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Abstract

Much of both human and animal behavior can be understood in terms of reactive pro-
cesses. However, some aspects of behavior seem to go beyond reactiveness, as they appear
to involve internal representations of the world: internal states that stand in for aspects
of the world, such that they can guide an agent’s behavior even in situations in which
the agent is completely decoupled from the corresponding aspects. Chandrasekharan and
Stewart (2004, 2007) argue that a special kind of epistemic structuring, active adaptation
of some structure for cognitive benefit, can generat internal traces of the world with a
representational character. Their model would account for both epistemic environment
adaptation and the creation of these internal traces through a single reactive mechanism.
Although Chandrasekharan and Stewart demonstrate the workings of this mechanism
through a set of experiments, the claim for a representational nature of the resulting inter-
nal structures has not been validated empirically.

This thesis aims to further investigate this claim on empirical and theoretical grounds.
Two subsequent experiments were carried out to validate two respective hypotheses; the
first experiment was designed to test whether internal epistemic structuring can facilitate
the forming and use of internal presentations, a non-decoupled, hence weaker kind of in-
ternal states than representations; in the second experiment, an embodied, embedded agent
simulation was carried out to investigate the relation between representational demand and
the development of epistemic structuring capacities. The experiments provide evidence
that epistemic structuring can be used to form, maintain and use both internal presenta-
tions representations. Taking into account these results, it is discussed how the epistemic
structuring model might account for the nature and origin of internal (re)presentation, and
how it relates to the extended mind thesis. Finally, the model is placed in the context of
language evolution; it is speculated to play an explanatory role with respect to the nature,

origin and cognitive role of language.
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Chapter 1
Introduction

Human behavior is deeply rooted in its evolutionary heritage. However, many of
us may not feel to share much of our cognitive abilities with animals that have been
around much longer than the couple of hundreds of thousands years that we have.
In our daily lives, we are constantly interpreting the world around us, reasoning
about the many things inside it, planning ahead, engaging in social interaction and
so on. Simpler animals like insects, fish or even other mammals, such as rodents,
on the other hand seem to act in a mostly reactive manner, responding directly to
stimuli with little internal processing. Indeed, reactiveness as a basis for natural
behavior has since long been acknowledged (Balkenius, 1995), both in traditional
psychology (cf. Lewin, 1936) and in cognitive modelling (e.g. Braitenberg, 1984;
Arkin, 1990; Brooks, 1991).

However, it does not seem feasible to explain the entire spectrum of the cog-
nitive abilities of humans in terms of reactive processing. Reasoning about both
concrete and abstract concepts, making predictions, planning ahead and engaging
in conversations are just a few of the many possible activities that appear to rely on
complex inner processing rather than resulting from one-way stimulus-response
couplings. In contrast to purely reactive behavior, such advanced cognition often
is hard — if not impossible — to understand without assuming internal represen-
tations; reasoning about something in the absence of that something requires the
manipulation of something that stands in for it. While language, whether formal

or natural, provides symbols that can fulfill this role of standing in — the word
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‘couch’ refers to the thing at home you may plan to spend the evening on — the
way the human mind deals with such issues is far from clear. However, evolu-
tion does dictate that human cognition has, through a gradual process, arisen from
more simple systems — ultimately from the earliest reactive creatures that had no
more than a rudimental stimulus-response system. Hence, cognitive science faces
two questions concerning internal representations: What is their nature? and What
is their origin? The approach taken in this thesis is to take the little we know with
respect to the latter issue — cognition is rooted in reactive behavior — to add to
the, arguably, even fewer knowledge that currently exists concerning the former.
Before proceeding however, it is essential to get a clearer view of what represen-

tations are considered to be, and of some of the issues concerning them.

1.1 Representations

A natural first step in introducing any concept is providing a definition. As is often
the case, a multitude of interpretations of representations are available, and agree-
ment among them is lower than desired. One interpretation however does appear
to be quite popular (cf. Clark, 1997; Haselager, Bongers, & van Rooij, 2003),
presumably because of its clarity and broadness, but it is also fairly agnostic to
the nature of representations. This interpretation is the one by Haugeland (1991);
here is how it is cited by Haselager et al. (2003):

A sophisticated system (organism) designed (evolved) to maximize
some end (e.g., survival) must in general adjust its behavior to specific
features, structures, or configurations of its environment in ways that
could not have been fully prearranged in its design. [...] But if the
relevant features are not always present (detectable), then they can, at
least in some cases, be represented; that is, something else can stand
in for them, with the power to guide behavior in their stead. That
which stands in for something else in this way is a representation; that
which it stands for is its content; and its standing in for that content is

representing it. (Haugeland, 1991, p. 62)
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The something-standing-in-for-something part of this interpretation is intuitively
essential to the concept of representation. Interesting is that Haugeland places this
standing-in into a context of meaningful behavior. One way to interpret this is that
representations necessarily underlie meaningful cognitive behavior, which pretty
much complies with the view of traditional AIl. Another interpretation would take
representations as supporting such behavior, but not necessarily forming the basis
for it.

Given a system displaying meaningful cognitive behavior, how can we find out
whether it has internal representations? In the case of symbolic Al programs, this
is easy. We can inspect their workings at a very detailed level and still find linguis-
tic or semi-linguistic constituents like variables or propositions with explicit se-
mantic reference. Systems less tailored, such as animals or adaptive sub-symbolic
artificial control mechanisms like neural networks, provide a different case. Es-
pecially in cases where such systems operate in an embedded, embodied context
and where their behavior is the result of complex interactions between brain, body
and environment, looking for individual content-bearing units will prove fruitless.
Concluding, the absence of representation in any sense might then be attractive,
but it neglects the strong suggestion provided by both introspection and empirical
findings (e.g. Shepard & Metzler, 1971) that some cognizers (humans, and proba-
bly other) do form, keep and use representations. It also leaves a large explanatory
gap with respect to behavior that seems to require reasoning and planning.

Ways to assess the presence of representation in systems of the hard-to-analyze
kind have been suggested. For example, Clark and Grush (1999) define “minimal

robust representationalism”, for which the following criteria are provided:
1. representations would be inner states whose adaptive functional
role is to stand in for extra-neural states;

2. the states with representational roles should be precisely identi-
fiable;

3. the representations should enhance real-time action. (Chandrasekharan
& Stewart, 2007, p. 343)

These criteria, although themselves of course open to debate, provide a quite con-

crete schema to test a non-symbolic cognitive system against. Near the end of this
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Figure 1.1: The road sign problem. The stimulus (cross) is placed at the left side,
which indicates that the reactive robot should go left at the junction. It manages
to do so by moving towards the stimulus and following the wall. Adapted from
Rylatt and Czarnecki (2000).

chapter, in Section 2.2, the application of these criteria to a concrete model, and

subsequently a number of contrasting views on representations will be discussed.

1.1.1 Intelligence without (internal) representations?

Discontent with the traditional view of representation has been growing since the
mid-1980’s and the rise of situated cognition (Ziemke, Bergfeldt, Buason, Susi, &
Svensson, 2004). While Brooks (1991) famously argued for intelligence without
representations, more subtly formulated suggestions have been made and backed
with experimental results. An agent may ‘outsource’ its representational needs to
its body, environment or distribute it over all of these. An example can be found
in solving the so called ‘road sign problem’ (Rylatt & Czarnecki, 2000), a de-
layed response task that requires a robot to decide whether to take the left or right
branch of a T-maze on basis of the position of a visual stimulus presented earlier.
The stimulus is placed to the left or to the right, indicating that the robot should
take the corresponding branch. An illustration is given in Figure 1.1. Thieme
and Ziemke (2002) showed that a purely reactive solution exists to this problem.

Reactive agents evolved a strategy in which they moved to the side where the
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stimulus was placed and followed the wall to stay on that side and move towards
the junction, at which point taking the shortest angle results in ‘choosing’ the
correct direction. The robot in this case can be considered to effectively use its
position with respect to the wall rather than some internal structure as a memory
or representation (Ziemke et al., 2004).

The general remark that can be made is that a lot of behavior seemingly or
expectedly incorporating internal representation can in fact be brought about re-
actively. Clever usage of external structures, whether pre-existent or established
by the agent itself, often leads to fast and reliable solutions that do not rely on
internal capacities that are expensive to use in terms of energy or may not even
be available. By its opportunistic nature (e.g. Ayala, n.d.), evolution is likely to
prefer, given similar profit and reliability, reactive task solutions to those involv-
ing internal processing, which are likely to be slower, more vulnerable and more
expensive in terms of energy than their reactive counterparts. Although there is no
doubt that human behavior is beyond reactiveness, evolutionary heritage should
not be neglected. Hence, from an evolutionary perspective there is much value
in the adage put forward by Haselager et al. (2003): “Don’t use representations
in explanation and modeling unless it is absolutely necessary.” While this is a
healthy advise, it does not provide any clues on how to deal with representa-
tions in those cases where we do not know how to avoid them, if they can be
avoided at all. In this thesis, a model will be discussed that provides an expla-
nation for representational processing in agents that however retain their reactive
mode, hence accounting for the mixture of reactive and representational process-
ing that is found in natural cognitive agents. A short introduction to this model
will be presented below. Chapter 2 will be dedicated to an in-depth discussion of

its workings, backgrounds and implications.

1.2 Epistemic structuring

Chandrasekharan and Stewart (2004) introduced the concept of epistemic struc-
turing and provided the basis for the model that will be central to the present
investigations. This section provides a short introduction; Chapter 2 is dedicated

to a more in-depth discussion.
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Epistemic structuring as a concept is rooted mostly in the work of David Kirsh,
who posed that agents can, and in fact do, gain cognitive leverage by adhering
to the motto “changing the world instead of oneself” (Kirsh, 1996). In Kirsh’s
model, agents add structure to their environment through task-external actions:
actions that themselves are not in the repertoire of actions required to physically
complete a task. Kirsh (1994) makes the distinction between pragmatic and epis-
temic action. Pragmatic actions are those that are “performed to bring one physi-
cally close to a goal”, while epistemic actions are “actions performed to uncover
information that is hidden or hard to compute mentally”. Chandrasekharan and
Stewart (C&S) apply this dichotomoy to physical structures that agents can gen-
erate in their environment. Epistemic structures are those structures that reduce
cognitive complexity in the context of a task. By making use of task-external,
epistemic actions, task-relevant paths through state space can get shortened, low-
ering cognitive complexity (Chandrasekharan & Stewart, 2004).

C&S pose the question how such epistemic structures might be generated.
They suggest that systematic epistemic structuring by agents can emerge in the

context of a task and two biologically plausible conditions:

1. agents create random structures, which do not necessarily serve an epis-

temic goal, and

2. agents get tired, can track their tiredness and tend to reduce it.

Once every while randomly generated structures (condition 1) have the unforeseen
effect of reducing an agent’s effort (condition 2) required to execute its task. If this
happens, the agent will associate that structuring behavior with reduced tiredness
and hence adopt this structuring pattern into its behavioral strategy. By doing so,
the agent has, in the vocabulary of Kirsh, shortened a path in its state space and
is likely to discover that by following and reinforcing this path it can achieve a
systematic tiredness reduction. In a multi-agent scenario, collective structures can
emerge that are both used and reinforced by all members of the population.

In two respective experiments, C&S (2004, 2007) investigate two modes of
epistemic structuring: external and internal. The notion of external structuring
refers to an agent’s physical structuring of its environment to make it more cog-

nitively hospitable, whereas internal structuring denotes applying the epistemic
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structuring mechanism to a structurable internal module. C&S (2007) claim that
internal structuring provides a means for agents to engage in representational pro-
cessing. Thus far however, too few empirical findings have been reported to gain
sufficient insight into the workings of epistemic structuring, or to come to any
fundamental conclusions about their relation to internal representations. It is the
aim of this thesis to provide further empirical investigation as well as theoretical

embedding.

1.3 Investigations in this thesis

In the following chapters, C&S’s (2007) claim of representational processing
through epistemic structuring will be further validated. First, Grush’s (1997)
distinction between presentations and representations (to be discussed in Sec-
tion 2.2.1) will be employed to, incrementally, empirically investigate the rep-
resentational capabilities of the epistemic structuring model. This is done in two
subsequent simulation experiments aimed at testing the following respective hy-

potheses:

la. Epistemic structuring applied to internal environments provides an agent
with the ability to form internal presentations and use these to guide its be-
havior.
This hypothesis will be tested through a simulation that provides a non-
embodied, non-embedded context, and a task in which presentational pro-
cessing, rather than the use of direct sensor-motor couplings, leads to in-
creased performance, but that demands no guidance by counterfactual (non-

perceivable) information.

Ib. The same mechanism can be used to keep counterfactual variants of these
presentations: internal representations.
This second hypothesis builds on the first in that presentations can be con-
sidered a more basic kind of internal states on which representations rely. It
is tested in a multi-agent simulation with an embodied, embedded context
that provides a more realistic scenario and places representational demands

on the agents.
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A second goal of this thesis is to gain insight into the dynamics of the pro-
cesses that underlie the model’s hypothesized capacities. Therefore, two kinds
of qualitative analyses were carried out on the results of the first of the above

mentioned experiments:

2a. A behavior analysis, in order to determine in what way internal and external
actions make up the pattern of internal (re)presentation through epistemic

structuring.

2b. An internal dynamics analysis, to explore the processes that may underlie
internal (re)presentation and the interactions between the components of the

model.

A final goal is to provide further theoretical context for the epistemic structur-
ing model. The final chapters of this thesis speculate about the explanatory power

of epistemic structuring from two, potentially related, perspectives:

3a. Embedded, embodied cognition: can epistemic structuring account for a

broad range of cognitive phenomena even though it is firmly rooted in reac-
tive behavior and environment interaction?
Representational capacities are associated with high level cognition. Yet,
epistemic structuring has reactiveness in its core, and therefore potentially
has a great explanatory scope, bridging the gap between reactiveness and
higher cognition.

3b. Language evolution: does epistemic structuring provide a viable starting
point for a theory of language evolution?
Epistemic structuring will be shown to share properties with language, and
be compatible with established views of the nature and cognitive role of
language. An evolutionary development of language rooted in epistemic

structuring will be sketched.

Prior to the presentation of these investigations, comes an in-depth discussion
of the epistemic structuring model of C&S (2004, 2007), the mechanisms that
underlie it, and its hypothesized relation to presentations and representations.



Chapter 2
Epistemic structuring

In the previous chapter, epistemic structuring was briefly introduced. In this Chap-
ter it will be more closely examined by means of a description of the work of C&S
(2004, 2007), who introduced the concept and provided a model for epistemic

structuring in reactive agents.

