RADBOUD UNIVERSITY, NIJMEGEN

BACHELOR THESIS

ARTIFICIAL INTELLIGENCE

Data augmentation of a

handwritten character dataset for
a Convolutional Neural Network
and integration into a Bayesian

Linear Framework

Author: Supervisors:
Denise KLEP Sanne SCHOENMAKERS
4210646 Marcel VAN GERVEN

June 3, 2016



1 Abstract

Convolutional neural networks are often used for image recognition. They
have, for example, achieved the lowest error rate (0.23 percent) for the MNIST
database up until now [6]. The use of receptive fields also makes them similar
to how the human visual cortex works. The task at hand is to use convolutional
neural networks to find optimizations for brainreading research [21]. The goal
is to find these optimizations through using different preprocessing methods on
the handwritten character dataset [27] and testing which method results in the
highest classification accuracy for the convolutional neural networks. An op-
timization is achieved by using the most efficient data augmentation methods
from the convolutional neural networks to preprocess the prior of the Bayesian
linear framework.

2 Introduction

Brainreading is a technique in which a character which is shown to the test
subject is successfully decoded again from their brain data [21]. It consists of
an encoding and decoding step: Encoding provides a relation between the char-
acter features and the neural response, whereas decoding can reconstruct the
stimulus again from the new neural response. Due to noise in the brain data,
improvements can still be made to this process. A convolutional neural network
was chosen to achieve this, due to its capabilities in image recognition. Jeroen
Manders’ research focused on finding the optimal parameters for optimization
methods and different network structures. Leonieke van den Bulk’s research
focused on retrieving network filters using deconvolution and using the neural
network features instead of pixels as input in the Bayesian linear framework.
The neural network filters are used to approximate areas of the visual cortex,
such as V2.

Another issue is that the used handwritten character dataset is small in size.
Too few training samples can result in the features not being properly learned
by the neural network, bringing about a poor classification accuracy. Data
augmentation can counteract this by enlarging the training set, generating more
training samples and simultaneously bringing more variation into the training
set.

2.1 Neural networks

Neural networks are models which are inspired by the human brain, using con-
nected neurons. These connections contain weights that are continually ad-
justed during the training phase of the neural network. This weight adjustment
is similar to learning. An example of a neural network is a perceptron [19]. A
single-layer perceptron consists of an input vector and a weight vector, which
are then the input to an activation function to retrieve a binary output. As



such, a single-layer perceptron is comparable to one artificial neuron. Figure
1 shows an example of a perceptron. The convergence of a perceptrons oc-
curs through a process of first initializing its weights and threshold, then for
each training sample j the output of neuron i y; is computed using the formula
y; = f(O_ wi; * x;), where f(X) represents the activation function, w;; repre-
sents the weight between input node j and neuron i, and z; represents training
sample j. Then according to this output, the weights are updated according to
the following formula: w < w + n(t; — y;)x;, where y; represents the predicted
output for training sample j, ¢; represents the target for training sample j, and
1 represents the learning rate. Due to its use of labeled training data, there is
knowledge of what the target of a training sample will be, and hence percep-
trons utilize supervised learning.
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Figure 1: An example of a perceptron
(Source: Conner DiPaolo, 2015 [8]).

Multilayer perceptrons contain an input layer, one or more hidden layers
and an output layer. Therefore, they are comparable to multiple artificial neu-
rons. They can classify non-linearly, utilizing a sigmoidal activation function [7].
They are fully connected, meaning each neuron from a layer is connected to each
neuron of the next. Figure 2 shows an example of a multilayer perceptron. An
MLP (multilayer perceptron) learns through backpropagation [20]. After the
forward pass, which calculates the predicted output through the regular flow
from input to output, the loss is calculated between the predicted ouput and
the true output at the output layer, using §; = t; — 0;. Then, through a back-
ward pass the weight updates are calculated for each hidden or input neuron j,
using 0; = 0j(1 — 0j) * D, c x Wkj * O, where the first part is the derivative of
the sigmoid activation function and the second part a weighted summing of the
loss of the current neuron j and the next downstream neuron(s) k. The weights
are then updated using the function Awj; = 1 * §; * ;.

