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Abstract
In the field of EEG-based Brain Computer Interfaces the Evoked Po-

tential is a well-studied response. To elicit this response, frequency tagging
is a common paradigm to use. In this paradigm a periodic stimulus signal
elicits Steady-State Evoked Potentials.

Recently, an alternative has been proposed called noise tagging. In this
method Pseudo-Random Noise sequences are used to watermark stim-
uli. These Broad-Band stimuli also elicit Evoked Potentials in EEG.
Like Steady-State Evoked Potentials they can be used in different sen-
sory modalities, in this paper visual stimulation with LEDs was used.
Using noise tagging it is possible to model and predict the response based
on the specific stimulus bit-sequence. The paradigm that was developed
allows for short train sessions, a high number of classes that require no
extra classifier training, a prior selection of a set of optimal code sequences
and high information transfer rates.
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1 Introduction
1.1 Brain Compute Interfaces
Brain Computer Interfaces (BCI) are systems that enable users to communicate
intentions or mental states to the outside world. This communication process is
accomplished by using direct brain activity only. More specifically, the source
is limited to the central nervous system, so no parts of the peripheral nervous
system are used. That means muscles, eye movement, and nerve signals outside
the skull are not used at all.

BCIs are implemented for many purposes. Examples are cursor-control
(Trejo et al. (2006)), speller-devices (Treder & Blankertz (2010), Waal et al.
(2012), Furdea et al. (2009)), wheelchair-control (Philips et al. (2007)), neural-
rehabilitation (Daly &Wolpaw (2008)), error-detection (Blankertz et al. (2003)),
gaming (Nijholt et al. (2009)), and many more. First, note that these BCI
rely on different sensory modalities like the visual, auditory or tactile stim-
ulation. These domains are both used to stimulate the user and therefore
to elicit a response in the brain, as well as to give a certain feedback. Sec-
ond, note that the brain signals are recorded using different kinds of neu-
roimaging techniques. Methods like Electro-Encephalography (EEG), Magneto-
Encephalography (MEG) and functional Magnetic Resonance Imaging (fMRI)
are non-invasive, meaning they are outside the skull. Methods like Electro-
Corticography (ECoG) and single neuron recording are invasive and need surgery
to be placed in or on the brain. Third, note that different tasks elicit different
brain responses. For example, focused attention tasks typically evoke Event-
Related Potentials (ERPs) or Evoked Potentials (EPs), whereas imagined-movement
is based on Oscillatory signals like Event Related Synchronisation and De-
synchronisation (ERS/ERD).

1.1.1 Purpose

From this point, a relevant question would be "why should one use a BCI?"
For healthy persons this seems a good question, currently, because BCIs are
still outperformed by normal Human Computer Interaction (HCI) devices (e.g.,
mice and keyboards). Furthermore, healthy people are a lot faster and still more
accurate in performing tasks without a BCI intervening. That because a BCI
requires time to process and reliability is often weak.

However, there is a large group of patients ranging from those with limited
damage to motor-areas to patients who are completely paralysed. Especially in
the later stages of Amyotrophic Lateral Sclerosis (ALS or Locked-in syndrome)
patients are entirely incapable of any communication with the outside world.
BCIs could make a difference to these patients, as they do not rely on the
peripheral nervous system, but on brain activity itself.

1.1.2 Process

Then the next question would be "how does a BCI work?" The BCI-cycle (Ger-
ven2009) provides four main stages in the process of a BCI, see Figure 1. These
four main stages are visited each time a user tries to communicate one intention.
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The first stage is called the encoding stage. In Figure 1 this is shown, pre-
senting Stimulation, Modality, Task and User. In this stage the user translates
his intentions according to a specific task via a specific modality, and according
to a specific stimulation. So for example, the user has to focus (task) visu-
ally (modality) on a flashing screen (stimulation). This stage makes sure task
relevant, or intention relevant brain signals are elicited.

Figure 1: The BCI-cycle explaining the differ-
ent stages of a BCI (Gerven et al. (2009)).

In the second stage the elicited
brain responses are recorded. In
Figure 1 this is shown by Measure-
ment. As outlined above, brain ac-
tivity could be measured by different
devices, like fMRI, EEG and many
more. In all cases, this stage measures
the brain response that was elicited in
the first stage.