Epistemic structuring is the generation and reinforcement of epistemic struc-
tures, defined by C&S (2007) as “‘stable organism-generated (...) structures that
lower cognitive load” (p. 330). C&S initially require these structures to be external
to the agent (i.e., exist in the environment), but subsequently propose an internal
modality of epistemic structuring. Hence, a distinction can be made between two
modes of epistemic structuring: external, by means of adapting the environment,
and internal, through a special kind of epistemic actions' that cause restructuring
of an internal module. C&S claim that by the latter process “internal traces of the
world could originate in reactive agents within lifetime” (p. 330); these traces are

argued to have a representational character.

The following sections describe the experiments of C&S (2004, 2007) and the
composition and workings of their model. After a description of the mechanism
underlying both external and internal structuring, both modes are discussed sub-
sequently. The proposed relation between internal structuring and representations

is discussed at the end of this chapter.

Ithe distinction between pragmatic and epistemic actions is discussed in Section 1.2
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2.1 The experiments of Chandrasekharan and Stew-

art

In the experiments of C&S (2004, 2007), embodied, embedded agents and their
environment are simulated. The agents possess a set of relatively high level, but
strictly local sensors and a number of task-specific and task-external actions, one
of which is selected at each time step. A mapping between these input states
and actions is learned by the agents on basis of feedback, by means of a rein-
forcement learning mechanism that constitutes the control structure of the agents.
Before proceeding with a more detailed description of the agent simulation, an
introduction of the control structure will be presented, as it plays a central role in

understanding the dynamics of epistemic structuring as introduced by C&S.

2.1.1 Q-learning

C&S (2004, 2007) chose to base the control structure for their agents on a re-
inforcement learning algorithm called Q-learning (Watkins, 1989). One of the
motivations for using Q-learning is that it can, in a straightforward fashion, model
a creature’s tendency to avoid unfruitful effort and thus unnecessary tiredness.
Q-learning maps input states to actions and adjusts this mapping on the basis of
quantitative feedback it receives as a consequence of selecting a specific action. In
the model of C&S, this feedback consists of ‘tiredness feedbacks’ of —1 at each
time step and a reward of 410 upon completing a trip.

Rummery and Niranjan (1994) give an apprehensive description of the work-
ings of Q-learning. The mechanism revolves around the Q-function, which de-
fines an estimated goodness of an action in the context of a given input state,
and is learned on basis of rewards. In its most simple form, the learning of the
Q-function takes place by the following update rule after an action a; has been

selected given an input X;:

O(x,ar) — ri+yYV(X11) (2.1)

where r; is the feedback received after choosing the action, 7y is a fixed discount
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factor and V (x;) is the value function, which gives a prediction of the feedback for
the given input state. As the algorithm in principle selects the actions that yields

the highest expected result, the function can be written as:
Q(X¢,a;) 11+ 7y maxgeaQ(Xr41,a) (2.2)

From this update rule it follows that not only the immediate feedback value
guides the learning of the Q-function, but also subsequent feedback has its influ-
ence, the strength of which is governed through the y parameter.

An additional parameter € determines the chance that instead of the action
likely to optimize the reward based on current information, a random action is
chosen. This leads to a form of exploration, allowing the agent to find out (and
learn about) the implications of certain actions in certain contexts and to deal with

potentially dynamic aspects of the environment.

2.1.2 Connectionist implementation

In Q-learning, a mapping between input states and actions goodness is learned.
A straightforward way of storing this mapping is by listing separately the Q val-
ues for all combinations of input states and actions in some sort of lookup-table.
This approach is used in the experiments (2004, 2007) of C&S. There are several
downsides to this approach however. In practice such lookup-tables easily become
enormous depending on the number of states and actions one would like to be able
to discern. In somewhat complex situations, accessing and updating the Q values
may involve unaffordable computational overhead. Apart from this practical ob-
jection, the lookup-table approach requires explicit discretization of input states.
Two downsides of this are the arbitrariness of the level of discretization and the
inherent inability for the algorithm to generalize over input states. To exemplify
the latter issue, suppose a system that has learned to associate input values 1...49
and 51...99 with action A and input values 100...199 with action B. Now if
it encounters the unseen before input value of 50, would it not be desirable for
the system to select action A? A lookup table however does not establish such

behavior as all associations are independent.
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A solution to these problems (Rummery & Niranjan, 1994) is to use feed-
forward neural networks (FFNN’s) to approximate the lookup-table based Q-
function. FFNN’s are known to be capable of classifying over continuous inputs
and to scale well to large input and state-spaces (Rummery & Niranjan, 1994,
p- 5). Rummery and Niranjan and Kuzmin (2002) describe and compare several
methods implementing connectionst Q-learning. For the experiments that will de-
scribed further on, an implementation (QCON: Kapusta, 2008) of connectionst

Q-learning based on the findings by Kuzmin (2002) was used.

The variant of connectionist Q-learning used in this framework, and hence in
my experiments (Chapters 3 and 4), is called Modified Connectionist Q-learning
(MCQ-L). It will be described here shortly. For a detailed account of this algo-

rithm and several variants, I refer to Rummery and Niranjan (1994).

Action selection is straightforward. The inputs are set according to the current
input state of the agent and the network is activated. There are as many output
units as there are possible actions, and the activation value of each output unit is
interpreted as the estimated goodness of the corresponding action. Once an action

is selected and feedback is received, this needs to be reflected in the Q-function.

Rummery and Niranjan (1994) describe how the network can be trained, i.e.
how the weights can be adjusted, using an on-line version of temporal difference
learning (TD-learning), which builds on the work of Watkins (1989) and Sutton
(1989). This kind of learning depends on the storage of a so called eligibility
traces e for each weight of the network. It keeps track of preceding error gradients
and gets updated at each time step. This update happens on basis of the error
gradient that is provided by the backpropagation algorithm for the current state of
the network and the output activation set such that the selected action is activated
(e.g. a positive activation of 1 with the the other actions at 0). This error gradient

is added to the previous eligibility trace, which is discounted by a factor A:
e =V,0r +yrie (2.3)

(Rummery & Niranjan, 1994) where V,,Q; is the error gradient and y is Q-learning
discount factor mentioned earlier. When e has been updated, the action gets exe-

cuted and in the next time step an action is selected on basis of the input and the
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current state of the network. Then the just calculated eligibility traces are used to

update the network:
W =W +0(r—1 + Y0 —Or-1)e1 (2.4)

(Rummery & Niranjan, 1994).
As can be seen, the difference between the successive Q-values 2 is used, and
no future Q-values need to be consulted. Hence, this algorithm constitutes on-line

temporal difference Q-learning.

2.1.3 Environment structuring experiment

In the first simulation of C&S (2004, 2007), 10 agents were placed in a 30 x 30
grid world containing two 3 x 3 patches designated a home location and target lo-
cation. The agents are considered to be successful to the degree that they manage
to move back and forth between the home and target locations within a limited
time frame. This can be thought of as a foraging task, in which the agents gather

food from a single source and bring it home unit-by-unit.

Agents

The architecture of the agents of this experiment is shown schematically in Fig-
ure 2.1(a). The agents are controlled through the reinforcement learning mecha-
nism Q-learning, the workings of which were described in detail in Section 2.1.1.
3 Recall that it selects one (unparameterized) action out of a fixed set at each time
step, the selection being driven by a goodness estimation based on the current

input and feedback values it receives after the execution of each action.

Actions C&S provided their agents with five possible actions: moving into a
random direction, moving into a ‘home like’ direction, moving into a ‘target-like’
direction and finally dropping two kinds of pheromones (two separate actions).

The two kinds of pheromones are ‘home-like’ and ‘target-like’ respectively, akin

20, is the Q-value associated with the selected action, short for O(x;,a;)
3Chandrasekharan and Stewart also carried out their experiment with a genetic algorithm in-
stead of Q-learning, but I will not discuss that here as it is of little interest for the current purposes.
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to pheromone systems found in ants (C&S, 2004). This means that execution
of the ‘move towards home-like’ actions brings an agent to the home zone if it
is within reach or otherwise moves it into the direction with the highest level of
‘home’ pheromone. Dropping pheromones of either kind increases the amount
of pheromone on the agent’s current location. This amount is subject to decay
(its level decreases over time) and dispersion (a cell receives small amounts of
pheromones from its neighboring cells). The levels of home pheromones PH,,

and target pheromones PT..; on cell ¢ at time step ¢ are given by:

1 8
PHC,[ =e <PHC,I—1 +d (g Z PHS(f’a.,l—l —PHQt_])) (253)
a=1

1
PTL‘J =e (PY}J_] +d (g

with e being the evaporation rate, set to .99, d the dispersion rate, set to .04 and

8
Z PY—;‘C,QJ_] - PTC,I—I) > (2.5b)

a=1

S¢.q the ath of the 8 cells surrounding cell c. Initially, values of PH and PT are set

at O for all cells of the environment.

Perception The sensory capacities of the agents are few but very high-level.
There are four input values to the control system: a binary value that tells whether
the agent has visited the target zone (‘is carrying food’), two more values that
represent the amount of home-like pheromones and target-like pheromones at the
current location respectively, and a final value that represents the time that has

passed since the last time the agent dropped pheromones.

Adaptation The feedback schema that drives the Q-learning algorithm was as
follows: a penalty of —1 is given for each executed action (i.e. at each time step
as exactly one action has to be chosen), and +10 for completing a ‘trip’ which is
defined as visiting the home location after having visited the target location at least
once since the previous trip (or since the beginning of the experiment in case of
the first trip). Notice that all actions are equally expensive and if an agent chooses
a structuring action, in can be considered to do so instead of a movement. This

makes the structuring actions ‘task-external’ in the terminology of Kirsh (1996).
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According to C&S (2004),

The best way to envisage this is to think of an action that a creature
might do which inadvertently modifies its environment in some way.
Examples include standing in one spot and perspiring, or urinating,
or rubbing up against a tree. These are all actions which modify the
environment in ways that might have some future effect, but do not

provide any sort of immediate reward for the agent. (p. 3)

Experimental results

C&S (2004, 2007) report that the agents in the experiment as described above
learn to improve their performance by enhancing the environment through envi-
ronment structuring. A comparison to an alternate condition of the experiment
with identical configuration except for the absence of structuring actions (drop
pheromones) showed that the agents were still able to improve their performance
slightly over time but not as much as in the condition with structuring. Unfortu-
nately, C&S did not investigate whether a significant effect of the ability to use
structure actions was present. However they did do a comparative behavior anal-
ysis which showed that agents with structure generation spend 58% of their time
generating structures (and therefore over half of their time not moving). Agents
without structure generation showed a higher fraction of random movement to
directed movement than agents with structure generation.

With their experiment, C&S (2004, 2007) have shown that reactive agents (i.e.
non-symbolic, non-planning agents with no internal data storage or recursion) can
learn, during lifetime, to utilize task-external actions to modify their task envi-
ronment and increase its “cognitive congeniality” (Kirsh, 1996). These findings
formed the basis for an extension of their model, which lifts these structuring, yet

still principally reactive agents to a higher cognitive level.

2.1.4 Internal structuring experiment

Chandrasekharan and Stewart’s (2004, 2007) external structuring experiment showed

that agents can learn how to add structures to their external surroundings that
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Figure 2.1:
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(a) Experiment 1: Environment structuring
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(b) Experiment 2: Internal tracing

An overview of the architectures of the experiments of
Chandrasekharan and Stewart (2004, 2007). The first schema shows an agent
with no internal environment, capable of dropping and following pheromones as
used in the first (environment structuring) experiment. The second schema shows
an agent with an internal environment, as used in the second (internal tracing)
experiment. Lines with arrows are connections, a black square indicates the ob-
ject of an action. Triangles are sensors, circles are units, either of the IE neural
network (horizontal stripes) or of the Q-learning mechanism (solid gray).
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shorten paths in their state space and thus lower the burden on their internal re-
sources. In a follow-up of their 2004 paper, C&S (2007) remark:

This within-lifetime learning model raises an interesting question:
can similar within lifetime learning lead to the generation of novel
structures in the agents mind, rather than in the agents environment?
This seems to be both a natural extension of our work on external
structures, and, more importantly, a novel way to model the origin of
internal representations in rudimentary agents within their lifetime.
If an agent can learn this strategy of generating internal structures to
lower tiredness, then it can choose to remember particular things in
particular ways to benefit it in the long term, just as our earlier exper-
iments showed that it was possible to choose to drop pheromones in
useful ways. (p. 338)

The insight that the environment structuring framework could be extended to
make possible a kind of internal structuring set the stage for a new simulation
experiment. The context of the experiment was adopted from the prior simulation
(see previous section), with a few changes made to allow the agent to engage in
internal structuring rather than external structuring. The task again was a foraging
task, that required the agent to move back and forth between a home location and
a target location as often as possible within limited time. The feedback scheme
of a 410 reward for finishing a ‘trip’ and —1 penalties for every action was kept,
and so was the Q-learning based control structure.

A number of things were altered, both in the setup of the experiment and in
the agent’s control structure, as can be seen in Figure 2.1(b). First of all, a single
agent was used instead of multiple agents. As the agents cannot directly sense
each other and in this case there is no indirect sensing or influencing through ex-
ternal structures, it makes no difference how many agents operate simultaneously.
Second, a new sets of input variables and possible actions were introduced. The
pheromone related actions and sensors were taken away. The only external sen-
sors the agents now had were a ‘home detector’ and a ‘target detector’ which read
0 if the agent is not on the specified location, and 1 if it is. Three physical actions

were at the agent’s disposal: moving random, moving into the direction of the
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home location, and moving into the direction of the target location. The latter ac-
tions always and reliably move the agent towards the respective locations. At first
glance this appears to turn the foraging task into one highly trivial, but notice that
the agent’s challenge has shifted radically: it can no longer sense whether it has
visited the target location, as it could in the earlier simulation described above.
It now somehow has to keep track of where it is going, as it cannot rely on any

stimuli to determine its heading.

The internal environment

To enable the agent to determine its heading, C&S (2007) provided the agent
with what they call an internal environment. Formed by a multilayered feedfor-
ward neural network (FFNN), trainable through backpropagation (Rumelhart &
McClelland, 1986), this internal environment provides the agent with a target for
epistemic structuring actions, in that respect replacing the physical environment
of the environment structuring experiment. The FFNN has as many input units as

there are inputs to the Q-learning mechanism, and a single input.

Structuring of the internal environment is defined by C&S as training the
FFNN with the current input state as an input pattern and one of two output ac-
tivations (—1 and +1) as a target. This adds two actions to the action set of the
control mechanism, one for each target output. One execution of the training ac-
tion causes ten successive training cycles to be executed. This means that ten
times in a row, the network gets activated, an error score at the output unit gets
calculated and the weights of the network get adjusted according to this error. The
training actions are considered epistemic structuring actions by Chandrasekharan
and Stewart (2007), in the same sense as tagging physical objects or marking a

path in the environment.