Certain optimizations can also be made to the neural network. Weight decay
[13], dropout [25] and momentum [26] are main optimizations. Dropout is a
technique used to counteract overfitting by randomly dropping hidden units



Input Layer Hidden Layer Output Layer

Figure 2: An example of an MLP (Source: Ciumac Sergiu, 2011 [24]).

from the training process. This amounts to the neural network not training
with its full neuronal capacity, and continually training with different units. At
the testing process, the full neural network is used to gain classification accuracy,
without any dropout. Thus, dropout makes the training process more robust,
because the network is trained in such a manner that the individual units do
not grow as dependent of each other. Momentum is an optimization technique
in which a portion of the previous weight update is added to the current one.
This accelerates the gradient descent. Lastly, weight decay is an optimization
method that pushes for a smaller weight vector, effectively penalizing a larger
weight vector. This constriction on the range of the weight vector decreases
overfitting.

2.2 Convolutional neural networks

A convolutional neural network is known to be efficient at image recognition. A
convolutional neural network holds the current record for MNIST classification
[6]. As such, the choice of network was a convolutional neural network. This
choice was based on the fact that the used neural network was supposed to be
as close to the visual cortex as possible. A convolutional neural network utilizes
deep learning, and as such contains many hidden layers and multiple levels of
feature abstractions.



Our convolutional network consists of a combination of convolutional (ReLU)
layers, pooling layers, fully connected layers and a loss layer at the very end.

2.2.1 Convolutional layers

Convolutional layers contain filters which have a receptive field on the input
image, similarly to the visual cortex. The visual cortex utilizes receptive fields.
A V1 neuron contains a small receptive field whereas for example a V4 neuron
contains a much larger receptive field. A V4 receptive field is comprised of the
smaller, lower-level receptive fields such as from V1 [11].

In Figure 3, one filter of five by five is used to obtain a feature map. A
feature map is obtained by sliding the filter over, or convolving the filter with,
the input image. The resulting feature map in Figure 3 is 24 by 24. When
convolving a k by k filter with an 1 by 1 input image, the resulting feature map
is I — k + 1 in size. Each convolutional layer can contain multiple filters and
feature maps, as shown in Figure 4. This example contains three feature maps.
Aside from its use of receptive fields, convolutional layers pose another advan-
tage with regards to image recognition: An entire feature map uses the same
weights and biases with respect to its input image. This hugely cuts back on
used parameters, resulting in faster training.
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Figure 3: A visualisation of a feature map obtained by one five by five filter
(Source: M.A. Nielsen, 2015 [18]).

2.2.2 Pooling layers

Max pooling, which is the pooling sort used here, takes the maximum value of
non-overlapping sub-regions of the image, therefore sampling it down such that
the image size is reduced (usually by half). As seen in Figure 5, a two by two
input region is max-pooled, resulting in an image half the size. This is another
advantage about using a convolutional neural network for image recognition,
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Figure 4: A visualisation of one convolutional layer (Source: M.A. Nielsen, 2015

[18]).

because yet again the amount of parameters is being decreased. Pooling is typ-
ically used after convolution.
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Figure 5: A visualisation of one pooling layer (Source: M.A. Nielsen, 2015 [18]).

2.2.3 ReLU layers

ReLU means rectified linear unit. A ReLU layer in the convolutional neural net-
work applies the activation function f(z) = maz(0,z), with x being a neuron’s
input [17]. This activation function is also called the rectifier. By using ReLU,
the deep neural network can train faster [12] compared to similar non-linear acti-
vation functions such as sigmoid or the hyperbolic tangent. ReLU is considered
to be more biologically plausible for supervised deep neural network training
than for example sigmoid activation function [9], which is desirable because for
handwritten character image classification, we try to mimic the function of the
human visual cortex as much as possible.



2.2.4 Fully connected layers & Loss layer

The fully-connected layers help in bringing the previous-level feature maps back
to predicted labels. Spatial information that was preserved in the convolutional
layers is lost in the fully connected layers. The input to the fully connected
layers are the feature maps from the previous convolutional layer. Then, high-
level reasoning over the feature maps is performed by the fully connected layers.