In the third stage, which is called
decoding, the recorded brain signals
are interpreted. As shown in Fig-
ure 1, this involves three steps: Pre-
processing, Feature Extraction and
Prediction. During pre-processing
the recorded brain signals are fil-
tered from external noise and task-
irrelevant brain activity like on-going
cognitive processes. After preprocessing, relevant features that distinguish the
encoded intentions from each other are extracted, such that it is possible to
analyse the signals. In the last step, these features are used to predict or detect
the real intention of the user. Basically, this stage labels the incoming data with
a label saying which intention is most likely to be coded by the measured brain
signals.

The fourth stage, the transduction phase, provides the user with feedback
on the decoded intention. In Figure 1 this is called Output. For example, if
attending a specific area on a screen would mean you want to open a door, this
stage causes the door to be opened. The output - as it can be perceived by
the user - by itself constitutes a kind of stimulation. When this stimulation is
equal to the intended outcome it can be interpreted by the user as a reward on a
well-transmitted signal. This can trigger learning in the user, which may either
help the BCI because the user adapts, or hinder because the signals become
non-stationary. The latter may require the detection algorithm to adapt as
well.

1.1.3 Challenges

So far, it seems a straightforward way to develop a BCI. However, this is not the
case. There are various problems that BCIs have to overcome to achieve good
performances. First of all low Signal-to-Noise Ratio (SNR) makes is difficult to
interpret brain signals. Essentially this means that the brain recordings contain
far more noise than it contains the desired signal. This noise is not only external
noise, like 50 Hertz signal noise due to electrical grid fluctuations, but also task-
irrelevant brain activity like on-going cognitive processes. In addition, muscle
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movements typically evoke big responses in the brain (e.g., eyes, neck, heartbeat,
etc.). Furthermore, if non-invasive techniques are used, the brain signals have to
propagate through brain tissue, the scalp and skin before they reach electrodes.
On the other hand, if invasive techniques are used, which typically give higher
SNR, still tissue forming or neuroplasticity cause low SNRs.

Second there is subject-to-subject or inter-subject variability. In other words
different persons elicit different brain response even under equal circumstances.
This variability is not only found in the amplitude of the signal, but also in
the spatial orientation of the response. In addition, even in the same person
differences can be found over different time intervals, which is called session-
to-session or inter-session variability. This variability could be caused by user-
learning or habituation, but even in really small time intervals, already different
brain activity is found.

Obviously, this raises questions like "what needs to be done to improve BCI?"
(Desain, Farquhar, Haselager, et al. (2008)) Basically, there are two ways to im-
prove BCIs. On the one hand the signals could be enhanced. On the other hand,
detection and decoding could be enhanced. Considering the task of the brain,
better stimulation paradigms are developed that evoke responses that are bet-
ter distinguishable from the noise. Considering the task of the computer, either
detection could be improved by having other or new neuroimaging techniques.
Or decoding could be improved by having other or new analysis and machine
learning techniques.

1.2 Tagging the World
Tagging the World is a study in which an EEG-based BCI application is devel-
oped using the visual modality. It is the aim to enable users to control objects
scattered around in the near environment by just looking at them. Rapid flash-
ing LED’s are used to evoke brain patterns. Note, that each object in the
environment is linked to a light, which is flashing with a specific pattern. For
example, if there are five objects that could be manipulated, five lights are flash-
ing, each with a different pattern. The response on such a pattern is detected
using EEG recordings. By analysing the brain responses it is possible to retrieve
which flash pattern, (and thus which object) the user was looking at. This object
could then be manipulated. By manipulation one can think of a door opening
or closing, a TV turning on or off, or even giving a moving Roomba a specific
command.

The BCI that is used in Tagging the World could easily be adapted to
be applicable for visual spellers, where each character is flashing with its own
specific pattern. In fact, the lights could be arranged in different orientations,
as long as they are perceivable. Therefore it is also possible to play games
with this system. The system has already been applied on the can-toss game,
demonstrating to a general public that it is possible to throw cans by just looking
at them.