At each time step, the FFNN is activated according to the current input and the
acquired weight setting. Because of the recurrent connection from the output unit
to the input layer of the network, the network has a certain dynamics: activating
the network successively with the same external input can lead to different output

values due to a changing recurrent input value. To deal with this, the network gets
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activated 100 times in a row. * The eventually resulting output activation is used
as an input to the Q-learning algorithm, in addition to the external sensors. As
the entire input array is shared between the FFNN and the control structure, the

FFNN also recursively receives its own output activation as an input value.

Experimental results

To inspect the effectiveness of internal structuring, C&S (2007) compared the per-
formance of agents with internal structuring, as defined above, to that of agents
without any structuring mechanism. They found that the agents with internal
structuring outperform those without, and additionally that this advantage in-
creases somewhat along with the distance between the target and home locations.
Only in the highly simplistic situation where home and target are located directly
next to each other, the ability to form internal epistemic structures decreases per-
formance.

According to the authors, this shows that the same mechanism that allows
agents to learn how to add epistemic structures to the world, can account for the
creation of internal traces of the world, which they argue the resulting internal
structures are. The theoretical consequences of this claim are discussed in the

following section.

2.2 Epistemic structuring and representations

Assuming that the internal structures generated by the agents of the experiments
of C&S (2007) can indeed be considered traces of the world, the question arises
whether these traces are used by the agents to represent the world. To answer
that question, C&S turn to the criteria for ‘minimal robust representationalism’
provided by Clark and Grush (1999): “(i) representations would be inner states
whose adaptive functional role is to stand in for extra-neural states; (ii) the states

with representational roles should be precisely identifiable; (iii) the representa-

4 Although this aspect is not explicitly mentioned or motivated by C&S (2007), it is a feature
of their simulation (Stewart, 2006). It has a clear rationale: after about 100 updates, the output
activation can be expected to have converged unless it oscillates — in which case further updating
makes no sense.
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tions should enhance real-time action” (C&S, 2007, p. 343). According to C&S,
by these criteria it is justified to consider the internal traces proto-representations:
they are inner states that stand in for something specific in the world, and are use-
ful because of their aboutness. “However,” C&S remark, “these internal traces are
not full-bodied representations, (...) because our agents do not use the internal
traces as surrogates to model the world when the actual structures do no exist in
the world.” Two additional reasons for not considering internal traces as “full-
bodied representations” are mentioned: internal traces cannot be fully decoupled
from ongoing environmental input, and the selectiveness of the agents’ represen-
tation of the world, it being “highly constrained by the biological niches within
which the organisms evolved” (p. 343).

Rebuttals to these objections come from C&S themselves, but arguments for
discarding some of the requirements as needlessly strong can be drawn from other
sources (e.g. Clark, 1997). To begin, C&S (2007) put in contrast to the classic
notion of representations as static structures what they call the distributed origin
thesis of representation. This thesis describes the forming of representations as a

result of

an incremental process based on feedback of cognitive load [in which
initially random elements] gradually become systematically stored
and acquire a representational nature. Such an internal representation
is not a single well-defined structure that reflects the world mirror-
like, but a systematic coagulation of contexts and associated actions,
spread over a network. .. Metaphorically, such an internal represen-
tation resembles the core of an active bee swarm, rather than static

symbolic entities, such as words or pictures. (p. 344)

In this model, reference relations between structures internal to the agents and
elements of the environment emerge if they lower cognitive load. In contrast,
traditional systems of representation, whether of symbolic or distributed nature,
typically bear a priori reference relations. Admittedly, such models provide much
more insight into the role and nature of the representations, but, as C&S remark,
fail to explain why representations arise. The importance of the role that repre-

sentation play in a system is stressed by Clark (1997):
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The status of an inner state as a representation (...) depends not so
much on its detailed nature (...) as on the role it plays within the sys-
tem. .. What counts is that it is supposed to carry a certain type of in-
formation and that its role relative to other inner systems and relative
to the production of behavior is precisely to bear such information.
(p. 146)

Subsequently, Clark sketches a continuum of representational possibilities from
“mere causal correlations” to “Haugeland’s creatures that can deploy the inner
codes in the total absence of their target environmental features.” Between these
extremes lies a range of cases Clark terms adaptive hookup. As a very simple
example of such a hookup, a sunflower directing itself towards the sun and light-
seeking robots are mentioned. A level at which speaking of representations starts
to make sense, according to Clark, is reached “when we confront inner states that
(...) exhibit a systematic kind of coordination with a whole space of environmen-
tal contingencies.” (p. 147)

Considering an agent’s representational capacities as a property that can be
defined within a continuum, rather than being an all-or-nothing issue makes sense
from an evolutionary perspective. It seems reasonable to assume that more com-
plex ways of dealing with the dynamics of the world build on the simple ones.
There probably are some important qualitative differences between the systems
at the lower ends of Clark’s continuum and the more complex adaptive hooks
to take into account — for example, turning towards light can be done through
feed-forward processing, while accessing internal models requires some degree
of recursiveness. For the most, however, differences can likely be accounted for
in terms of gradual improvements.

Coming back to epistemic structuring, C&S’s (2007) model of internal traces
seems a strikingly fit candidate for providing adaptive hookup, covering a large
portion of the just described continuum. To recapture, the model is compatible
with a view of representations as internal structures that gradually emerge as a
result of interaction with the environment. Therefore, in the context of agents of a
complexity comparable to that of insects given their task and environment, these
representations will be context-sensitive (i.e. not decoupled from environmental

input) and action-oriented, rather than objective and action-independent (Clark,
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1997). Consequently, internal traces faced by C&S are not in the upper range of
the representational continuum. However, there is no reason to rule out (or, as yet,
to assume) that epistemic structuring, in principle, has the potential of providing
representations of the kind closer to the interpretations of Haugeland (1991) or
Clark and Grush (1999). Further investigations will have to show the extent of

epistemic structuring.

2.2.1 Presentations versus representations

Before commencing such investigations, a final distinction has to be introduced.
Grush (1997) clears up some of the fog traditionally surrounding the topic of
representations by making quite a clean cut between representations and what he

terms presentations:

...what distinguishes presentations from representations is the use
they are put to. A presentation is used to provide information about
some other, probably external in some sense, state of affairs. It can
be used in this way because the presentation is typically causally or
informationally linked to the target in some way. The representation’s

use is quite different: it is used as a counterfactual presentation. (p. 5)

To put it shortly: presentations are about the actual perceived state of affairs, while
representations can be used to stand in for things not available to the senses.

As indicated by the final sentence of the above quotation, a hierarchical re-
lation can be outlined: representations are like presentations, but do not depend
on the environmental state. Additionally, and departing somewhat from Grush’s
elaborations, presentations should be distinguished from mere sensations. Con-
sider a Braitenberg vehicle. Few would oppose to attributing sensory abilities to
such a vehicle. However, there appears to be quite a difference between its di-
rect sensor-motor coupling and what goes on inside a creature that might follow a
strict ‘out of sight is out of mind’ schema, but however does seems to have some
degree of understanding of what it perceives. Take for example a dog recognizing
its owner out of a group of people. Assuming Molly does not think of her loving

owner when he is not around, but does recognize him from a broad range of view-
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points, and regardless of the cloths he his wearing today?, her behavior is neither
fully reactive, nor the result of representational processing. The internal state that
does cause her specific reaction, a state an external observer would label OWNER,
should be considered an internal presentation.

Representations are like presentations, and can guide behavior in a similar
way, yet are counterfactual with respect to the state of the world from an agent’s
perspective. To apply this to the dog’s presentation OWNER and a potential repre-
sentation of this owner: the latter can be used to miss him — rather than just long
for the sound of him opening a can, or simply his smell — or imagine what he
might be doing while he is not around. This distinction will be used in the follow-
ing chapters to incrementally examine the representational nature of the internal
traces resulting from epistemic structuring. In a first experiment (Chapter 3, it will
be investigated whether an internal environment can establish internal representa-
tions. The next step (Chapter 4) is to apply the model in a situations that require

the use of representations, or counterfactual presentations.

>and not by his smell either, for the sake of simplicity
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Chapter 3

A reversal learning experiment

3.1 Introduction

Chandrasekharan and Stewart (2007) argue that their model of internal epistemic
structure (for a description, see Chapter 2) allows an agent to engage in repre-
sentational processing. Although the internal traces that underlie this processing
are described carefully as proto-representations — as opposed to complete, context
independent substitutes of the world that representations often are taken to be — it
is quite a bold statement to make and thus demands substantial empirical backing.
In this chapter and the one following it, two experiments will be presented as an

attempt to provide evidence for the claims of C&S.

In the experiment described in this chapter, a reversal learning (RL) experi-
ment was simulated with agents of variously configured internal environments as
subjects. The goal of the experiment was to discover whether agents, in a clear,
neither embodied nor embedded setting, can learn to make use of their internal en-
vironment to improve their performance on the task. If more substantial internal
environments would lead to increased performance, this would, due to the nature
of the RL task, provide evidence for the agents’ ability to actively form internal
presentations Besides a performance analysis, detailed inspection of the agents’
behavior and internal dynamics may provide additional insight into the workings

of the internal environment and whether it affords (re)presentational processing.
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3.1.1 Reversal learning

RL is an experimental paradigm that has been used to investigate conceptual-
ization' in animals (Hurford, 2007). The paradigm requires a subject to choose
between two stimuli, from separate classes, one of which leads the subject to be
rewarded, while the other does not. The subject has to learn this relation, starting
out with no knowledge about which stimulus should be associated with a reward.
The essential aspect of the paradigm is that after a number of trials, or after a pre-
determined level of success has been achieved, the stimulus-reward relation gets
reversed. So, after this reversal, the stimulus previously associated with a reward
leads to no reward and vice versa. To keep being rewarded after the reversal, the
subject will have to somehow unlearn the relation it just mastered and teach itself
the opposite pattern.

Reversal learning and internal presentation

How can a reversal learning experiment show whether a subject has internal pre-
sentations rather than a fully reactive mode underlying its behavior? Recall from
Section 2.2.1 that internal presentations, at least as interpreted here, are internal
states that arise from, but go beyond sensory input. Fully reactive systems have a
direct mapping between sensory input and output. The state of this mapping do
not constitute internal presentations; for an internal state to be considered an inter-
nal presentation, it has to be a potential object of manipulation itself. This notion
can be illustrated as follows: a vehicle wired, Braitenberg style, to be attracted by
light sources has no internal presentation of the light source it is moving towards.
In contrast, a human instructed to approach a lamp turned on at the other side of
the room will be guided by the perception of the lamp, not by the sensation of the
light it emits. The presentation itself might be based mainly on this sensation, but
it seems at least awkward to skip the intermediate level of internal presentation.
An important advantage of internal presentations is that they allow for gener-

alization over sensory states. Learning to recognize, say, chairs, essentially comes

"Hurford (2007) uses the term concept rather loosely, it seemingly covering both what we have
called presentations and representations. The RL experiment however appears to require little
representation in the sense used here.
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down to defining one’s internal presentation (at an abstract level) of a chair. Once
properly defined, one perceives a ‘chair’ rather than ‘an arrangement of horizontal
and vertical surfaces supported by four rather thin columns’. If one then encoun-
ters some hard to identify object, and subsequently is informed that it is actually
some new kind of chair (hooray for modern design!), one can somehow retune the
mechanism that delivers the presentation CHAIR. A creature without the ability
to form internal presentations can of course learn for all kinds of objects that they
afford sitting, but will lack a general notion that unifies the set. It would for exam-
ple be rather hard to explain to this creature the game of ‘musical chairs’? unless
perhaps all chairs are of exactly the same type.

This should also make clear the relation between reversal learning and internal
presentations: agents capable of forming and using presentations are capable of
applying an internal reversion to an entire class of sensory states through an op-
eration on their presentation, rather than having to completely rewire their input-
output mapping. This difference, as pointed out by Hurford (2007, p. 25), can be
framed, in the terminology of Deacon (1997), as learning an indexical connection
(one in each condition) versus learning a symbolic connection to a ‘previously ac-
quired inner representation’. Negating one’s internal presentation is symbolic in
the sense that an operation (or ‘computation’) is executed on an entity, specifically
negation on a presentation. This could be expressed in a symbolic fashion, for ex-
ample: STIMULUS S — REWARD becomes STIMULUS S — NOT(REWARD).

3.2 The model

The model, viz. the agents’ control structure including internal environment, is an
extension of that of the original internal structuring model (C&S, 2007), described
in Chapter 2, and depicted schematically in Figure 2.1(b). An overview of the
extended model is given in Figure 3.1 on page 28. Like the model of C&S, it
consists of two modules: a Q-learning control structure (CS), and a feed forward
neural network that functions as the internal environment (IE).

The CS is based on the QCON platform (Kapusta, 2008), a connectionst im-

2Stoelendans
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Figure 3.1: A schematic overview of the internal structuring (IS) model as used in both the reversal learning experiment
(Chapter 3) and the multi agent simulation (Chapter 4). The model is based on the one used by Chandrasekharan and Stewart
(2007). This figure shows inputs and actions for the reversal learning experiment. Lines with arrows are connections, a black
square indicates the object of an action. Triangles are sensors, circles are units, either of the IE neural network (horizontal
stripes) or of the Q-learning mechanism (solid gray).
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plementation of the Q-learning algorithm (see Section 2.1.2). Sensory values are
fed into its input layer, which directs connectly to an output layer with one unit
per possible action. The input pattern is a combination of values from the exter-
nal sensors, which in the reversal learning experiment reflect the current stimulus,
and values coming from the IE. The actions can also be grouped in two categories:
external and internal actions. In this case, there are two external actions that cor-
respond to the two possible responses in the reversal learning task (which will be
explained below). The internal actions cause a restructuring of the network by
means of backpropagation, as is the case in the original model. However, the ex-
tension differs to the extent that the IE can have multiple output units — and thus,
multiple pairs of training actions: per IE output, one that targets it to +1, and one
that targets it to —1. The IE poses no difference from the IE of the original model,
other than the number of output units of its network being variable. It takes the
same input pattern as the CS and propagates its real-valued output activations to

this same, shared input array.

The dynamics of the entire system (i.e. information flow, learning of the Q-
function, action selection, training of the IE) are as described in Chapter 2, so
I will not cover all of that here. One aspect that is different from the model of
Chandrasekharan and Stewart (2007) and needs some explanation is the training
of the network with respect to the variable number of outputs in the IE. For every
IE output there are two training actions available to the CS: one that sets a positive
target value and one that sets a negative value. Upon execution of one of these
actions, the network gets trained through standard backpropagation (Rumelhart &
McClelland, 1986) with the current input state as an input pattern and ignoring the
activations of the output units not corresponding to the selected action. That is,
all errors at the output layer are considered to be 0, except for the unit associated
with the action chosen by the CS.