After that, the final layer is the loss layer. The softmax function [3] handles
multi-class classification through multinomial logistic regression. Softmax esti-

mates the probabilities of training or test samples being a certain predicted label.
exp(zT *w;)
SR exp(zTHwy)’

for i=1,...,K. The x represents the output of the last fully connected layer,
which has to be labeled one of K class labels. In our case, there are 24 classes
so K = 24. The denominator performs a normalization, such that the probabil-
ities add to one. Using cross entropy, the loss over the estimated probabilities
is calculated. In its most basic form, cross entropy is described by the function
H(y,y') = —>,y; *log(y;). The y is the predicted probability distribution,
which was obtained with softmax. The y’ is the true probability distribution.
Figure 6 shows an entire convolutional neural network.

The function for these estimated probabilities is: P(y = i|z) =
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Figure 6: An entire convolutional neural network (Source: LISA lab, University
of Montreal, 2008-2010 [14][16]).

2.3 The standard dataset

The handwritten character dataset by Van der Maaten (2009) [27] was used,
containing grayscale images. The dataset used here contains 24 classes, which
encompasses the entire alphabet except character "X’ and ’Q’. The issue that
this dataset poses is that it is relatively small, especially when compared to a
benchmark dataset such as MNIST [15], a handwritten digit dataset. Whereas
MNIST consists of a training set of 60,000 samples and a test set of 10,000
samples for ten classes, the used handwritten character dataset consists of a
total of 40,121 unbalanced samples for 24 classes. Due to the lack of training
samples, data augmentation is performed over the training set to generate more
training samples.



2.4 Chosen preprocessing methods for data augmentation

Ciresan et al. (2012) [6] achieved the lowest error rate for MNIST [15] using a
convolutional neural network, so it was useful to consider their choice of data
augmentation methods. The methods that were useful in their research were
scaling, translation and rotation. Horizontal shearing is a method also used as
preprocessing method for MNIST classification [5]. Yann LeCun et al. (1998)
[14] also showed a decreasing error rate when adding augmentations of original
samples of handwritten digits. They used horizontal and vertical translation,
horizontal shearing and scaling among other things, asserting the choice of data
augmentation methods for this dataset. Adding noise to a neural network can
help because of the increase in training samples it generates [4]. Brown et al.
(2003) [4] found that, when they added uniform random noise to the training
patterns, the classification accuracies obtained with an MLP were significantly
better. The addition of noise has also been shown to reduce overfitting [29]. Zur
et al. (2009) [29] found improved classification when noise was added to breast
ultrasounds.

Rotation, translation, scaling and shearing fall under a category of trans-
formations called affine transformations. An affine transformation is a linear
mapping which retains the mathematical structure (points, straight lines and
planes) and parallelism. Affine transformations employ transformation matri-
ces and matrix multiplications with coordinates to achieve augmentation of an
original image.

Rotation is a method in which every point in the image is moved relative to
at least one fixed point in the image. In the case of the handwritten character
dataset used in this research, the fixed point was the center point of the image.
Translation is a method in which every point in the image is moved a given
amount of pixels horizontally and/or vertically. Scaling is a method in which
every point in the image is multiplied with a certain scaling factor, which is
determinant for how much the original image will shrink. At first sight, shearing
seems quite similar to rotation but it is a very different preprocessing method.
Shearing creates a parallel plane of the original image, using a shearing vector to
calculate the angle of the parallel plane. And lastly, by adding noise a random
variation of colour values is added to the original image.

2.5 Bayesian linear framework

In the research done by Schoenmakers et al. (2013) [21], handwritten charac-
ters were shown to the test subjects and their brain responses were measured,
with the goal of decoding visual space from the brain responses. The characters
and their brain responses were encoded using a regularized linear regression as
posed by Giiclii and Van Gerven (2014) [10]. Using a prior, the brain responses
could be decoded again to their corresponding character images using Gaussian
mixture models. The derevation of this decoding technique can be found in



Schoenmakers et al. (2015) [22].

The optimization proposed for this multimodal prior [22] is to augment the
prior using the data augmentation methods that proved most efficient when
testing them on convolutional neural networks. The idea behind this is that,
similarly to augmenting the training set for the convolutional neural networks,
the prior contains more variance as well as more samples, and thus the decoded
reconstructions might be more accurate, in the same manner the classification
accuracy of the characters in the convolutional neural networks might be more
accurate.