The aim of the research is proposing an alternative method to watermark
these objects with visual flicker. Therefore, the research is dealing with the
challenges of BCI addressing both systems involved: first the brain with its re-
sponses to new stimuli and second the computer with new analysis techniques.
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2 Background
In the domain of EEG-based BCIs that use rapid visual flicker two paradigms
are commonly used. On the one hand frequency tagging and on the other hand
noise tagging. Both provide flash patterns that evoke specific responses in the
brain.

2.1 Frequency tagging
Frequency tagging is the type of stimulus tagging in which each stimulus flashes
with its own frequency. As often square-waves (on-off) are used, the frequency
spectrum of one Frequency tag shows a peak at the specific fundamental fre-
quency and all odd harmonics. In Figure 2 two Frequency tags are shown with
their frequency spectrum.

Figure 2: Two frequency tags with their cor-
responding frequency spectrum. Note that the
top frequency tag was presented at 40 Hertz
and the other at 80 hertz.

Frequency tags elicit Steady-State
Evoked Potentials (SSEP), which es-
sentially means that the same fre-
quency of the stimulation can be
found back in the brain responses. To
analyse these responses, one should
thus look into the frequency domain.
Next to the power at a specific fre-
quency, phase can be used as feature
as well, because phase coupling of
stimulus and response is assumed. In
that sense SSEP is different from the
induced responses like alpha-power
that are not coupled to external stim-
ulation.

However, it is shown that each in-
dividual has his own sensitivity pro-
files for different frequencies (Bieger (2010)). This is the so called inter-subject
variability. Another disadvantage of frequency tagging is the low noise robust-
ness. Suppose there is noise over 40 to 60 Hertz, and the stimulation frequencies
are 45 and 55 Hertz. Because the entire signal is covered by noise, there is a
lower chance of detecting which stimulus was focused on. Moreover the brain
emits spontaneous oscillatory signals in this range that vary with mental activity
and thus will hinder reliable detection of frequency tags in the stimuli.

Consider a multi-class BCI system in which sixty classes are used. The
frequency tags have to be above 40 Hertz, such that the flickering is invisible,
but below 100 Hertz, because above it the signal is not perceivable anymore in
EEG. So the system is left with classes that use frequencies that only differ 1
Hertz. This gives rise to high spectral overlap if reasonably short time windows
are used and thus no clear ability to distinguish between the stimuli from brain
signals. Therefore spectrally dense frequency tagging is not easily applicable to
SSEP-based BCIs.

However, on the contrary, SSVEP-based BCI have proven to be very suc-
cessful. Table 1 lists the five best SSVEP-based BCIs with their respective
Information Transfer Rates (ITR) based on the Wolpaw ITR formulation (Kro-
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negg et al. (2005)). The fastest SSVEP-based BCI transfers on average 68 bits
per minute.

SSVEP-based BCIs
Authors CR C T (sec) ITR (bits/min)
Martinez et al. (2007) 0.97 4 3.5 30.0
Bin, Gao, Yan, et al. (2009) 0.85 6 na 39.7
Parini et al. (2009) 0.98 4 2.0 51.5
Bin, Gao, Wang, et al. (2009) 0.95 6 na 58.0
Gao et al. (2003) 0.88 48 3.8 68.0

Table 1: The five best SSVEP-based BCIs with their respective number of classes (C), pro-
portion correctly classified performance as Classification Rate (CR), seconds per trial (T) and
Information Transfer Rate ITR (bits/min). This table is adapted from (Vialatte et al. (2010)).

2.2 Noise tagging
Noise tagging is the type of stimulus tagging in which each stimulus flashes with
its own pattern. Analysing such a signal gives rise to a broad-band spectrum.
In other words, the frequency spectrum of a Noise code shows peaks over the
entire spectrum. While the term Noise tags can be used for both analog noise
and digital bit sequences, in this paper we focus on (up to a certain upper
time-scale) non-periodic bit sequences. These sequences are usually generated
with a shift register of a specific length M that feedbacks an xor of some of its
outputs to its input. If the outputs are chosen well the register cycles through
all its possible states (except the all zero state). The resulting sequence is called
an m-sequence (Maximum length). Combining specific choices of two of these
sequences in an xor yields a so called Gold code. These codes have special
autocorrelation properties - it does not resemble itself at any time lag apart
from 0. Time shifting one of the generating m-sequences by different delay
times yields a family of (2M + 1) different Gold codes that also have a desirable
non-correlation between any pair. These families are used in wireless telecom
broadband applications and are very robust. Gold codes are almost balanced
(same number of 0’s and 1’s) and exhibit a smaller number of occurrences of
larger runs of the same symbol, up to a sequence of M 1’s.