In the experiment, the agents are subjected to two simple stimuli consisting
of three boolean (either —1 or +1) values each. They can externally respond to
these stimuli through two respond actions. Except for these and additional training
actions, there are no actions to chose from. Details about the agents’ perception

and action are given below.
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3.3 Experiment

3.3.1 Agents

The subjects in this experiment are simulated agents, instantiations of the above
described model. The experiment was run with a range of agent configurations.
Each configuration is defined by the number of hidden units (0,1,2,3,6 or 12)
and the number of output units (0,1,2,3,6 or 12) in the network of its IE. Agents
with no output units effectively have no IE, as there are no input units to the Q-
learning that come from the IE, nor are there any training units. Agents with no
hidden units, but with one or more output units do have an internal environment,
although it is irresponsive as there is no coupling between its input layer and its
output layer. However, the number of actions and inputs to the control structure
is dependent on the number of outputs of the IE. These conditions were included
because it cannot be ruled out on forehand that these dimensions have an effect on
an agent’s performance.

The Q-learning based control structure was equally configured for all types of
agents: & = 0.2, y=0.3, 1A =0.3 and € = .1. The learning parameter of the neural
network of the IE was set fixed to 1 = .2, and no momentum (see Rumelhart &
McClelland, 1986) was used. These values were chosen such that an agent of
either type is capable of learning the first (pre-reversal) round of trials effectively.

The neural network of the Q-learning control structure was a feed forward
neural network with no hidden layer. This means that it has one matrix of weights:

those between the input values and the action units (see Section 2.1.2).

3.3.2 Procedure

A run of the experiment consists of four consecutive rounds, each of which con-
tains 10,000 trials. During a trial two five bit stimuli are presented to the agent
as a ten bit input vector. The two stimuli are selected randomly, one out of each
of two exclusive stimulus sets, which can be seen in Figure 3.2. The two selected
stimuli are concatenated in random order; either the five bits of the stimulus out
of the first set are shown before those of the stimulus out of the second set or the
other way around. The entire string of 10 bits is fed to the agent (both IE and CS),
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Figure 3.2: The two stimulus sets of the reversal learning experiment.

with — stimulus bits as an input value of —1, and + stimulus bits as +1. As an
example, a selection of the stimuli from the bottom row of the respective sets will
thus lead to an external inputof [+1 —1 —1 —1 +1 +1 —1 +1 —1 +1].

There are two external actions, which can be thought of as buttons correspond-
ing to the respective stimuli. If an agent selects the first action, it chooses the first
stimulus, gets feedback, and moves on to the next trial. The second action simi-

larly corresponds with the selection of the second stimulus.

The feedback may be a reward, in which case a score of 4-10 is given to the
Q-learning algorithm, or it can be a penalty, which is given through a negative
feedback score of —10. For each executed response or training action, a feedback
score of —1 is given to the agent, thus introducing a form of effort penalty as not
to make internal structuring a ‘free’ operation, leading to ‘chicken’ behavior and
getting stuck in local optima. The execution of a training action does not end the

present trial.

As an example, the course of a trial could be as follows: stimuli are presented
in the order [SET 2 SET 1] — that is, the first five inputs are taken from a random
stimulus from set number two, and the remaining from the set number one. As-
sume that in this round, stimulus set 1 is associated with the reward. The agent
might first select a training action, leading to backpropagation of the network of
the IE with the output unit corresponding to the selected action targeted to the
value associated with the action, either —1 or +1. The Q-learning mechanism
receives a feedback of —1 for the execution of an action. Then the agent might
select one or more training actions, and eventually choose to execute one of the re-
sponse actions. If it selects response action A, it will receive an negative feedback
of —1+ —10 = —11 for having selected an action and responding to the stimulus

not associated with the reward. On the other hand, selecting response action B
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will lead to receiving a feedback of —1 410 = 49, as positive feedback is given
for selecting the action associated with the reward. During the trial, the agent’s
external input remains equal. After it has executed a response action, a new trial
is begun and thus new stimuli are selected and presented until the end of the trial.

At the end of a round (i.e. after each 10,000 trials), the stimulus-feedback
relation is reversed, so that the stimulus leading to positive feedback in the one
round, leads to negative feedback in the following round and vice versa. Each
run consists of four such rounds, resulting in a total of 40,000 trials per run. At
the beginning of each run, the agent has a randomly initialized control structure
and internal structuring mechanism, so an agent’s learned associations do not get
passed from one run to the next.

The scores of all agents were recorded as a vector of binary values, one for
each trial, where a O represents an incorrect response and a 1 represents a correct
response. When averaging over the score vectors of all runs within a condition, a
vector of average performance results from which slopes over specified domains

can be calculated. So, for an agent a there is a score vector:

Sa,r = [Sa,r,l cee Sa,r,T] (3.1)

for each run r, consisting of 7" = 40,000 trials.

The experiment was run a hundred times for each condition. Thus, 100 ob-
servations were obtained for each combination of Outputs € {0,1,2,3,6,12} and
Hiddens € {0,1,2,3,6,12}.

3.4 Results

The effect of the number of hidden and output units on reversal learning perfor-
mance was assessed by means of an analysis of variance (ANOVA). The numbers
of hidden and output units served as between-subject factors: Hiddens (six lev-
els: 0,1,2,3,6,12) and Outputs (0,1,2,3,6,12). Separate analyses were carried out
for each of the four rounds of the experiment. The results are depicted in Fig-
ure 3.3. These graphs clearly suggest different effects between the rounds. In

the first round (Figure 3.3(a)), all conditions show roughly equal, high levels of
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performance, which indicates that all conditions are fit to learn a sound stimulus-
response pattern. In the following rounds, effects of the numbers of hidden and
output units are visible in the graphs. The second and fourth rounds shows a gen-
eral pattern of a rise in performance along with both the number of hidden units
and the number of output units. The effects in the third round seem a bit less
straightforward — the overall pattern shows a decrease with the number of hidden
units, but in the higher levels of Outputs, this pattern starts to break down. After
an overview of the results of the statistical analysis, these results will be examined

more closely and conclusions will be drawn.

3.4.1 ANOVA results

For the first round, a significant main effect of Outputs was found (F(5,3564) =
84362, p < .001, 771% =.992)3, but not of Hiddens (F(5,3564) = 322.7, p =
.140). A significant, but very weak interaction effect Hiddens x Outputs was
with F(25,3564) = 377.1, p = .003 and nl% = .013. To further investigate the
effect of Outputs, pairwise comparisons with Bonferroni correction were carried
out, which showed that the scores for each level of Outputs were significantly
lower (all p < .001) than the scores of higher levels.

Analysis of the second round yielded significant main effects of both Out-
puts (F(5,3564) = 1314, p < .001, n!% = .648) and Hiddens (F(5,3564) = 771.2,
p < .001, 11[% =.520) as well as a significant Hiddens x Outputs interaction effect
(F(25,3564) =92.392, p < .001, nI% = .393). Pairwise comparisons (Bonferroni
corrected) showed that for all levels of Outputs, scores at lower levels were sig-
nificantly lower (all p < .001) than scores at higher levels. The same relation
was found for Hiddens: agents with fewer hidden units gained significantly lower
scores (all p < .001). In Figure 3.3(b), the interaction effect can be seen clearly:
agents with no output units or no hidden units perform equally well at each level of
respectively Hiddens and Outputs, whereas agents with one or more output units
show an increase of performance along with the increase of the number of hidden
units. Additional ANOVA’s over this round with one of both factors fixed at 0

31][% denotes partial eta squared, a measure of effect size, and is not related to the earlier
mentioned neural network parameter 1.
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and the other as the only independent variable confirmed this. Within the group
of 0 output units, no significant effect of Hiddens was found (F(5,594) = .470,
p =.799). Within the group of 0 hidden units, no significant effect of Outputs was
found (F(5,594) = 1.347, p = .243).

In the third round, significant effects of Outputs (F(5,3564) = 16.036, p <
.001, n3 = .022), Hiddens (F(5,3564) = 43.816, p < .001, > = .058) and Hid-
dens x Output (F(25,3564) =5.957, p < .001, nﬁ =.040) were found, too. How-
ever, Bonferroni corrected pairwise comparisons showed a more complex pattern
than in the preceding rounds. To start with Outputs, 0 outputs yields significantly
higher scores than 2,3,6 and 12 outputs (all p < .001). Agents with 1 output
perform better than agents with 2 (p = .039), 3 or 6 outputs (both p < .001). Con-
figurations with 2 outputs perform better than 6 outputs (p = .048), and 6 outputs
yield lesser scores than 12 outputs (p = .025). The general pattern is that agents
with fewer output units perform better than or equal to agents with more output
units, with the exception of 6 outputs, which performs worse than 12. For Hid-
dens, 0 performs better than 2, 3, 6 and 12 hidden units (all p < .001); 1 has
higher scores than 3, 6 and 12 (all p < .001); 2 performs better than 6 (p = .035)
and 12 (p < .001); and 6 performs better than 12 (p < .001). The interaction ef-
fect is quite clear from Figure 3.3(c). Again, no outputs shows no difference over
Hiddens, in contrast to 2, 3, 6 or 12 outputs. The former three of those show a

monotonic decrease over Hiddens, whereas the latter has its depth in the middle.

Round four, finally, shows results rather similar to those of the second round.
Main effects of Outputs (F(5,3564) = 390.9, p < .001, n[% = .354), Hiddens
(F(5,3564) = 245.6, p < .001, ng = .256) and a significant interaction effect
Hiddens x Output (F(25,3564) = 24.30, p < .001, 771% = .146) were found. Pair-
wise comparisons (Bonferroni corrected) showed that on Outputs, lower levels
yielded scores lower than those of higher levels (all p < .001). For hiddens, the
same effect was found (all p < .001) except for levels 1 and 2, between which
no significant difference was found (p = 1.00). The interaction effect, again, can
be explained by the apparent absence (see Figure 3.3(d) of an effect of Hiddens
within the O outputs group, in contrast to an increase in performance along with

the number of hidden units in the other output groups.
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3.5 Conclusions

The main conclusion that can be drawn, is that the number of hidden and output
units in an agent’s IE have an effect on the agent’s ability to adapt to stimulus-
reward relation reversals. However, the specifics of these effects differ strongly
between rounds.

The first round appears to be a special case, in which performance is relatively
high for all configurations. The significant increase of performance along with the
number of units can be explained as an artifact caused by the exploration behavior
of the Q-learning algorithm. As explained in Section 2.1.1, for values of € > 0,
the algorithm selects a random action rather than the action associated with the
highest Q-value in a percentage of the time steps. Assuming an optimal stimulus-
response association, the chance of selecting the correct response action at a given

time is given by
E

2+2x
where x is the number of output units. With € = .1, as it was set in the experiment,
this amounts to average scores of .950, .967, .975, .980, .993, and .996 for O, 1,
2, 3, 6 and 12 output units respectively, which corresponds well with the actually
obtained scores of respectively 9497, 9735, 9818, 9861, 9918, and 9951 over
10,000 cycles.

The results of the second round are arguably most important, as they reflect

p=1 (3.2)

the agents’ ability to adapt to a reversal. Since the performances in the first round
were highly similar, the role of any potential bias effect can be considered negli-
gible. In other words: differences in performance in the second round are most
likely to be caused by how associations are learned and stored, not which asso-
ciations are stored to what extent. As expected, the number of hidden units does
not make a difference if there are no output units. The same goes vice versa:
the configurations with no hidden units show equal performance over all levels of
Output. Among the other configurations, the performance improves along with
both Outputs and Hiddens. This suggests that more a efficient adaptation to the
first reversal is achieved by agents with more units in their IE.

The third round shows an opposite pattern in terms of performance when com-

pared to the second round: the configurations with no hidden units or no output
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Figure 3.4: Scatter plots of the scores of the second (horizontal axes) and third
rounds of the reversal learning experiment. Each plot shows a different level of
Output. Levels of Hiddens are represented by brightness.

units perform best, while, with exception of Output level 12, additional units lead
to decreased performance. Figure 3.4 shows an overall negative correlation be-
tween the scores on round two and round three. This can best be explained as a
carry-over effect from the second round: agents that did not manage to learn the
new relation in the second round, profit in the third as the not-yet unlearned rela-
tion of round one becomes correct again. However, agents with sufficient hidden
and output units manage to maintain reasonable scores, with differences among

configurations being much smaller than in the second round.

In the fourth round, the pattern of round two is restored globally. This confirms
the robustness of configurations with substantial internal environments, in contrast
to the inability to deal efficiently with reversal of agents without a substantial

internal environment.
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3.6 Further analyses

The above results show internal environments help agents to deal with stimulus-
reward relation reversals, and therefore give us evidence for presentational abil-
ities provided by internal environments. However, it does not tell us how such
abilities may be provided. Insight in what actually happens during processing,
and understanding the role of the internal environment in this issue is essential
for a judgement of any value. There are two approaches to gaining such insight.
First, the behavior of an agent can be analyzed. In our framework, behavior can
be taken to include both external actions (the two response actions) and internal
actions (IE training). A second approach is to analyze the internal dynamics of

the agents. I will take both approaches and cover them respectively.

3.6.1 Behavior analysis

Figures 3.5 and 3.6 describe the behavior of agents with different IE configura-
tions. The first of the two figures shows averaged action plots for agents with 6
output units and respectively 0 and 6 units* in their IE.> The action plots show
how often each of the actions at the disposal of the agent’s control structure is
selected per trial over a certain timespan. As expected, all agents select the two
response actions about equally often most of the time. Overall, the training actions
are executed less often than the response actions in all configurations. The first
‘bump’ in the selection ratio of the training action takes place some time after the
first reversal. It is followed closely by a temporary bias towards one of the training
actions (resulting in characteristic ‘slits’ in the plot). When comparing the plots
of the different agents, the most salient difference is the timing of this pattern: the
more hidden units, the sooner after the first reversal it starts to emerge.

When considering the performance of the agents, which is plotted for agents
of the same configurations in Figure 3.6, a correspondence with the action plots

appears. After the first reversal (at 10,000 trials), the agents with multiple hidden

4 Additional plots of agents of different configurations are printed in Appendix A, pp. 92-93.

>The agent with no hidden units has no functional internal environment, i.e. it has no input-
output mapping and can not effectively be structured. In these analyses, it plays the role of agent
with no internal structuring. It has been shown (see Section 3.4) to have a performance equal to
configurations with no hidden units in the IE, including the configuration with no output units.
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units, on average, regain a sound response pattern much quicker than the agent
with no effective IE. In the following round, trials 20,000 — 30,000, the agent with
no effective IE recovers fairly quickly, a sign that it has not completely unlearned
its first association. The agent with 12 hidden units shows a similar performance
in this round. Notice that these plots show averages over ten runs per condition.
The fact that, in this figure, agents with IE’s with more hidden units show a more
gradual performance increase over the course of a round, can be considered an
artifact of this averaging. When inspecting individual runs, it becomes clear that
all conditions show similar slopes. However, considering the extremes, all agents
with no IE hidden units display the switch at approximately the same point in
time; the onsets of the slopes of agents with 12 IE’s are distributed over a wider
range within the round.