3 Methods

3.1 Network architecture

The data augmentation methods were tested on a small, basic network structure
and a larger, more optimized network structure to compare how much influence
the preprocessing methods actually had under different circumstances. The
smaller network structure was a cpcpff, in which ¢ stands for convolution layer,
p for pooling layer and f for fully connected layer. This structure did not utilize
techniques such as dropout [25], momentum [26] and weight decay [13]. The
larger network was a cepeepeepff, which did utilize dropout [25], weight decay
[13] and momentum [26].

The cepeepeepff network utilized a momentum of 0.9, a dropout of 0.5, a
learning rate of 0.001, a weight decay of 0.0005. The cpcpff network did not
utilize momentum, dropout or weight decay, so these parameters were all set to
0. A learning rate of 0.01 was used. Both networks utilized a fixed number of
epochs, namely 20. The networks had a batch size of 24, and the number of
batches adapted accordingly. Both also started with 9 filters of size 5, and filters
increased exponentially. Lastly, both networks utilized a learning rate decay of
1. Jeroen Manders researched the optimal values for each of these parameters
for each network structure in his paper.

3.2 Software

In order to expand the standard dataset with different data augmentation meth-
ods, a master script was created from which each method could separately be
switched on or off. For the implementation of the data augmentation methods,
an Image Processing MATLAB Toolbox was used [1]. MatConvNet [28] was
used for training and testing the convolutional networks. The functionality of
MatConvNet was configured by Jeroen Manders. Software for the application
and evaluation of the Bayesian linear framework was provided by Sanne Schoen-
makers.



3.3 The dataset

A division of a training set, validation set and test set was chosen. When us-
ing only a training and test set, overfitting can occur due to training on the
same samples too much, learning features too specific to be generalized to the
test set. This can result in a lower classification accuracy on the test set with
previously unseen samples. A validation set also contains separate, previously
unseen samples. Overfitting is regulated by monitoring the error over the val-
idation set as well as the training set. When the error over the validation set
starts to increase, overfitting occurs. To solve this, the minimum objective is
taken for the validation set and the network’s weights and biases are saved at
that point. The objective is the output of the loss layer, which calculates how
much the predicted outcomes deviate from the true outcomes.

In the original handwritten character dataset [27], the proportions between
the characters were not balanced. There was neither a balance in amount of
samples per character nor in amount of characters per writer. Therefore, we
chose to cut back the amount of samples for all the characters to the amount of
the character containing the least samples. In the used dataset, this was the case
for the letter "J’, containing only 126 samples. Due to wanting as many training
samples as possible, a ratio of 100 training samples to thirteen test samples to
thirteen validation samples was chosen. Thus, a training set of 2400 samples
and a test and validation set of 312 samples remained. However, thirteen test
samples per character was quiet scant. Therefore, the samples that remained
unused after balancing the dataset were added to the test set, in order to obtain
a larger test set with more variation.

It was not possible to also balance between the different writers of the char-
acters [23]. There was no balance in the first place in the used handwritten
character dataset: Certain writers had not written certain characters at all, and
other characters a lot.

3.4 Data augmentation methods

The data augmentation was done by creating new datasets for each variable of
each data augmentation method. For example, a dataset was created for ten
degree clockwise rotation, another one for twenty degree clockwise rotation, and
so on. The handwritten character training set of 2400 samples was taken, and
each of those 2400 training samples was augmented using one of the specified
methods below. This resulted in 2400 new, unique images. These 2400 new
training images could be combined into a new dataset together with the 2400
original training images, creating 4800 sample augmented training set.

When comparing the results of the augmented dataset to a baseline, either
the original training set of 2400 samples can be used, or a training set which
has been modified to contain the same amount of samples as the augmented



dataset. This modification is done by adding the same original training samples
again, such that when one has for example an augmented dataset containing
4800 samples, one has a control dataset containing original 4800 samples as
well. This choice was made to rule out that an improved classification accuracy
would only be due to an increased amount of training samples. The enlargement
of the baseline from 2400 samples to 4800 samples or larger caused an increase
of 0.6 to 1.0% in classification accuracy for ccpcepeepff and an increase of 1.4
to 1.7% in classification accuracy for cpcpff.

3.4.1 Addition of noise

White Gaussian noise was used to augment the images for the handwritten
character database. This choice was supported by the paper of Zur et. al (2009)
[29], in which the use of white Gaussian noise was shown to reduce overfitting.