However these long runs are a problem for BCI stimuli because often brain
responses are triggered by transitions and while flicker above a certain clock
frequency is not very noticeable or annoying , it becomes like if it contains
long on or off periods. Therefore the codes are modulated with twice its clock-
frequency, a kind of phase-shift keying, which produces a very homogenous
sequence with only runs of one or two 1’s or 0’s. This reduces the low frequency
content of the broadband signal. Assuming that each (same-length) pulse in the
sequence exhibits a same response, and all these components combine into the
full response, linear regression can be used to derive these components. Using
a method similar to convolution, the response to new sequences can also be
predicted. This general model thus allows for zero-training of new classes. The
modulated sequences (m-Gold codes) still exhibit the desirable auto- and cross-
correlation properties, but these properties do not necessarily carry over in the
domain of EEG responses. However, as a way to model and predict responses for
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untested sequences is developed, also a search of a subset of sequences that are
easily distinguishable in the responses can be carried out, assuming a way can
be found to limit the combinatorial explosion for larger numbers of classes. The
resulting optimal subset of codes are called Platinum codes. Section 11 lists
the above mentioned Noise tags with their specific properties and generation
process in detail.

Figure 3: Two noise tags with their correspond-
ing frequency spectrum.

In Figure 3 two Noise codes are
shown. Figure 3 also shows the fre-
quency spectrum of the two Noise
codes. Noise tags elicit Broad-Band
Evoked Potentials (BBEP), which es-
sentially means that each pattern
evokes its own response in the brain,
according to the pattern itself. To
analyse these responses, one needs to
train on all patterns, such that by
averaging templates so called Event-
Related Potentials (ERP) can be con-
structed. Basically, one is then
analysing in the time-domain.

Only since the paper by Sutter
(1992) Pseudo-Random Noise sequences are applied in BCI. See Table 2 for
an overview of the five best BBVEP-based BCIs. These BCIs all have in com-
mon that they use m-sequences as stimuli and Canonical Correlation Analysis
(CCA) as classification method. Spüler et al. (2012a) achieved higher perfor-
mances by also using Support Vector Machines (SVM), and in a later version
they again improved their BCI with Error-Related Potentials (ErrP) (Spüler et
al. (2012b)). Until now, the fastest BBVEP-based BCI transfers on average 144
bits per minute.

BBVEP-based BCIs
Authors CR C T (sec) ITR (bits/min)
Bin, Gao, Wang, et al. (2009) 0.91 16 1.05 92.8
Sutter (1992) na 64 1.20 100.0
Bin et al. (2011) 0.85 32 1.05 108.0
Spüler et al. (2012a) 0.96 32 1.05 133.6
Spüler et al. (2012b) 0.96 32 1.05 144.0

Table 2: The five best BBVEP-based BCIs with their respective number of classes (C), pro-
portion correctly classified performance as Classification Rate (CR), seconds per trial (T) and
Information Transfer Rate ITR (bits/min). This table is adapted from (Duijn (2012)).
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3 Aim
The current research aims to propose a new stimulus tagging paradigm, namely
using an Optimal Subset of Modulated Gold codes (OSMOG or Platinum codes)
to watermark stimuli. As a baseline comparison frequency tags are used.

To investigate this new paradigm, several steps need to be made. The first
research question is how we can classify or even how we can simply choose
the class of which the template (ERP) maximally correlates with the single
trial. The second research question focusses on the selection of an electrode
or a combination of the signals of the different electrodes by a spatial filter
to create one-dimensional templates. The third research question proposes a
method called reconvolution that allows for predicting templates for new unseen
sequences. The fourth research question will then investigate the ability to go
multi-class, even up to sixty-five classes. The fifth research question aims to
find a method to select optimal subsets of stimuli within these sixty-five classes.

