 44.20

M24 44 53 51 41.77 57.76 50.40

M25 52 62 60 69.67 64.93 67.34

M26 43 49 58 37.11 51.46 44.86

M27 43 47 47 33.14 51.65 43.39

M28 42 51 50 32.46 54.36 44.77

M29 50 60 57 44.77 68.41 57.81

M30 43 51 48 37.31 51.65 45.05

M31 49 58 55 45.64 60.27 53.46

M32 41 57 51 38.18 56.69 48.33

M33 48 49 47 45.06 49.81 47.49

M34 42 53 49 38.37 52.52 46.00

75

Calliper Calliper Tool CV CV CV

ID Height Width Square mesh size Height Width Square mesh size

M35 40 52 49 36.82 54.95 46.77

M36 45 56 52 43.90

M37 50 62 58 44.38 47.00 45.71

M38 50 57 54 46.61 49.81 48.24

M39 52 67 62 47.58 51.55 49.61

M40 49 58 55 43.03 45.74 44.40

M41 43 56 52 39.83 44.48 42.22

M42 52 61 59 48.65 28.01 39.69

M43 40 48 44 37.21 48.65 43.31

M44 41 48 46 36.34 50.49 43.99

M45 45 47 47 41.09 49.91 45.71

M46 35 40 39 30.82 43.80 37.87

M47 37 49 45 31.40 48.55 40.88

M48 37 47 43 33.92 49.71 42.55

M49 48 61 57 49.13 63.57 56.81

M50 45 59 54 44.48 58.14 51.76

M51 42 52 47 44.87

M52 49 58 55 56.50 56.69 56.59

M53 43 56 52 43.51 42.35 42.93

M54 40 42 42 30.53 27.13 28.88

Table C.3: Data from the hand measurements and the computer vision measurements
for the multiple potatoes dataset.

	Abstract
	Contents
	Acknowledgements
	1 Introduction
	1.1 Project introduction
	1.2 Research Questions
	1.3 Review of the current field of computer vision
	1.4 Organization of this thesis

	2 Research Context
	2.1 Computer vision in the agricultural sector
	2.1.1 Potatoes
	2.1.2 Apples
	2.1.3 Other agricultural products
	Watermelons
	Oranges
	Strawberries

	2.2 Square mesh size

	3 Methods
	3.1 Materials
	Image capturing devices
	Marker board
	Central server

	3.2 Computer vision system design
	OpenCV
	ArUco
	Point Cloud Library

	3.2.1 Camera resectioning
	3.2.1.1 Intrinsic parameters

	3.3 2D detection of the tubers width
	Input
	3.3.1 Pre-processing
	3.3.1.1 Region of interest detection
	3.3.1.2 Gaussian smoothing
	3.3.1.3 Colour space

	3.3.2 Feature detection
	3.3.2.1 Thresholding
	3.3.2.2 Bounding box

	3.4 3D detection of the tubers height
	3.4.1 Multi-view stereo vision
	Input

	3.4.2 Pre-processing
	3.4.3 Camera pose estimation
	3.4.4 Feature point detection
	3.4.5 Triangulation
	3.4.6 Bundle adjustment
	3.4.7 Cluster extraction

	3.5 Experimental setup
	3.5.1 Image Acquisition
	3.5.2 Data sets
	3.5.3 Ground truth data
	3.5.4 Testing the system
	3.5.5 Evaluation

	4 Results
	4.1 Smartphone
	4.1.1 Height measurement
	4.1.2 Width measurement
	4.1.3 Square mesh size measurement

	4.2 Google Glass
	4.2.1 Height measurement
	4.2.2 Width measurement
	4.2.3 Square mesh size measurement

	4.3 Multiple potatoes
	4.3.1 Height measurement
	4.3.2 Width measurement
	4.3.3 Square mesh size measurement

	5 Discussion
	5.1 Height measurement
	5.2 Width measurement
	5.3 Square mesh size measurement
	5.4 Multiple potato measurement
	5.5 Research Question
	5.6 Improvements and future research

	A Review
	A.1 General overview of computer vision
	A.1.1 Basic structure of computer vision applications

	A.2 Image data acquisition
	A.3 Pre-processing
	A.3.1 Noise Removal
	Linear Filter
	Median Filter
	Gaussian Smoothing

	A.3.2 Enhancing Contrast
	Histogram Scaling
	Histogram Equalization

	A.4 Feature Detection
	A.4.1 Edge Detection
	Edge detection operators
	Classical Edge detection
	Laplacian Edge Detection
	Laplacian of Gaussian
	Canny Edge Detection

	A.4.1.1 Advantage en disadvantages of different edge detection methods
	A.4.1.2 Thresholding
	Threshold selection
	Region Based Segmentation
	Watershed

	A.4.2 Points of Interest detection
	A.4.2.1 Corner
	Harris & Stephens / Plessey operator

	A.4.2.2 Blobs
	The Difference of Gaussians approach

	A.5 Feature Descriptors
	Scale invariant feature transform (SIFT)
	PCA-SIFT
	Gradient location-orientation histogram (GLOH)
	Speeded Up Robust Features (SURF)
	Global-SIFT (GSIFT)
	Coloured-SIFT (CSIFT)
	Affine-SIFT (A-SIFT)
	Maximally stable extremal regions (MSER)
	Pros and cons different algorithms

	A.5.1 Classification
	A.5.1.1 k-Nearest Neighbour
	A.5.1.2 Artificial Neural Networks
	A.5.1.3 Decision Tree learning
	A.5.1.4 Support Vector Machines
	A.5.1.5 Boosting

	A.6 Libraries, Frameworks and Toolboxes
	A.6.1 Libraries
	OpenCV
	VLFeat

	A.6.2 Toolboxes
	Matlab image Processing Toolbox (IPT)
	Matlab Computer Vision System Toolbox (CVST)
	Matlab Machine Vision Toolbox(MVT)

	A.6.3 Frameworks
	SimpleCV
	AForge.NET

	A.6.3.1 Overview

	A.6.4 Decision Matrix
	A.6.5 Conclusion

	B Plots
	B.1 Smartphone
	B.2 Google Glass
	B.3 Multiple potatoes

	C Data
	C.1 Xiaomi RedMi
	C.2 Google Glass
	C.3 Multiple potatoes