The function imnoise from the Matlab Image Processing Toolbox [1] was used
for noise addition. This function provides a white Gaussian noise functionality.
It takes its noise samples pseudo-randomly from the standard normal distribu-
tion, with an adjustable variance and a mean of 0. The values in the original
image are rescaled in order to fit between 0 and 1, which allows for superim-
posing the noise samples over the original image. The function imnoise achieves
this by using the function b = a + sqrt(variance) * randn(size(a)) + mean.
The white noise samples are independent and identically distributed. Figure
7b shows an A that is augmented with white Gaussian noise with a variance of
0.05, with the original image next to in in Figure 7a.

(a) An original A from the handwritten (b) An A augmented with white Gaussian
character dataset. noise, a variance of 0.05.

Figure 7: Noise example.

3.4.2 Rotation

In the MATLAB Image Processing Toolbox [1], the function imrotate(im,angle)
was used. A negative angle represents a clockwise rotation and a positive angle
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represents a counterclockwise rotation. The following tranformation matrix
multiplication is performed for each coordinate:
cos(8) sin(d) O
(@,y5,1) = (x4, y;,1) * | —sin(0) cos(d) 0],
0 0 1
in which (z;,y;, 1) represents the coordinate before the rotation transformation
and (z,,y;,1) represents the coordinate after the rotation transformation. A
positive angle 6 represents a degree of counterclockwise rotations, whereas a
negative angle 6 represents a clockwise one. The new coordinate is therefore:
(x5,y5,1) = (x; * cos(0) — y; * sin(0), z; * sin(0) + y; * cos(§), 1).
Figure 8b shows an example of a rotated image, against an original image
in Figure 8a.

(a) An original A from the handwritten (b) An A augmented with twenty degree
character dataset. counterclockwise rotation.

Figure 8: Rotation example.

3.4.3 Translation

In the MATLAB Image Processing Toolbox [1], the function for translating is
imtranslate. The handwritten character dataset used in this research consists
of 2D images, so the translation vector consists of 2 elements. The first of these
elements represents the amount of pixels the image is being translated horizon-
tally, the second represents the amount of pixels the image is being translated
vertically. The tranformation matrix multiplication is performed for each coor-
dinate:

1 0 0
(zj,y;,1) = (3,9, 1)« [ 01 0],
te t, 1

in which (x;,y;,1) represents the coordinate before the translation transfor-
mation and (z;,y;,1) represents the coordinate after the translation transfor-
mation. ¢, and ¢, stand for the translation vector for x and y coordinate,
respectively. This results in (z;,y;,1) = (z; + to, y; + ty, 1). Figure 9b shows a
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horizontally translated image, compared to the original in Figure 9a. A verti-
cally translated image can be seen in Figure 10b.

(a) An original A from the handwritten (b) An A augmented with horizontal trans-
character dataset. latlon 6 pixels leftward.

Figure 9: Horizontal translation example.

) An original A from the handwritten (b) An A augmented with vertical transla-
character dataset. tlon, 6 pixels downward.

Figure 10: Vertical translation example.

3.4.4 Scaling

The MATLAB Image Processing Toolbox [1] garnered a function for scaling as
well, namely imresize. In order to perform this augmentation, the following
tranformation matrix multiplication is performed for each coordinate:

s, 0 0
(zj,95,1) = (25,9, 1)« [ 0 sy O],
0 0 1

12



in which (z;,y;, 1) represents the coordinate before the scaling transformation
and (z;,y;j,1) represents the coordinate after the scaling transformation. s,
and s, stand for the scaling factor for x and y coordinate, respectively. So
(xj,y5,1) = (z; * Sz, y; * 5y, 1). Figure 11b shows a scaled image, compared to
its original in Figure 11a. The A is scaled 0.7 the size of the original.

(a) An original A from the handwritten (b) An A augmented with scaling, with a
character dataset. factor of 0.7.

Figure 11: Scaling example.