Only for the first and second research question frequency tagging will be
used as baseline for reference. All research questions are summarized in Table 3
with the stimulus tags and number of classes that are used.

Research Questions
# Question Tags # Classes
1 Linear Discriminant and Correlation Analyses f,n 2
2 Spatial filtering methods f,n 2
3 Reconvolution method n 2
4 Multi-class n 2. . . 65
5 Optimal subsets n,p 2. . . 65

Table 3: An overview of all research questions and whether they are applied on both Frequency
(f) and Noise (n) tags or on Platinum (p) codes. In addition the number of classes the analyses
are applied on is shown.
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4 Methods
4.1 Participants
Three university students participated in the experiment. Two participants were
male, one female, aged 21 to 25 years. They were free of any experience with
epilepsy and had normal vision abilities (e.g., no glasses). They participated
voluntarily and were not paid for their contribution.

4.2 Stimuli

Figure 4: Two frequency tags and three noise
tags that are used in the experiment. The stim-
uli were presented using a clock at 160 Hertz.

The experiment presented two Fre-
quency tags and sixty-five m-Gold
codes. The two Frequency tags were
at 40 Hertz and 80 Hertz. The m-
Gold codes were generated as outlined
in Section 11 with a register length
M = 6, and a preferred pair of lin-
ear feedback tap positions at [6 5 2 1]
and [6 1]. Thus the sequence length
before modulation was 26 − 1 = 63
bits. The modulated bit length was
126 bits and was presented with a 160
Hertz clock. Thus the longest and
shortest period present in the noise
signal and the only periods present
in the respected frequency tag rep-
resent 40 and 80 Hertz. This makes
the signals very similar, only differ-
ing in being periodic or not. Fig-
ure 4 shows the two frequency tags
and three noise tags from top to bottom at the left side and from left to right
on the right side.

4.3 Equipment
The sequences were projected onto a white wall using a desktop light (IKEA
KVART desktop light). The desktop light was adapted to use LEDs. To control
the flashes a custom build Midi-interface was used. At any time an opto-coupler
recorded the actual flashing patterns, as a separate channel on the EEG record-
ing. As measured by this sensor the timing accuracy was always within 1.6 ms
(std of 0.74 ms).

The EEG data was recorded using the Biosemi ActiveTwo amplifier and the
64-channel cap. This amplifier samples at a frequency of 2048 Hertz, though
the data was immediately down-sampled to 640 Hertz. It was specifically 640
Hertz such that the sample-rate of the flashing patterns is an integer divisor of
it.
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4.4 Design
Participants were first asked to fill out an Informed Consent Form. During
cap-montage participants were given task-relevant instructions about the ex-
periment. The experiment was divided into eight blocks that all cover the same
trials in random order. During each trial, the participant had to focus at the
light presented on a wall approximately two meters in front. The participant had
to push a button to start the trial. After pushing the button the light flashed
a specific pattern for 3 seconds. Between flash sequences the light stayed on
constantly.

During each block, the two frequency tags and two pre-selected noise tags
were presented in 13 trials, and one trial of all other tags were presented. Each
block thus contained 13 ∗ 4 + 1 ∗ 63 = 115 trials. In each trial, the desktop light
flashed for three seconds starting at button press.

When all blocks were finished, the participant was asked to fill out a ques-
tionnaire (see Section 13). This questionnaire provides a notion whether the
participant was aware of the different flash patterns, what these looked like and
whether they were irritating. A typical question was "if you were to count the
number of different flash patterns, how many were there?"

12



5 Analyses
5.1 Pre-processing
All data is pre-processed according to the following pipeline:

1. All trials are linearly de-trended.

2. Bad channels are detected and removed using Spherical Spline Interpola-
tion (SSI).

3. Channels are re-referenced using Common Average Referencing (CAR).

4. Trials are spectrally filtered using two pass-bands at 10 to 48 Hertz and
52 to 100 hertz.

5. Trials that deviate more than 3.5 standard deviations from the tag-related
mean are removed from the data set.

5.2 Two-class
This section fully exploits the collected train-data for two classes. Using 10-fold
cross-validation overfitting is prevented for all methods. Classification rates
expressed as a percentage of correct classifications will be the criterion on which
success of a method is evaluated.