These findings are consistent with the statistical analysis of Section 3.4: agents
with no functional IE perform well in the first and third rounds, but not in the
second. Agents with sufficient amounts of hidden and output units perform well in
all rounds. The behavior analysis makes clear that this performance is a function
of the time it takes an agent to adapt to the new stimulus-reward relation. The
action plots of Figure 3.5 suggest that this adaptation is related to interaction with
the internal environment. To investigate this relation, we need to look into the

internal dynamics of the system.

3.6.2 Internal dynamics analysis

Two elements, and their interaction, determine the internal dynamics of the agent:
the neural network of the 1IE and the control structure’s Q-function, implemented
as a neural network as well.

Unfortunately, neural networks are notoriously hard to interpret. The informa-
tion they carry is distributed across the entire set of units and tracking the effect
of local activation on global behavior is not trivial. Somewhat easier to interpret
than the actual information encoded by these networks, are the dynamics of their
processing. There are two related aspects of the networks that can be inspected
as a function of time: the weight settings and the activation levels of individual

units. The weight settings define the mapping of input values to output activa-
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tions. In the case of the Q-learning network, these output activations determine
action selection; the output values of the internal environment serve as input to
the Q-learning network. The activation levels at a given time are a function of
the input state and the weight settings at that time. Therefore, the weight setting
can be thought of as relatively stable information carried by the agent that forms
the basis of the agent’s behavioral pattern, while the activation levels reflect its
computational state with respect to this information, a more fluid dimension un-
derlying behavior. I will discuss the dynamics of both aspects subsequently in the

following sections.

Weight settings

Weights of the Q-learning network The weights of the Q-learning network
constitute the mapping from external (sensory) and internal (from the internal
environment) input states (a vector s) to goodness values for all actions (a vector
a). These weights are trained on basis of feedback, as described in Section 2.1.2.
There is no hidden layer in this network, which means that there is one [s| x
|a| matrix W, of which value W; ; represents the amount of (either positive or
negative) influence that input state element s; has on the goodness of action a;.
These values, and even more so the development of which, can tell us a lot
about the processing that underlies an agent’s behavior. Compare the two plots®
of Figure 3.7 on page 43. These plots show, for each configuration, the average
squared weights (ASW) of two subsets of the weight setting of the Q-learning
network over time. The values are obtained as ASW (W, ), at each timestep ¢, for

four subsets S of the weight setting.

1
ASW (W, 5)=—Y Y W,g 2 (3.3)
mn =y '
All configurations develop increasingly stronger weights from the stimulus in-
puts (i.e. the first ten inputs, thinner lines) to all output units. However, the path
by which this rising can be described differs strikingly between agents without

an effective IE (Figure 3.7(a)) and those with multiple hidden and output units

6 Additional plots of agents with different configurations are printed in Appendix A, pp. 94-95.
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Figure 3.7: The developments of the weight settings of the Q-learning networks
of agents in the reversal learning experiment. The plots show the ASW of four
subsets of the weight matrix: (1) weights from the stimulus inputs (SI) to the
response actions (RA), (2) weights from the SI to the training actions (TA), (3)
weights from the inputs that take the IE output values as their activations (IEI)
to RA, and (4) weights from IEI to TA. Averaged over ten runs of each of the

configurations.
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(Figure 3.7(b)). The condition with no hidden units in the IE shows nearly sym-
metrical ‘arcs’, that span successive rounds, representing the weights from the
stimulus inputs to the response actions. The lowest point after a reversal, clearly
visible in the plot at about 17,500 cycles, marks the beginning of re-adaptation.
The conditions with more hidden units show an increasingly early interruption of
this apparently natural path of the weight settings. In the plots, this results in
the line getting ‘kicked up’ repeatedly, preventing it from dropping in each round.
This kicking up has to be causally related to the IE, as the only parameter being
varied is its number of hidden units. It also structurally coincides with peaks in
the weights coming from the recursive IE inputs (the thick line). Therefore, it
seems plausible to interpret this pattern as either the IE, or the joint system of IE
and control structure, interferring with the adaptation process of the Q-learning

mechanism.

Weights of the internal environment network Figure 3.8 (page 45) shows
plots of the weight development in the IE of agents with respectively 1 and 6
hidden units in the IE.” Each subfigure shows plots of three subsets of the weight
settings of the IE network: the weights from the stimulus inputs to the hidden
layer, the weights from the input units that take their values from the output layer
of the IE (called ‘IE’ in the legend) to the hidden units, and the weights from the
hidden layer to the output units. The values that are shown are average squared
weights, so the fact that the networks of these configurations do not have equal
numbers of units should be taken into account. Absolute comparison between the
conditions is of little value; a better approach is to consider the weights settings
of the three subsets relative to each other.

To start with the first graph, which represents an agent with only one unit in
the hidden layer of the IE network, the weights coming from the IE input units are
rather high in comparison to the other weights, and grow over time. The weights
from the stimulus grow too, but stay relatively low. The weights from the hidden

layer to the output layer remain at a level of about 1, which is not surprising for

"In contrast to previous comparisons, an agent with no hidden units in its IE is not analyzed
here, as its weight setting would be defined by empty matrices. Additional plots of agents with
different configurations are printed in Appendix A, pp. 96-97.
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a network with a hidden layer of one unit, which leaves little room for further
processing.

The other configurations show much lower average weight levels between the
IE inputs and the hidden layer, and therefore weaker contrasts with the other
weights. The weights from the stimulus to the hidden layer show a weak de-
crease as the number of hidden units increases, while the weights to the hidden
layer develop a rising pattern, especially in the agents with 12 hidden units. In-
specting the fluctuations that can be seen with respect to the global trend of rising
that is present in all weight groups, again a pattern of earlier response in agents
with more substantial IE’s can be discerned. A final remark that can be made is
that the weight adaptation of the agents with more hidden units in their IE are

more smooth, i.e. there are less sudden rises or strong fluctuations.

Activations patterns

A reflection of the processing in an agent carrying out the reversal learning exper-
iment can be found in the activation levels of the units in the networks. In every
trial, a random pattern out of a randomly selected pattern set is presented. As the
task of the experiment is to respond according to the set (or class) of the pattern,
a well-performing agent should display correlations between the set (labeled —1
and +1 respectively) and activation patterns. Calculating cross-correlations of
stimulus class and the activation level of a units of the neural networks gives an
impression of how a unit responds to the current and past presentations of patterns
from the respective sets. Cross-correlations can be plotted, typically showing a
range of lags on the horizontal axis, running from negative lags to positive lags.
These lags represent a time difference. The value on the vertical axis represent
the correlation between the two vectors that are compared, the one vector being
shifted in time by the given lag with respect to the other.

Activations in the Q-learning network Such cross-correlations plots are shown
in Figures 3.9 and 3.10 (pages 47 and 48) for the Q-learning networks of agents
with 6 output units and respectively 0 and 6 hidden units in their IE. Both figures

show four subfigures, representing subsequent stages of the second round of the
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Figure 3.10:
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The cross-correlations of class and activation level of the units of the Q-learning network of an agent with 6
hidden units and 6 outputs. Not all training action units are shown; a complete overview can be seen in Appendix A, p. 100.



3.6. FURTHER ANALYSES 49

reversal learning experiment: respectively the first, second and third sequences of
3,000 trials and the final 1,000 trials of that round. In the first 3,000 trials (Figures
(a)), both configurations have strong correlations between class and activation in
units 1 & 2 at the time of presentation. This correlation still corresponds to the
correct association of the previous rounds, and thus leads to incorrect responses.

In the following plots (Figures (b) to (d)), the process of adaptation to the re-
versal can be seen occurring. Eventually, (Figures (d)) both configurations show
strong correlations in units 1 & 2 opposite to those at the beginning of the round.
In the intermediate plots however, it can be seen that the agent with hidden units
starts readapting its associations sooner than the agent without hidden units. In
accordance with the above described behavior analysis, the latter reaches a stable
and sufficient weight setting after about 16,000 cycles, while the former is much
faster to adapt. These findings are in accordance with the performance compar-
isons, as depicted in Figure 3.6.

The insight that this activation pattern analysis gives us so far, is that agents,
whether equipped with a substantial internal environment or not, eventually ob-
tain a direct mapping from input to response actions. However, agents with an
effective internal environment manage to adapt this mapping much quicker than
those without one. Since the structure of the Q-learning network is identical for
all compared agents (due to an equal number of IE outputs), the cause for this
difference must be sought in the internal environment itself. Therefore, a final

subject of inspection is the activation pattern of the internal environment.

Activations in the IE network Figure 3.11 (page 50) shows cross-correlations
of stimulus class and activation levels for the internal environment of an agent
with 6 hidden units and 6 outputs. The first six units that are shown are the units
of the hidden layer, the remaining units constitute the output layer. Otherwise, it
can be read just like the cross-correlation plots of the Q-learning network. The
most notable aspect is that most units keep the direction of their association (i.e.
their class-activation correlation does not inverse). In other words, the activation
pattern with respect to the class of the presented stimulus is relatively stable. This
relative stability might indicate a more robust storing of information. The con-

tainment of a facility for keeping information over longer periods of time, and,
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Figure 3.11: The cross-correlations of class and activation level of the units of the internal environment network of an agent
with 6 hidden units and 6 outputs.
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to at least some degree, in a fashion invariant to the current perceptual state is a
feature one would expect from a system capable of forming, keeping and using
representation. However, from the present analysis it is not possible to conclude

that the internal environment in fact provides or contributes to such a facility.

3.7 Discussion

From statistical analysis of the performance of agents with varying configurations,
it can be concluded that an effect of the number of hidden and output units of the
IE exists. This can be considered evidence for the role of the IE as a mechanism
for maintaining internal presentations. What aspects of processing underlie the
effect was examined by means of a qualitative analysis of the behavior and internal
dynamics of these agents. A general pattern that can be discerned is that agents
with more hidden and output units in their internal environment, manage to adapt
faster to the reversal of stimulus-reward relations. Quicker adaptations can be
seen at the behavior (selected actions, Figure 3.5) and control (the Q-learning and
IE networks, Figures 3.7 to 3.11) levels. This adaptation appears to emerge as a
result of processing of the IE and interaction between the two modules. Possible
implications of these findings for the issue of representation in the context of this

model and in an broader sense will be discussed in Chapter 5.



52

CHAPTER 3. REVERSAL LEARNING EXPERIMENT




Chapter 4

A situated agent simulation

experiment

4.1 Introduction

The results of the reversal learning (RL) experiment imply that an agent supplied
with an internal environment can improve its performance on a task by forming
presentations. These presentations however, are not necessarily the same things as
representations. Recall that the agents in the RL experiment were always perceiv-
ing all that there was to perceive. This renders unnecessary the need for internal
representations — inner states, standing in for extra-neural states from which they
are decoupled. The agent’s processing, involving internal presentation or not,

could in principle be entirely stimulus-driven.

To test the epistemic structuring framework’s capabilities beyond presentation-
forming, the second experiment simulates agents that are truly embodied and em-
bedded and have to carry out a more natural task that poses representational de-
mands. This simulation is based on the epistemic structuring (ES) simulations of
C&S (Chandrasekharan & Stewart, 2004, 2007), described in Chapter 2. Whereas
C&S separately investigate environment structuring (the first experiment) and in-
ternal structuring (the second), the present simulation combines both, by provid-
ing the agents with pheromone dropping as well as internal environment training

actions. This makes the simulation more natural, as there are no ‘magic’ sensors
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that tell an agent where it has been or non-egocentric actions that simply guide an
agent to a location. It also puts to the test the aptness of a single mechanism for
internal and external epistemic structuring, which C&S (2007) claim — but do not

back up empirically:

The model provides a unified account of the generation of external as
well as internal structures, as the internal structures are stored using
the same process as the external structures (...) Given [the] same
underlying mechanism, the agent can transform the world or itself,

depending on task and resource conditions. (p.343)

The aim of the present experiment is to validate this claim by testing the effect
of a task’s representational demands on the parameters of the architecture here

hypothesized to be involved with representational processing.

4.2 The simulation

The experiments were carried out in a tailored simulator based on the Q-CON
platform (Kapusta, 2008), in which most of the features of the simulators (Stewart,
2006) used by C&S (2004, 2007) were reimplemented. The simulator presents a

grid-world environment, and a number of agents in it.

4.2.1 Environment

In contrast to the RL experiment (Chapter 3), the simulation of this experiment
has an embodied, embedded multi-agent context. This means that multiple agents
simultaneously move about in an environment which they can never sense en-
tirely and act in but only locally (they have a variable location and limited action
radius). Figure 4.1 shows visualizations of the environment with different num-
bers of targets and (Figure 4.1(d)) with agents in it. The environment consists of
a 18 x 18 grid. Although presented as a flat plane, the environment is actually is
shaped like a torus: every cell is surrounded by eight neighboring cells. Those

cells that appear on the edges of the plane connect, on that side, to the cells on
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the opposite edges, such that agents that move over the edge reappear on the other
side. Pheromone spreading is not bounded by the edges of the plane either.
Locations of interest are a ‘home’ location and at least one target location — in
contrast to the epistemic structuring simulations of C&S (2007), there can be one,
two, or three targets, appearing on fixed positions (see Figure 4.1). All locations
occupy a single cell, as do the agents. There can be multiple agents on a cell,
and an amount of either kind of pheromone. Pheromones disperse and evaporate

according to Equation 2.5 (page 14).

(a) One target (b) Two targets

(c) Three targets (d) With agents and pheromones

Figure 4.1: The environment of the multi agent simulation, with different numbers
of targets. The labels H and T,, respectively mark the Home and Target zones. (d)
shows the environment with agents in it, which are represented by gray bordered
squares. The other squares represent pheromones of different levels, indicated by
the intensity of their color. They typically show a mix of H and T pheromones;
the brighter the color, the more pheromones.
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Feedback

Environment  External
= sensors

@t

Move random

Move home

Train to +1
7 Move target

! Drop H pheromone
Internal actions
(training) Drop T pheromone
External actions

Figure 4.2: A schematic overview of the internal structuring (IS) model as used in
the multi agent simulation. It is identical to the model used in the reversal learning
experiment (Chapter 3, Figure 3.1), except for the sensors and actions. Lines with
arrows are connections, a black square indicates the object of an action. Triangles
are sensors, circles are units, either of the IE neural network (horizontal stripes)
or of the Q-learning mechanism (solid gray).