3.4.5 Shearing

From the MATLAB Image Processing Toolbox [1], the function imwarp was
used to apply shearing. Each coordinate (x,y) is mapped to (x+my,y), and this
is done by the following matrix multiplication for each coordinate (x,y,1):

1 0 0
(Ijvyjal):(wivyial)* m 1 0
0 0 1

in which (z;,y;, 1) represents the coordinate before the shearing transformation
and (xj,y;,1) represents the coordinate after the shearing transformation, the
matrix represents the transformation matrix with m being the shearing factor.
As such each (z;,y;,1) = (x; +m=*y;, s, 1). Figure 12b shows a sheared image,
compared to its original in Figure 12a.

3.5 Bayesian linear framework adapted prior

In order to optimize the bayesian linear framework used by Schoenmakers et
al. (2015) [22], the data augmentation methods that proved fruitful in the
convolutional neural network tests were used to augment the multimodal prior.
The prior is multimodal because it consists of, in this case, 6 letter categories,
namely B, R, A) I, N and S. Each category consisted of 700 unique prior images,
not previously used in the encoding step. Similarly to the augmenting of the
training set for the convolutional neural networks, 700 augmented prior images
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(a) An original A from the handwritten (b) An A augmented with shearing, with a
character dataset. factor of -0.5 (clockwise).

Figure 12: Shearing example.

were added to the 700 original prior images, creating a new prior consisting of
1400 images. This augmented prior was then integrated into the decoding step.
The prior containing only the 700 original images and no augmented images was
used as a baseline.

3.6 Experimental setup

In this research, a data augmentation method is only called efficient when its
effect holds on both the cpcpff and the ccpeepcecpft.

Training sets were augmented with rotation, translation, scaling, shearing
and noise addition. To train and test rotation, the chosen parameters were: De-
grees from five to 30, in steps of five, both clockwise and counterclockwise. We
decided to distinguish between horizontal and vertical translation. The chosen
amounts of translation were three, six and nine pixels horizontally and three and
six pixels vertically. After rotation and translation, the resulting images were
cropped in order to fit the same image space as the original images. With larger
amounts of rotation (for example thirty degrees), the outer layer of a character
could be partially cropped off. However, this did not hurt the results nor did it
decrease the recognizability of the character. The same was the case for larger
amounts of translation (for example nine pixels).

Characters were only scaled smaller and padding was added around the
character to retain the same image size as the original images. Characters were
scaled down from 0.9 to 0.2 times their original size. Characters were not scaled
up because this resulted in having to augment the validation and test set as well.
This was the case because, when the training set is, for example, 61x61 pixels,
the validation and test set are still the original size, namely 56x56. This posed
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a problem because the image database that the convolutional neural network in
MatConvNet accepts is supposed to be equal in size for the training, validation
and test set. Shearing factors of 0.2, 0.5 and 0.7 were chosen in both directions,
meaning clockwise and counterclockwise.

The results of the Bayesian linear framework are measured as the corre-

lation between the original shown character images and the from brain data
reconstructed images.

4 Results

4.1 Results on the convolutional neural networks

4.1.1 Rotation
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(a) Rotation results on the small CNN.  (b) Rotation results on the large CNN.

Figure 13: Rotation results

As can be seen in Figure 13a as well as Figure 13b, there is a clear trend
toward counterclockwise rotation, especially at ten and twenty degrees, for both
cpepff as well as cepeepeepff. Clockwise rotation does not improve classification
accuracy for the handwritten character dataset.

4.1.2 Translation

Figure 14a as well as Figure 14b show a clear trend toward a leftward trans-
lation, especially at three or six pixels, for both cpepff as well as cepeepeepff.
Rightward translation does not decrease nor increase classification accuracy for
the handwritten character dataset.

Figure 15a as well as Figure 15b show a slight trend toward three pixels
downward translation, for both cpcepff as well as cepeepeepff. Upward translation
performs similarly to the baseline.
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Figure 14: Horizontal translation results
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Figure 15: Vertical translation results

4.1.3 Rotation & Translation

This augmented dataset combined rotation and translation, by first rotating
original images ten degrees counterclockwise and then translating them six pixels
to the left. As can be seen in Figure 16a, this resulted in a significant increase
in classification accuracy for cpepff. As for cepeepeepff, there was an increase in
classification accuracy though not significant, as can be seen in Figure 16b.