5.2.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a pattern recognition method that sepa-
rates different classes by finding a linear combination of features. It is therefore
also used for dimensionality reduction, but it can also function as a classifier.

A LDA classifier works in a supervised way. During training the system
requires at least two class data including the labels, otherwise it is not able to
define the optimal combination of features that separate the classes from each
other.

5.2.1.1 Kernal Logistic Regression A Regularised Kernel Logistic Re-
gression Classifier (KLR) is used as classifier. Regularisation parameters are set
using cross-validation. During training the system optimises a decision function
that maps the data to the labels. The optimisation is achieved by least squares
regression.

The train phase of KLR is straighforward:

1. Train the classifier on train data

The test phase is as follows:

1. Apply the classifier on test data

2. The sign of the result yields the labels
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5.2.2 Template Matching Classifier

Template Matching is based on defining a template T for each class and a
distance function between a single trial and each template. The template that
is closest to the trial is chosen by the classifier and designates the assumed class
of this single trial. A simple and commonly used template is the ERP obtained
by averaging over all trials corresponding to a class according to the following
formula:

Tk(t) = 1
N

N∑
n=1

xk,n(t)

, where Tk(t) is the template for class k, N is the number of trials for class k
and xk,n(t) is the nth trial of class k.

Once these templates are defined, unseen data can be classified by correlating
it with all templates. Taking the best correlating template can be seen as the
template that best fits the trial, and therefore yields the most probable label of
the unseen data. The corresponding formula is as follows:

arg max(ck) = TT
k (t)x(t)√

TT
k (t)Tk(t) · xT(t)x(t)

, where Tk(t) is the template for class k, x(t) is the unseen single trial and ck is
the resulting correlation with class k which is maximized.

A problem with the above mentioned classification algorithm by template
matching is that is assumes data of one channel (i.e., one electrode). As is men-
tioned, the brain signals are measured over 64 electrodes. In the next sections
different methods are discussed that reduce this dimensionality.

5.2.2.1 Dynamic Channel Selection In Dynamic Channel Selection (DCS)
all channels are used separately in classifying a single trial and a measure is de-
fined which channel to take as output. For template matching e.g. the channel
with the least distance to the closest template is chosen as best reflecting the
class maximizing over template fit and channels at the same time. This method
is new and yields unexpectedly good results.

DCS works directly with test data that is not labeled and is therefore unsu-
pervised. DCS reduces the dimensionality as follows:

1. Correlate all templates with the single trial, but now also for all channels

2. Select the best channels by maximizing over channels

3. Apply template matching

5.2.2.2 Spatial filter methods The previous single channel methods ig-
nore much valuable information that is in other unselected electrodes. Using
spatial filters it is possible to cancel out noise and extract the relevant informa-
tion from all electrodes by combining them to one. In the following pipelines,
the template matching classifier is still used to find the label of unseen data.
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5.2.2.2.1 PCA component of LDA classifier A LDA classifier yields
a time∗channels weighting matrix. Dimensionality reduction by designing and
applying a spatial filter can be done by applying Principal Component Analy-
sis to these classifier weights (PCA-C). Time and spatial regularities are then
effectively decoupled.

PCA tries to extract the linearly uncorrelated variables, the principal compo-
nents, from the data. By selecting the first principal component, the component
is selected that accounts for as much of the variability in the data as possible.
In terms of applying PCA on classifier weights, the variable that is consistent
over the learned features and therefore explains most of the variance over time
is selected as a spatial filter.

Because this requires a classifier to be trained, it is a supervised process that
requires at least two class data. The process of PCA-R is as follows:

1. Train a classifier

2. Apply PCA on the classifier weights

3. Select the first principal component as spatial filter

4. Apply the spatial filter to the data

5. Apply template matching

5.2.2.2.2 PCA component of ERP Principal Component Analysis
can also be applied to a template. This is referred to as PCA on a response,
thus PCA-R.