4.2.2 Task

The task of the agent in this experiment is based on the foraging task used in the
original ES simulations. The agents start their life cycle at a home location and
have to visit all (one or more) targets and return to the home location in order to
finish their first ‘trip’. On every consecutive trip they have to visit all targets and
return home again. In some conditions of the experiment an order constraint is
introduced that requires the targets to be visited in a particular order. A more

detailed specification of the task is given below in Section 4.3.2.
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4.2.3 The model

This experiment uses the same model as the RL experiment of Chapter 3, except
that different inputs and actions are used. This version is depicted schematically in
Figure 4.2. To recapitulate the basic workings of the model: A Q-learning based
control structure (CS) selects an action on basis of an input vector consisting of
values obtained from external sensors and the output activations of the internal
environment (IE). The IE consists of a neural network that receives the same input
and can be trained by the CS through special training actions. It’s outputs serve

no function other than as input to the CS.

Sensors and actions

The agents have the same external actions as the agents in the environment struc-
turing experiment (see Section 2.1.3): move randomly, move in a ‘home like’
direction, move in ‘target like’ direction, drop a ‘home’ pheromone, and drop a
‘target’ pheromone. Like in the RL experiment (Chapter 3), in addition there are

two training actions for every output unit of the IE.

Its sensors are as those of the internal structuring experiment (Section 2.1.4).
Hence, an agent possesses a ‘home’ sensor, a ‘target’ sensor, a ‘time since last
pheromone drop’ sensor and zero or more ‘internal sensors’ that take the value
of the respective IE outputs. The home and target sensors take binary values, the
latter of which regardless of which target is either present or not in case there are
multiple targets. It is therefore a general target sensor, and the agents have no way

of sensing at which target they are if the sensor is active.

To summarize, an agent can move around randomly and follow trails of phero-
mones to physically get to the targets and home location, and create pheromone
trails by dropping an amount of either kind on its current position. It can sense
whether it is on one of the special locations (specifically: home or not, target or
not) and how long it has been since it has dropped a pheromone. Finally, an agent
has an internal environment which it can sense (and thus potentially use for de-
termining its behavior) and adapt (by setting the desired output activation for the

current input) through its control structure.
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4.3 Experiment

4.3.1 Agents

The subjects in this experiment are simulated agents, instantiations of the above
described model. As in the RL experiment of Chapter 3, the experiment was run
with a range of agent configurations, each defined by the number of hidden units
(0,1,2,3, or 6) and the number of output units (0,1,2, or 3) in the network of its IE.
As explained in the previous chapter, agents with no output units effectively have
no IE; agents with no hidden units, but with one or more output units do have an
internal environment, although it is irresponsive as there is no coupling between
its input layer and its output layer. However, the number of actions and inputs
to the control structure is dependent on the number of outputs of the IE. These
conditions were included because it cannot be ruled out on forehand that these
dimensions have an effect on an agent’s performance.

In contrast to the RL experiment, in this experiment the Q-learning mechanism
used for the control structure stores its Q-value mappings in a lookup-table rather
than a neural network (for a discussion, see Section 2.1.1). For current purposes,
lookup-table based Q-learning was considered to be more efficient. As the aim of
this experiment is to investigate internal structuring, and no comparison between
modes of Q-learning is intended, the use of lookup-based Q-learning rather than
connectionst Q-learning is thought to be justified. However, one should be careful
when generalizing any results to deviating models (including models with con-
nectionist Q-learning based control structures), as it cannot be ruled out that these
are partly due do this specific mechanism. The Q-learning based control structure
was equally configured for all types of agents: o = 0.2, y=0.9, and € = .1. The
learning parameter of the neural network of the IE was set fixed to n = .2, and no

momentum (see Rumelhart & McClelland, 1986) was used.

4.3.2 Procedure

The aim of the experiments was to investigate the relation between the represen-
tational demands of an environment and optimal IE parameters. To do so, the

performance of the above described model was measured while varying aspects
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of the environment as well as the capacity of the IE.

Factors The representational demands of the environment was defined by two
variables: the number of target zones in the environment (1,2,3,4, or 5), and the
presence of an order constraint (either present or not). The parameters of the
internal environment were also varied on two dimensions: the number of hidden
units (0,1,2,3, or 6), and the number of output units (0,1,2, or 3).

Measures Performance was assessed by running the simulation for a fixed amount
of time under fixed environment and IE conditions. The simulation was run with
30 agents for 80,000 cycles. The average number of trips per agent per cycle was
taken as a measure for performance. Per condition, ten runs were carried out,
resulting in ten measures for analysis.

To obtain a more easily interpretable and comparable performance measure,
‘baseline’ runs were carried out such that the performance of a particular run
could be normalized with respect to this baseline; that is, expressed as a factor of
this baseline performance. Baseline measures were obtained for all environment
conditions (see below) by running the experiment with randomly behaving agents.
These agents had only external actions (see above), and selected one of these
at random at each time step. An average over the performance in ten runs per
condition was calculated, resulting in a measure B; o with 7 indicating the number
of targets, and @ a boolean value representing the presence of an order constraint.

For each of the experimental runs then, the performance is defined as:

_tripsy

P =
B, o,

@.1)

with r being a run with environment parameters ¢, and @, (number of targets and
order constraint respectively). trips, denotes the average number of trips per agent

per cycle in round r.

Expected results The hypothesis that larger representational demands require
greater internal structuring capacities in order to perform optimally, predicts that

under varying levels of demand (number of targets and with/without order con-
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straint), the IE configuration in terms of hidden and output units that leads to the
greatest number of trips will vary as well. More specifically: the greater the num-
ber of targets, the higher the optimal number of IE units; the order constraint is

expected to increase this effect.

4.4 Results

Figure 4.3 on page 61 presents a first overview of the results of the simulation
experiment. The six subfigures show the results of the various environmental
conditions: 1,2 and 3 targets, with or without order constraint. Starting with the
‘1 target’ conditions, the ‘without order constraint’ (Figure 4.3(a)) and ‘with order
constraint’ (Figure 4.3(d)) conditions show highly similar patterns — this should
come as no surprise as there is only one ‘order’ in which to visit a single target.
The main trend of the pattern itself is very clear: the more IE output units, the
lower the performance; the number of hiddens makes less of a difference. Runs
with agents with no effective IE (all conditions with O outputs) perform very well
in comparison to random behavior: they, on average, manage to complete six to
seven as many trips.

In the 2 targets’ conditions, the pattern is clearly shifted: agents with no IE
output units perform worst, not exceeding chance level. Without or with order
constraint (respectively Figures 4.3(b) and 4.3(e)), best performance is achieved
by agents with one or two output units: about two times as well as at chance
level. However, in the condition without order constraint, the range of the number
of hidden units that work well is broader, and includes lower numbers. Here, a
single hidden unit suffices, whereas ‘with order constraint’ has two hidden units
at its optimum and has its contours skewed to the right a bit more.

The final two conditions, those with 3 targets (Figures 4.3(c) and 4.3(f)) again
display a shift albeit less strongly so than between the previous change in number
of targets. In general, the ‘brighter’ areas lie further to the top right areas of the
plots, more so for ‘with’ than ‘without order constraint’.

Figure 4.4 shows boxplots for each of the environmental conditions. These
boxplots show the distribution for each number of outputs (generalizing over the

number of hiddens) within each environmental condition, giving more insight in
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Figure 4.4: Boxplots of the performance of agents of varying configurations on various environmental contexts. The box-
plots show the distribution (lowest observation, first quartile, median, third quartile, highest observation and outliers (as
crosshairs)) of the agent’s performances per number of outputs group for all of the conditions. Plots that include the separate
numbers of hidden units are presented in Appendix B. Notice that the vertical axes have different scales.
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the distribution of the performance within the varying conditions. Appendix B
(page 101) presents more detailed information, splitting out the IE conditions into

both number of outputs and number of inputs.

4.4.1 ANOVA results

To confirm the effects suggested by these plots, ANOVA’s were carried out for all
of the environmental conditions. In all six conditions, significant effects of the
number of outputs were found (p’s < .001). Pairwise comparisons show that in
the ‘1 target’ conditions, lower numbers of IE outputs perform significantly better
than higher numbers of outputs. In the conditions with 2 targets, no difference
is present between O and 3 outputs, which have lower scores than 1 and 2 out-
puts. Of these, the condition with no order constraint has agents with 2 outputs
performing slightly worse than agents with 1 output whereas no such difference
is present in the condition with order constraint. In the conditions with 3 targets,
0 outputs performs worse than all other number of outputs. Here, in the *without
target’ condition, no difference is present between 1 and 2 outputs, both of which
outperform 0 and 3 outputs. With targets, the pattern is similar, but has a higher
score for 2 outputs all other numbers of outputs, and no difference between 1 and
3 outputs — a skew upwards.

No effect of the number of hidden units is found in most conditions. A con-
vincing main effect of hiddens (p < .001) is only found in the condition with 3
targets and no order constraint, which, as can be seen in Figure 4.3(c), has quite a

sharp peak at 1 hidden for most numbers of output units.

4.5 Conclusions

The above results are in accordance with the hypothesis as formulated above:
greater numbers of targets and, to a lesser extent, the introduction of an order
constraint globally increase the optimal number of IE hiddens and outputs.

From the experimental data (as visualized in Figure 4.3 and 4.4), some insights
in the underlying causes for these effects can be obtained. To start, in the ‘1

target’ conditions, agents without an effective IE perform best and vastly above
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chance level. Even the relatively ill performing configurations perform at least
twice as good as randomly behaving individuals. This vantage can be attributed
to successful external structuring: making trips back and forth to a single target
can efficiently be mastered by collectively maintaining pheromone trails, as was
demonstrated by C&S (2004). The configurations with multiple IE output units
only get disturbed in the process of learning to structure the environment, as each
output adds extra inputs and actions to the control structure that thus burden an
agent’s resources but add no benefit.

The conditions with 2 or 3 targets provide a qualitatively different case. With
multiple targets to visit, especially if in a particular order, mere external structur-
ing becomes increasingly inefficient. In such cases, an agent can benefit from the
ability to internalize aspects of the world and its own relation to them, whether
or not in a highly task-specific, action oriented matter. Keeping more of such in-
formation naturally requires proportionally higher capacities in the resources un-
derlying this function. Hence, the effects that are found in the current experiment
correspond roughly to what one would expect in a cognitive system attempting
to maintain a balance between representational capacity and computational over-
head. Therefore the results of this experiment can be considered evidence for
internal environments as a mechanism for storing internal traces of the world that

possess a representational character.

4.6 Discussion

In the previous chapter, the behavioral and internal dynamics of the epistemic
structuring model were analyzed to gain insight in its workings. While it can
be assumed that similar dynamics play a role in more embodied and embedded
contexts, such as in the above described experiment, additional questions arise: In
what form are representations stored? Are they robust and discrete (like words) or
more ‘like the core of a bee swarm’, as C&S (2007) suggest? In what way do the
formed representations influence behavior? How are representations accessed?
Can they be actively selected? How do representational processing and reactive
behavior relate? And how do internal structuring and external structuring?

These of course are not independent questions. Epistemic structuring, al-
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though based on a rather simple mechanism, introduces a potentially very com-
plex dynamics that may not be easy to interpret. A thorough investigation of these
dynamics is required before any of these questions can be answered in any satis-
factory way. Given that the work presented here provides merely an onset towards
gaining sufficient understanding, such an investigation is suggested for further
research.

The following chapter rounds up the conclusions that are drawn in this chapter
and the previous one, and reviews them in the light of the broader questions stated

at the beginning of this thesis.



66

CHAPTER 4. AGENT SIMULATION EXPERIMENT




Chapter 5

Conclusions and discussion

5.1 The forming of internal presentations

In the experiment of Chapter 3, agents equipped with internal environments of
varying substantiality were examined while performing a reversal learning task.
Performance on such a task should benefit from an agent’s ability to form presen-
tations (Hurford, 2007; Grush, 1997). From the perspective of representations in
the sense of Haugeland’s (1991) interpretation, presentations are a weaker kind,
as they do not necessarily stand in for things not present to the agent’s current
perception. However, internal presentation does entail rather sophisticated dis-
crimination and generalization over encountered states. Even if it relies on the
stimulus that triggers the presentation to be reliably present, it does attach a kind
of meaning to it, whether action-oriented or not. Hence, the ability to actively
form presentations is an adaptive hookup that gets a long way towards the real

thing as far as representations are concerned.

5.1.1 Internal structuring and internal presentations

The RL experiment was intended to investigate whether internal presentations can
be employed by agents equipped with internal environments, and, if so, how and
to what extent. Performance comparisons showed that agents with more substan-
tial IE’s, 1.e. networks with more hidden and output units, deal with changes in

stimulus-reward relations more swiftly. Investigation of the agents’ internal dy-
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namics revealed that all agents eventually establish an indexical mapping, which
is made up by direct stimulus-response couplings, but that the internal structuring
enabled agents manage to readapt relatively early. This readapting coincides with
characteristic patterns in both the IE and the control structure. An interpretation
of this process is that the reactive, low-level subsystem of the agent is being in-
tervened on by a higher level system consisting of the IE and its interaction with
the Q-learning mechanism. In this interpretation, the Q-learning CS is the mech-
anism that ultimately decides how to act, basing this decision on input from both
the external sensors and additional internal information. This information, drawn
from the output units of the IE, can be thought of as a cognitive overlay from the
perspective of the low level CS. This overlay superimposes additional information
on top of the original input. The way this can work is immediately clear from the
architecture of the model, shown in Figure 4.2: the output values of the IE sim-
ply get added to the input array in which the sensory values are kept. Thus, the
presentations provided by the IE can be incorporated in the behavior the agent.
An internal dynamics analysis (Section 3.6.2) showed that various units, spread
over both networks, show correlations with the class of the current input. These
correlations are fairly stable and those in the IE arise as a result of internal struc-
turing actions chosen for execution by the control structure to maximize reward.
Hence, they can be considered to serve a purpose, which argues (Clark, 1997) for

the representational character of the internal structures.

5.2 From presentations to representations

An essential difference between ‘mere’ presentations as just described, and ‘true’,
or high! internal representations is the standing in property (Grush, 1997; Clark
& Grush, 1999; Chandrasekharan & Stewart, 2007). One way to think of internal
representations then, is as presentations — under our current interpretation — that
can be accessed, modulated and even instantiated in the perceptual absence of
what they refer to (Grush, 1997).

The situated agents of Chapter 4 had to deal with a very limited scope of

1referring to their position in the representational continuum, see Section 2.2.
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perception. In order to efficiently execute their task, they had to take into account
elements in the environment that were not reliably perceivable most of the time.
The agents had two ways of dealing with this: first, they could add structure to
the environment, thus adapting it to their limited sensory capacities. Second, they
could actively structure their IE, thus forming what C&S (2007) call internal traces
of the world.