4.1.4 Rotation, Translation, Rotation & Translation

This augmented dataset was preprocessed with one part ten degrees counter-
clockwise rotation, one part six pixels leftward translation and one part ten
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Figure 16: Rotation & translation results

degrees counterlockwise rotation and six pixels leftward translation combined,
resulting in a four times enlarged augmented dataset. Figure 17a as well as
Figure 17b show a significant increase in classification accuracy, for both cpcpff
as well as cepeepeepff.
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Figure 17: Rotation, translation, rotation & translation results

4.1.5 Other methods

Shearing peaked at shearing factor 0.2 in the cpepff. However, this did not hold
for the cepeepeepff, as there was a slight peak at -0.2. Neither peaks surpassed
confidence intervals of the baseline. See Figure 19a and 19b.
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Figure 18: Scaling results
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Figure 19: Shearing results

Noise addition performed equally unsuccessfully in cpepff as well as ccpeepeepff.
It performed particularly badly in cepeepeepff, with classification accuracies far
below the baseline confidence intervals. See Figure 18a and 18b.

Lastly, scaling contained one slight peak in classification accuracy for factor 0.8
for the cpepff, but this did not hold for cepcepeepff. Again, none of the peaks
surpassed the confidence intervals of the baseline. See Figure 20a and 20b.

4.2 Results on the linear Bayesian framework

In the case of Figure 21b, the prior was augmented with ten degrees counter-
clockwise rotation. The correlations lowered compared to the correlations using
the original prior, see Figure 21a. Correlations from the augmented prior are
lower overall, but aside from that, there are no relatively higher correlations
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Figure 21: Bayesian linear framework results

at the diagonal. So there is no higher correlation between reconstructions and
their corresponding original characters. As can be seen in Figure 21b, only the
character I seems to have higher correlation between reconstructions and origi-
nal characters. the reconstructions of the character B seem to correlate equally
much with the original images of character S, if not more. The same goes for
reconstructions of S with respect to original images of character B, respectively.

This pattern in correlation was seen regardless of the data augmentation

method used. Rotation, translation and a combination of both was used to
augment the prior, with ten degrees counterclockwise and six pixels leftward
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respectively.

5 Discussion

a) Original A (b) Ten degree coun- c¢) Original Y ) Ten degree coun-
terclockw1se rotated terclockw1se rotated
A Y

Figure 22: Deskewing of v-shapes

For the handwritten character dataset used [27], the best data augmentation
can be performed by enlarging the balanced training set four times. This is done
by augmenting the originals using rotation ten degrees counterclockwise, aug-
menting the originals using translation of six pixels to the left and augmenting
the originals using rotation ten degrees counterclockwise and using translation
of six pixels to the left. This is a significant effect for this handwritten char-
acter dataset due to the augmented dataset falling completely above the 95%
confidence intervals of the baseline.

As for the rotation results, when sampling the original handwritten char-
acter dataset, it was observed that some characters were slightly angled in a
rightward fashion. Additionally, when sampling the rotated handwritten char-
acter dataset, it was observed that rightward orientation experienced by some of
the characters was corrected. Van der Maaten (2009) [27] proposed deskewing
might improve the performance of the handwritten character dataset, which is
an explanation for these rotation results. Figure 23 shows an I and an L that

a) Original I ) Ten degree coun- ¢) Original L ) Ten degree coun-
terclockw1se rotated terclock\mse rotated
I L

Figure 23: Vertically deskewing
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M S

Figure 24: Deskewing of bows

were originally sloped to the right but were corrected to stand more upright.
However, not all characters had a rightward orientation that needed to be
corrected. The characters that already were upright and not skewed could also
benefit from a counterclockwise rotation, because features that were not as
prominent in the original character image, are observed more prominently in
the counterclockwise rotated image. A different kind of deskewing happens in
this case, because only certain features (such as a bow or a v-shape) are be-
ing deskewed instead of the character image as a whole. Figure 22 shows the
deskewing of v-shapes for an A and a Y. Figure 24b shows a deskewing of the
bows in a vertical sense, whereas Figure 24d shows a deskewing of the bows in
a horizontal sense.
Perhaps making use of skew detection methods such as proposed by Alginahi
(2010) [2] would be a good option for efficiently finding the (partial) skew of a
handwritten character dataset. He proposed to use Hough transform analyses
and orientation sensitive feature analyses, among other things.