In contrast to the experiments of C&S, the agents in this experiment were ca-
pable of internal and external structuring, both of which they did, as reported in
Chapter 4. Combined internal and external structuring provides a more realistic
scenario, where agents interact with their environment and have the potential to
keep inner states that represent existing environmental elements, as well as struc-
tures that are the result of their own actions. However, it also introduces very
complex interactions that make detailed analysis of the agents’ individual and
collective behavior or their internal dynamics rather complicated. Fortunately,
the results of the reversal learning experiments provided a good amount of in-
sight to start with. Considering these results, it can already be assumed that the
agents are able to extract presentations from their senses. The remaining question
is, whether the agents are also able to apply this ability to elements not present
to their current perception. The results of the second simulation experiment did
provide evidence for this. In environments with higher representational demands
— environments with more targets to visit, in a particular order — higher capac-
ity internal environments appeared to be favorable. The contrast between condi-
tions with relatively low representational demand and those with higher demand is
rather stark. In the former, too substantial IE’s decrease performance dramatically
due to unproportional overhead. As the environment and task get more representa-
tionally demanding, the benefits of being able to represent the world start to take
over. In a developmental or evolutionary context, once would expect the IE to
shrink or disappear (or not appear at all in the first place) in creatures dealing with
situations where fast, reactive behavior is the key to survival rather than represen-
tation. However, those creatures that end up in environments where going about
in a mostly reactive fashion is too risky or inefficient, will adapt by increasing
their internal structuring capacities, as putting them to use gets worth it. Hence,

the model itself conforms to the ‘law’ of Haselager et al. (2003) mentioned in the
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introduction?: don’t use representations unless it is absolutely necessary.

5.3 Reactive and representational processing

Analysis (Section 3.6) of the epistemic structuring model in action show a strik-
ing feature of this model: it integrates reactive and representational processing
into a joint system. Without an IE, a Q-learning control structure yields reactive
behavior. The addition of an IE does not take away the capacity to have direct
mappings between sensory input and behavioral reactions. Rather, an interplay
between the two modalities can emerge: direct inputs as well as the cognitive
overlay provided by the IE are taken into account by the low-level controller. This
way, certain responses can be entirely reactive, while others are mostly the result
of IE processing or are reactive under IE supervision.

Reactive processing seems beneficial for an agent when it has to deal with
(whether simulated or not) real world situations that impose on the agent unpre-
dictable and potentially harmful conditions at a fast pace. On the other hand, long
term planning and even reflection on past events are likely to increase an agent’s
chance of survival. Therefore, a framework that combines a reactive response
mechanism with a representational system constitutes a plausible architecture for

embodied, embedded agents.

5.4 External and internal structuring

Thus far, external and internal structuring have been covered as rather distinct
modes of epistemic structuring, providing an agent with separate resources, each
with their own advantages. However, a complete distinction between the two
yields an interpretation that is too simplistic. As C&S (2007) point out, internal
structures constitute a “common thread of elements running through contexts and
associated actions that lower cognitive load” (p. 344). There is no reason for this
action-oriented nature of internal structures to be restricted to task-specific actions

only; task-external, or structuring actions, belong to the behavioral repertoire as

ZPerhaps we should call it Haselager’s razor?
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well. Thus, internal structures, in agents operating in contexts of sufficient com-
plexity and representational demand, can be expected to become connected with
an agent’s external structuring pattern. This way, a joint internal/external struc-
turing pattern arises in which internal processing can invoke or modulate external
structuring and vice versa. As a consequence, structures may arise that can be
considered to stretch from one end of the entire scope of structuring to the other —
crossing the boundary between internal and external environments.

The thought of such a possibility is hardly as esoteric as it might appear, as
it accounts for a very common phenomenon. For example, a thesis, at least until
completion, can be considered a coherent structure that exists partly in the world
as a physical structure, and partly internal to the person writing the thesis, as
a collection of more or less explicit ideas, assumptions and intuitions. Until a
coherent part of the entire pattern is shifted towards the external mode, the thesis
may seem unfinished or even incomprehensible for readers other than the writer.
The writer however, will not have such a perception as long as the complementing
subpatterns are in his (or her) internal resources. This might explain why it is
often hard to detect flaws in one’s own writings: to obtain a completely objective
perception, one has to disregard all related internal complements. As this example
illustrates, compatibility with the extended mind thesis (or ‘active externalism’,
Clark & Chalmers, 1998), follows naturally from a tight coupling of internal and
external structuring, as already acknowledged by C&S (2007).

5.5 Summary and conclusions

Experimental findings in this thesis suggest that epistemic structuring can be used
by agents to form presentations over their sensory input, as well as representa-
tions of entities not reliably detectable. The epistemic structuring model allows
an agent to engage in both reactive and representational processing. The role of
the reactive mechanism as a low-level, reactive controller to which the internal
environment adds representational resources, argues for a degree of biological
and evolutionary plausibility. Additionally, a joint system of internal and external
structuring can account for structural patterns that are distributed over internal and

external resources, making the model compatible with the extended mind thesis.
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A general observation that can be made, is that the epistemic structuring model
provides a framework that fits a broad range of cognitive phenomena, starting with
the forming of presentations and representations, hybrid reactive and representa-
tional processing and embodied cognition. Admittedly, as yet the framework is
broad rather than deep. Both external and internal structures have been consid-
ered rather abstractly, or, in the simulations, somewhat ad hoc such as in the case
of the pheromones or the choice of a multi layered perceptron as the mechanism
of the internal environment. More accurate choices for structuring environments
and actions, both internal and external, are likely to exist — an issue that certainly
calls for further research.



Chapter 6

Afterword: from labels to language

6.1 Introduction

The previous chapters introduced Chandrasekharan and Stewart’s (2004, 2007)
Epistemic Structuring framework of internal representations and described two
sets of experiments to verify the claim that internal structuring, can provide rep-
resentational capacities to an agent equipped with such a mechanism.

There are two, related, reasons that make the epistemic structuring theory very
compelling. The first, as has been mentioned, is that it describes a, in principle,
gapless path from reactive behavior, via simple adaptive behavior and environ-
ment enhancement, to cognition guided by internal traces with a representational
character. The second is, as will be argued, that this path can be extended gradu-
ally into a range of cognitive activities with those collectively called language in
its extremities. The statement I will speculate on in this chapter, is that the epis-
temic structuring theory of representations is compatible with established views

on the nature, role and origin of language.

6.2 Epistemic structuring and language

The epistemic structuring theory of representation can be said to have had kind
of bottom-up development. It originated from a framework of epistemic envi-

ronment structuring and the insight that it could easily be applied to form inter-
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nal traces analogue to external pheromone traces. Another unforeseen extension
of the framework can be discerned: a number of its functions properties can be
aligned with aspects associated with language.

Before further explaining these points, it should be made clear that ‘language’
will be taken in a pretty broad sense here. It will include the obvious incarnations,
such as speech as used in everyday discussions, written texts and sign language.
But for the moment, no hard line will be drawn between these meanings and what
could be called pseudo-language — in humans — or protolanguage, hypothesized by
Bickerton (1990) as a kind of relatively unstructured ancestor of ‘true’ language.
Thus, language here covers a broad range of phenomena, such as tagging items
of different categories with different colors (e.g. red boxes go upstairs, the blue
ones to the basement), drawing a map, sketching a conceptual schema (or a ‘mind

map’) and the fascinating phenomenon of inner speech.

6.2.1 Similarities between language and epistemic structuring

1. Akin to words, the (internal and external) structures have a referential char-

acter;

2. Also akin to words, there is no relationship between the form of a trace and

its meaning — the form is arbitrary.

3. Like language, epistemic structuring can be used to create outer states that

lower cognitive load or make the environment more cognitively hospitable;
4. It can be used cognitively in a covert, self-directed matter;

5. It can serve a public goal (as in collective labeling, e.g. pheromone drop-

ping).

Reference and arbitrariness The first two similarities, reference and arbitrari-
ness of form, follow from the representational nature of epistemic structures. In
the case of the multi agent simulation, the pheromones (external structures) refer,
as far as the agent is concerned, to locations that are out of the scope of percep-

tion. The internal traces also have a reference relation, namely with the locations
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in the context of a visiting schema. These traces are arbitrary in the sense that
their form (e.g. positive or negative output activation) has no a priori relation with
the location they refer to.

Reference by patterns of arbitrary form are a key aspect of language. A word
composed of the letters R,0,S,E, the Chinese characters that are pronounced mei
gui, and the spoken utterance /rouz/ each form a common noun that can refer to
a complete class of flowers or an instance thereof. They also form a proper noun
that might refer to one’s mother, colleague or any specific other person by that
name. Of course there is nothing intrinsically rosy (flowery or girly) about these
letters, characters or phonemes — hence, the form of the representations formed

by them are arbitrary.

Outer states The third similarity, the possibility of creating outer states that
yield cognitive enhancement, needs some more elaboration. Although language
may sometimes serve a purely communicative goal, usually, whether intended or
not, the symbols of language have the effect of unburdening, enhancing or extend-
ing internal processing, and can even be considered to form together a cognitive
tool (Clark, 1997, Ch. 10). Performing complex calculation on paper rather than
mentally, thinking out loud, or structuring one’s confused thoughts into a two
dimensional schema are obvious examples of how environmental structures (in-
cluding those fleeting vibrations of air that are speech) can be used for thought.
And, as Bickerton (1990, p. 5) puts it: “A book is a machine to think with.” This
use of language is not very different from the pheromone trails of the agents of
Chandrasekharan and Stewart (2004, 2007) and Chapter 4 of this thesis: some
effort is put into creating structures that serve as perceptual input moments — or

years for that matter — later.

Self-directedness That the view of language as a mere communicational device
is incomplete clearly follows from its self directed mode (the fourth similarity).
Self directed language can manifests itself overtly as ‘private speech’, which was
recognized by Vygotsky (1934/1986) and Piaget (1959) to play an important role
in learning and development. Covert self directed language in the form of ‘internal

speech’ has been studied as a cognitive phenomenon (e.g. Steels, 2003). Whether
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through audible utterances or some internal loop, humans obviously use language
privately in a form equal or similar to public language. Clark (1997, p. 195) argues
that language is employed as a self-directed tool, a ‘computational transformer
that allows pattern-completing brains to tackle otherwise intractable classes of
cognitive problems’.

Now how does this relate to epistemic structuring? Physical labeling, a kind of
external epistemic structuring, can be though of as imposing categories on objects
to decrease future cognitive effort. Internal epistemic structuring does something
similar. A context consisting of external input values and internal state values
activates the internal environment. By executing an internal structuring (training)
action, the agent internally labels that context. In both cases, the agent by means
of structuring makes explicit its desired future perception, be it a blue dot or the
word ‘coffee’ on the coffee can, or a positive activation on output unit 3. The
latter does not seem to have much to do with language, but the process by which
it comes about is remarkably similar to the way private language is used. Take
for example studying Ancient Greek architecture. When learning to tell apart the
Doric and Ionic orders, a common method is to take a depiction of a column of
both orders and alternately inspect these while calling, either out load or with
one’s inner voice, the names of the respective orders: ‘Doric — lonic — Doric —
Ionic’, etc. One can also use self-directed language to provide a context rather
than using what is at hand perceptually: ‘lonic: volutes — Doric: no volutes’. This
method of self training seems to serve to reinforce a mapping between a class
of external or internal stimuli and some pattern that can be used as a label or
trigger for other purposes (e.g. recognizing an architecture style) or as a stimulus

in subsequent training.

It can be assumed that in creatures equipped with a system of true language,
self-directed syntactical phrases can alter internal structures in a similar way.
Telling yourself to ‘Stop and post that letter when you happen to drive past a
post box” may not literally label a concurrent perceptual context, but it does in-
tend to engrave a context-sensitive trigger somewhere outside the loop of short
term memory. We will come back to the self-directed mode of language at the
end of this chapter, where the relation between cognition and language, and the

position of epistemic relative to it will be discussed.
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Public role The final similarity concerns the public role of language and epis-
temic structures. As has become clear from the pheromone dropping in the ex-
periments of C&S (2004, 2007) and Chapter 4, external structures can be created
and maintained collectively by a population of structuring agents. This allows the
agents to profit from each other’s structuring efforts and behave more efficiently
than they could in absence of a shared, structurable environment.

Another dimension is added if a common form exists for internal traces and
external structures. If this is the case, internal traces can be made public by creat-
ing isomorphic external structures, which then can be internalized by other agents.
Intuitively, this touches language very closely, as internal language can easily be
expressed as external language. In fact, the one can be proxy for the other, which
is what happens when one internally rehearses an utterance before saying it. Mere
shared external structuring though is a far cry from actual language as it does not
provide a way of converting back and forth between internal and external struc-
turing. Besides, in many cases such as that of pheromones, internal isomorphisms
of external structures are of little added value (the essence of pheromones lies in
their physical presence and location) or even infeasible (what are internal phero-

mones?).

6.2.2 Differences between language and epistemic structuring

Besides the above mentioned similarities between language and epistemic struc-

turing, two aspects of language are clearly lacking:

e an intrinsic mechanism of communication;!

e anotion of syntax.

This might appear disastrous for the view of epistemic structuring as a prede-
cessor of language, but such does not have to be the case, as will be argued in the

following section.

!“Public role’ structuring comes close in that it forms intermediate signals that are sent by one
and received by others, but it lacks the directedness (one dog growls at another) and temporary
discreteness (a shout illustrates this well) generally associated with communication.
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6.2.3 Language: communication or representation?

One of the aspects mentioned to be lacking from epistemic structuring for it to
be considered linguistic is that of communication. This might appear to be a
major, if not insurmountable objection to it forming the basis for the development
of language. For isn’t communication the essence of language? And doesn’t
language find its antecedents in the communication of animals? Bickerton (1990)

thinks otherwise:

[Flor most of us language seems primarily, or even exclusively, to be
a means of communication. But it is not even primarily a means of
communication. Rather it is a system of representation, a means for
sorting and manipulating the plethora of information that deluges us

throughout our waking life. (p. 5)

Bickerton’s view stands in contrast with a ‘classic’ view in which language is
just a very sophisticated means of communicating beliefs, desires and intentions.
His main argument is that not considering language to be primarily representa-
tional leads to what he calls the Continuity Paradox. It holds that if language is
a descendant of animal communication, one would expect to find the difference
between the most sophisticated systems of animal communication and human lan-
guage to be quantitative. Yet, this is not the case: language is open-ended, where
all animal communication is restricted to a fixed set of topics that can be commu-
nicated; indeed, a qualitative difference (Bickerton, 1990). Therefore, communi-
cation cannot be the antecedent of language. Bickerton argues that the Continuity
Paradox can be solved by showing that language is a system of representation.
Then, “we could search for the ancestry of language not in prior systems of an-
imal communication, but in prior representational systems” (p. 23). Given the
properties discussed above, ES makes a very suitable candidate for such a ‘prior
representational system’.

Bickerton (1990) distinguishes two systems underlying representation. He
calls them the primary and secondary representational systems (PRS and SRS re-
spectively). Bickerton’s concept of representation is a bit off from those common

in cognitive science, hence the PRS need not be involved with high representation.
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The PRS is a system that incorporates sensory input and is highly species-specific.
It is sketched by Bickerton as an input-output system, the complexity of which is
determined by the “degree of processing that outputs of sensory cells undergo”
(p. 82). In the epistemic structuring model, the Q-learning control structures can

be considered equivalent to the PRS.

The SRS then, is the part of the representational system “created by language”
(ibid., p. 103). Here, however, Bickerton describes the human case. Later, he
states that “Language provides [an SRS], and an SRS is already latent in any crea-
ture whose primary system is well developed enough to analyze the world into
a sufficiently wide range of categories” (p. 145). Mapping this on the epistemic
structuring framework, the IE should be the place where this SRS unfolds from its
latent, pre-linguistic nature to the kind of linguistic system Bickerton considers it
to be in humans. The ingredient that drives this unfolding is also provided: com-
munication. The presence of rudimentary forms of communication, independent
of any latent SRS, may, according to Bickerton, have bootstrapped the latent form
up to a linguistic system (p. 146).

Thus, roughly speaking, the PRS can be projected onto the Q-learning mech-
anism, or reactive control structure, while an IE provides a facility for the devel-

opment of a non-linguistic proto-SRS, and eventually a true SRS.

Now it is clear how ES fits into a view of language as primarily representa-
tional, the path from ES to full-fledged language has to be sketched. The following

section presents such a sketch.

6.3 From Epistemic structuring to language

Figure 6.1 shows a scheme that sketches a development from reactive agents to
linguistic beings. This sketch should be considered a mere suggestion for such
a development. The following elaboration does not provide substantial empirical
backing or biological embedding, but rather aims to draw the contours of a model
of the origin of language in accordance with Bickerton’s theory and the epistemic

structuring framework.
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Figure 6.1: Proposed schema of the origin of (proto)language from epistemic
structuring. Starting on the left, agents are purely reactive. External structuring
develops, and gets internalized, the two turning into a joint system of epistemic
structuring. Incorporation of preexisting animal communication leads to protolan-
guage.

6.3.1 Beyond reactiveness

The external loop that comes to exist when agents add structure to the environ-
ment, which later can be perceived and responded to, allows reactive agents to,
in a sense, ascend from their reactiveness. Not much is needed for an agent to be
able to engage in external structuring, as was shown in the first experiment of C&S
(2004): the ability to create appropriate structures and the tendency to minimize
loss of energy suffice.

In principle, very complex behavioral patterns may emerge from external struc-
turing. The devices described by Turing (1936), generally known as Turing Ma-
chines, clearly demonstrate this: the head and the finite set of rules by which
its behavior 1s governed, essentially form a purely reactive unit with respect to the
tape from which it reads (perceives) and writes to (acts upon). Similarly, given the
right mapping between perception and structuring actions, which can be learned
by the agent on basis of feedback (C&S, 2004), behavior can emerge that goes
beyond the a situated agent’s reactive capacities. As long as it maintains an ef-
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fective mapping, the physical agent can carry out relatively sophisticated behavior
without any internal reflection of it. In other words, it does not have to know that it
knows more as a result of its environmental interactions. Such an agent finds itself
(although it won’t be aware of it!) very much in a Chinese room (Searle, 1980)
situation. For the question whether the agent and its environmental extensions do
jointly form an intelligent, or even conscious, whole, one should be referred to the
discussions that have been going on since Searle’s original paper (for an overview,
see Cole, 2004).

6.3.2 The internalization of epistemic structuring

It is now clear how agents can employ and adapt their environment and escape
from the trap of their own reactiveness. However, there are clear downsides to
a complete dependence on the environment for this leverage. Not only are the
environmental structures constrained to specific locations, also is the environment
not in complete control by the agent inside it. For example, structures may change
or disappear as a result of environmental dynamics or the actions of other agents,
causing the agent unable to strongly rely on them.

The advantage of the availability of an internal structurable module has been
investigated in this thesis and the work of C&S (2007). A proposal of the work-
ings of such a module has been described as well. What remains unclear, however,
is how it could come into existence. C&S (2007) point out that one mechanism,
Q-learning, can account for both external and internal structuring. Assuming this
can be generalized to natural creatures, the remaining question is how the out-
bound workings of epistemic structuring may have been internalized and applied
to, presumably, a lump of brain tissue. What is required, in terms of the model,
is an action, available to the already present reinforcement learning mechanism,
that causes a modification to some remote computational structure — in the model,
the IE network. In order to be able to assert that something similar has happened
in the brain, a study of its evolution is required. In particular, the evolutionary
development of the neocortex seems a good place to start investigating, as it is
evolutionary most recent, and is associated with higher cognitive functions. Un-

fortunately, it lies outside the scope of this thesis to go beyond this suggestion.
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For any biological validity of the epistemic structuring model, however, it is vital

that traces of analogous developments in the brain can be demonstrated.

6.3.3 From structuring to protolanguage

In Section 6.2.3, Bickerton’s (1990) concepts of PRS and SRS have been applied
to epistemic structuring. The IE of non-linguistic agents can be said to provide, in
Bickerton’s terms, at least a latent SRS. A latent SRS bears many of the essentials
for language, at least form a primarily representational view of language, but lacks
communication.

Non-linguistic communication can be found across a wide range of species in
nature (Naguib, 2006) — for a large number of examples, see Hart (2007). Al-
though the linguistic abilities of some species have been debated (see, e.g. Gould
& Gould, 1994), most animal communication systems clearly cannot be consid-
ered truly linguistic, but rather very ad hoc call systems that lack the properties
mentioned in Section 6.2.1. Bickerton (1990, 2007) argues that (human) language
could not have originated directly from such systems. The proposed role of com-
munication is a different one: it pushes a latent SRS into a full, linguistic one
by providing “a set of concrete units that could be handled more easily than raw
concepts” (1990, p. 146).

The key to, once again, mapping this development onto the epistemic struc-
turing model, is to consider acts of communication (for whatever purpose) as po-
tential task-external actions, and therefore a means of external structuring. The
environment that is being targeted, in this case, includes the recipients of the com-
municative signals. Analogous to the external tracing of the agents of C&S (2004),
a systematic, joint epistemic structure of communicative calls — instead of phero-
mones — can emerge.

Subsequently, there is no reason why an agent capable of producing and in-
terpreting this structure, would not be able to use it for its own purposes, rather
than for a public goal. This goes for any other kind of epistemic structuring (like
pheromones), so why not for this new mode? A final advantage is gained by
short-circuiting the external route and internalizing it by means of a neural pattern

isomorphic to the communicational acts. If such sounds far-fetched, think of inter-
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nal private speech: is this kind of speech not nearly, or even completely similar to
public speech? Introspection strongly suggests this, as do imaging studies of the
speech areas of the brain during internal speech (e.g. Hinke et al., 1993; McGuire
et al., 1996). In case such a development is accomplished, the Q-learning CS and
the IE receive communicational signals as external input, and the CS outputs such
signals both externally and internally. Hence, what starts to emerge is a unified
form, namely that of the communicative signals, for both external and internal
structuring. This obviously provides a great advantage as it allows for straightfor-
ward external expression of internal representations.

A solid system, similar of architecture to this, admittedly rather rough sketch,
has got what it takes to be considered what Bickerton (1990, 2006) calls protolan-
guage: a rudimentary system of representation and communication that lacks the
structure that true language possesses, mostly due to the presence of grammar. For
a discussion of the development of full-fledged language out of protolanguage,
Bickerton (1990) should be consulted.

6.4 Language, epistemic structuring, and cognition

Clark (2006), building on earlier work (Clark, 1997, 2005), discusses the relations
between language, embodiment and cognition. Although his remarks do not get
linked to the work of Bickerton (1990), nor do C&S (2007) mention them to
be relevant to their work, lining up these various efforts results in a surprisingly
broad, coherent and possibly very informative perspective.

Clark (2006) puts his view of language in contrast to what he calls the ‘Pure
Translation’ view of language, which comes down to a view of language items
as a mere vessels for thought, used for transmitting such from person to person
(p. 370). Alternatively, he argues, language can be considered a cognitive re-
source in its own right. Specifically, linguistic items can be used to form what
Clark calls a thought-enabling cognitive niche, a term referring to an “animal-
built physical structure (...) that transforms one or more problem spaces in ways
that (when successful) aid thinking and reasoning about some target domain or
domains” (p. 370). In other words, language can be employed for epistemic struc-

turing. Clark speaks of the “augmentation of biological brain with ‘linguaform’



84 CHAPTER 6. AFTERWORD: FROM LABELS TO LANGUAGE

resources” (p. 372), which fits in very well with the concept of internal structur-
ing, although internal structures do not necessarily have to be linguistic, but can
also contain, in Bickerton’s (1990) terms, raw concepts. The power of linguistic
structures, a subset of all possible kinds of epistemic structures, lies in their being
transmittable across individuals.

In an effort towards sketching a computational model, Clark (2006) empha-
sizes the conception of “language as complementary to more basic forms of neural

processing”, according to which

language works its magic not (or not solely) by means of transla-
tion into appropriate expressions of [ ‘Language of Thought’], but by
something more like a coordination dynamics (...) in which words
and structured linguistic encodings act to stabilize and discipline (or
‘anchor’) intrinsically fluid and context-sensitive modes of thought

and reason. (p. 372)

The role of language described here, is highly similar to the role of epistemic
structuring envisioned by C&S (2007), and as investigated in this thesis. Epis-
temic structures, whether external or internal, enhance the cognition of an agent
by providing very robust traces.

Language — Clark rightly adds the nuance ‘and material symbols in general’
(p- 370) — in this perspective is the ultimate epistemic structure, as it is extremely
robust, fit to store great amounts of information, and can be stored in many forms
by many means. The insight that the epistemic structuring model together with
Bickerton’s view of language add, is that the cognitive role of language discussed
by Clark, may actually be that of a larger, developmentally more primitive system

of which language is a subclass that fulfills this role the best.

6.5 Conclusions

Although no empirical investigations into the relation between epistemic structur-
ing and language have been carried out, a brief consideration of this topic from

the perspective of the model already yields some interesting observations. In par-
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ticular, it offers a computational model to two views of language that, as yet, have
been motivated theoretically only.

The first view, that of Bickerton (1990), holds that language is primarily rep-
resentational. The accompanying theory of language evolution holds that a non-
linguistic ‘primary representative system’ predates a, more or less, linguistic ‘sec-
ondary representative system’. This decomposition can, in a straightforward fash-
ion, be mapped onto the epistemic structuring model — the latter, as has been
shown in this chapter, sharing a number of important properties with language.

Viewing language as a kind of epistemic structuring, providing a unified form
for its internal and external modes, makes it natural to consider the usage of lan-
guage as a kind of cognitive niche construction. Precisely this view is being held
by Clark (2006). Language can be thought of as the ultimate epistemic structure,
boosting all of the advantages of epistemic structuring that opened the door out of
reactiveness, into representational processing. Language is the one kind of struc-
ture that is very robust, highly transmittable and capable of containing incredible
amounts of information. With all the cognitive enhancements it entails, language
indeed appears to lie dormant in the internal environment — a representational

system, in a cage locked until communication comes by.
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Appendix A

Additional figures for the reversal

learning analyses

In this appendix, additional figures are provided to accompany the results pre-

sented in the behavioral and dynamics analyses of Chapter 3.

A.1 Action selection

The following figures show action plots for agents with varying configurations.
The plots show the selection ratio of each of the actions over a run of the experi-
ment. Action selection is discussed in Section 3.6.1.

Notice that all training actions are averaged into a single variable, which is
plotted as the thickest line. The plots are of averages over ten runs per configu-
rations, and are smoothed with a moving average filter with window size 1000.

Reversal takes place every 10,000 trials.
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Figure A.2: Action plot of an IE with 2 hidden units and 6 outputs
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Figure A.3: Action plot of an IE with 6 hidden units and 6 outputs
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Figure A.4: Action plot of an IE with 12 hidden units and 6 outputs
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A.2  Weights of the Q-learning network

The following figures show the developments of the weight settings of the Q-
learning networks of agents in the reversal learning experiment, discussed in Sec-
tion 3.6.2. The plots show the ASW of four subsets of the weight matrix, averaged

over ten runs of each of the configurations.
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Figure A.5: The development of the weight settings of the Q-learning network of
an agent with an IE with O hidden units and 6 outputs

<
\\\

Weight strength (
A
\
\
/
/
/
~_

\
N\
A
<
~

Figure A.6: The development of the weight settings of the Q-learning network of
an agent with an IE with 2 hidden units and 6 outputs
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Figure A.7: The development of the weight settings of the Q-learning network of
an agent with an IE with 6 hidden units and 6 outputs
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Figure A.8: The development of the weight settings of the Q-learning network of
an agent with an IE with 12 hidden units and 6 outputs
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A.3 Weights of the internal environment network

The following figures show the developments of the weight settings of the internal
environment networks of agents in the reversal learning experiment, discussed in
Section 3.6.2. The plots show the ASW of three subsets of the weight matrix,
averaged over ten runs of each of the configurations.
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Figure A.10: The development of the weight settings of the internal environment
network of an agent with an IE with 2 hidden units and 6 outputs
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Figure A.12: The development of the weight settings of the internal environment
network of an agent with an IE with 12 hidden units and 6 outputs
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A.4 Activation patterns of the Q-learning network

The following figures show cross-correlations of stimulus class and activation
level for a single round in two agents, as discussed in Section 3.6.2. The fig-
ures below show cross-correlations for all units of the network, hence including

those that were left out, for clarity’s sake, in the figures included in that section.
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Appendix B

Additional figures for the agent

simulation analysis

In this appendix, additional figures are provided to accompany the results pre-
sented Chapter 4.

B.1 Boxplots

The following figures show boxplots of the performance in the multi-agent sim-
ulations of agents of varying configurations in varying environmental conditions.
Each of the figures has performance, defined as the baseline normalized number
of trips (see Section 4.3.2), on its vertical axis (notice that the plots have dif-
ferent scales). On the horizontal axis are the IE configurations of the agents in
the simulation, grouped by number of output units (top row) and number of hid-
den units (bottom row). The boxplots show, per condition, the distribution of
the performance; from bottom to top: lowest observation, first quartile, median,
upper quartile and highest observation. Any outliers are indicated by means of

crosshairs.
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Figure B.1: 1 target
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B.1. BOXPLOTS
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Figure B.2: 2 targets
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Figure B.3: 3 targets