As for the remainder of the data augmentation methods: Shearing, white
Gaussian noise addition and scaling proved not to be successful methods for
the used dataset. For shearing, the peak at 0.2 for cpcpff was considered quite
logical because this was in the same counterclockwise direction that gave pos-
itive results for rotation. However, the counterclockwise peak did not hold for
cepeepeepff-  Noise does not perform well on either network, but it performs
particularly badly in ccpeepeepff. Possible explanations are that noise generally
does not improve classification accuracies for convolutional neural networks, or
that this particular dataset does not benefit from white Gaussian noise. After
all, Zur et al. 2009 [29] only found such beneficial results for an MLP. It could
be the case that scaling up would be more successful for this handwritten char-
acter dataset, but there was no room for scaling up in this research.

As for the Bayesian linear framework: When using the original prior, also
used in the brainreading research [21], the correlation shows to have most effect
on the diagonal. This is a desirable outcome, because then the character recon-
structions from the brain are similar to the same original characters, e.g. a B
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correlates strongly with the same original image of B or another image of a B. As
can be seen, the correlation between originals and reconstructions using the orig-
inal prior is highest in the character I. It is not clear why the data augmentation
methods resulting from the experiment on the convolutional neural networks do
not generate the same positive results for the Bayesian linear framework. A
possible explanation could be that the combination of preprocessing methods
that proved optimal for the used handwritten character dataset on the convo-
lutional neural network is not similarly optimal for the prior in the Bayesian
linear framework. Another possible explanation could be that expanding the
prior with augmented samples creates noise for the Bayesian linear framework
instead of useful variation. A final possible explanation could be that the train-
ing and test set for the Bayesian linear framework closely resemble each other.
The convolutional network, on the other hand, utilizes a validation set which
might include samples very different from the ones in the training set, therefore
promoting robust training. Given more time, it would be interesting to further
explore this issue.

However, in the research done by Leonieke van Bulk, results from a convo-
lutional neural network are successfully used as an input in the Bayesian linear
framework. This shows that the results from a convolutional neural network
and a Bayesian linear framework can be successfully used together.

Furthermore, there are some suggestions for future augmentation of the
handwritten character dataset. A different composition of the new, augmented
datasets could be considered. Instead of creating a dataset for one specific pa-
rameter per data augmentation method, for example 10 degrees counterclock-
wise for rotation, a dataset could be composed of multiple parameters per data
augmentation method. This might especially come in handy when taking into
account the results gathered from this research. For example, the results for ro-
tation stated that ten and twenty degrees counterclockwise were most efficient in
improving classification accuracy for this handwritten character dataset. As of
now, the used combinations were all comprised of the most efficient parameters
of each data augmentation method, but another method would be to take the
top two or top three most efficient parameters of the same data augmentation
method. On top of that, combinations could be made between data augmen-
tation methods and their top two or top three parameters. As such, there are
many possibilities for efficient dataset enlargement, but there was not enough
time in this research to review the many possible combinations.

More enlargement of the augmented datasets could also be given by taking
the parameters around the optimal parameter for a data augmentation method.
For example, for the most efficient parameter for rotation, ten degrees counter-
clockwise, a new dataset could be comprised using nine, ten and eleven degrees
counterclockwise. This would already result in a four times enlarged dataset.
However, it is not known what the results for nine and eleven degrees would be,
as testing for rotation was only conducted in steps of five in this research.
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Another thing that could be tested, given the luxury of more time, was a
chance to try augmenting the validation set as well. It would be interesting to
explore whether a validation set with more samples and variation could reduce
overfitting more efficiently.

Another thing that could be tried on the used handwritten character dataset
is a continuation of testing with vertical translation. Due to time constraints,
horizontal translation was picked for further combined testing on the convolu-
tional neural networks due to it performing slightly better in pilot testing. A
downward translation of 3 pixels could be used for this further testing..

A last thing Van der Maaten [27] suggested, was to augment the dataset by
means of blurring. He believed this would improve classification, similarly to
rotation.

Conclusively, the handwritten character dataset by Van der Maaten [27] was
most successfully enlarged using rotation and translation and a combination of
the two. Additionally, the classification accuracy improved using this combina-
tion of techniques. The various preprocessing methods had no positive effect on
the Bayesian linear framework. Additional research would be needed to explore
this issue.
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