PCA tries to extract the linearly uncorrelated variables, the principal compo-
nents, from the data. By selecting the first principal component, the component
is selected that accounts for as much of the variability in the data as possible.
In terms of applying PCA on an ERP, the variable that is consistent over time
and therefore explains most of the variance over time is selected as a spatial
filter. PCA-R tries to find any time consistent spatial patterns in a template.

Because PCA-R only requires one template it is unsupervised and suffices
with one class data. Applying PCA-R can be done following:

1. Compute a template by averaging over the trials from the one-class data

2. Apply PCA on this tenplate

3. Select the first principal component as spatial filter

4. Apply the spatial filter to the data

5. Apply template matching

5.2.2.2.3 ICA component of trials Another way to reduce the dimen-
sionality is applying Independent Component Analysis (ICA). ICA tries to ex-
tract the independent components by maximizing the statistical independence of
the estimated components. The two most important definitions of independence
are minimization of mutual information and maximization of non-Gaussianity.
In terms of applying ICA to EEG data, ICA extracts independent components
over time like heart-beat, breathing, eye artefacts, but also the desired signal.
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ICA can be applied directly on the data and suffices with one class data.
However, providing multiple classes could enhance the performance of ICA.
Deriving an unmixing matrix with ICA itself is an unsupervised method and
therefore, even if providing multi class data, does not require any labels. How-
ever, picking the best component is. This is often done by human eye. In this
study, we use the calculated criterion to pick the component that survives time-
locked averaging best and makes single trials most resemble the ERP of their
class.

The process of ICA is as follows:

1. Apply ICA directly to the data

2. Dynamically select the component that when applied, maximizes correla-
tion between trial and template

3. Apply template matching

5.2.2.2.4 CCA component of trials and ERP Canonical Correlation
Analysis (CCA) optimizes the correlation between trials and the corresponding
template by defining a weighting matrices Wx and Wy. CCA optimizes these
weightings in such a way that if Wx is applied to the trials and Wy is applied to
the template, correlation between them will be maximized. Selecting the first
component from CCA yields the optimal weightings over X and T .

Because CCA only requires trials of one class, from which also the template
can be constructed, CCA is an unsupervised method that suffices with one class
data. The process of CCA is as follows:

1. Compute the template T by averaging over the trials from the one-class
data X

2. Construct a matrix R that contains as many as templates as trials in X

3. Find the optimal weightings Wx and Wy as follows:

arg max(Wx,Wy) = WT
xXR

TWy√
WT
xXX

TWx ·WT
y RR

TWy

4. Select the first canonical component as spatial filter

5. Apply the spatial filter to the data

6. Apply template matching

5.3 Reconvolution
Consider the methods above that use a TMC. These methods all require full
training which means that for each class a template has to be constructed by
averaging over trials. However, if the number of classes grows, more trials have
to be presented which can become inconvenient. When working in a domain in
which the stimuli for each class and build form smaller repeating building blocks,
and a model can be found to decompose the response to the whole stimulus into
a combination of the responses to each basic component, there is a way out. In
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linear systems convolution can be used to (de)compose a response of a system
to a summation of scaled and time-shifted responses to individual small pulses
of which the input signal can be considered to be constituted. In our case a
variant is used in which the components are not delta-pulses but small block
pulses.

And by using (re)convolution, it turns out that measuring responses for all
possible input stimuli is no longer necessary. Reconvolution provides a way to
collect data of only one class and predict templates for all others. The algorithms
behind reconvolution are outlined in Section 12.

By applying reconvolution only the TMC changes:

1. Construct a template T by averaging over all trials of one class data

2. Predict all templates by applying reconvolution

3. Apply one of the dimensionality reduction methods

4. Apply template matching

5.4 Multi-class
To test the applicability of reconvolution for multi-class purposes, the pipeline
given in Section 5.2.2.2.4 is used on N = 2 up to N = 65 classes. For each N , ten
random subsets are selected that are evaluated to investigate the performance
on N classes.

5.5 Optimal subsets
To improve the applicability of reconvolution for multi-class purposes, the pipeline
given in Section 5.2.2.2.4 is used again on N = 2 up to N = 65 classes. How-
ever, now for each N , the optimal subset is selected and evaluated. The optimal
subset is found by finding the Least Correlating Subset (LCS) within the correla-
tions between all 65 possible classes predicted by reconvolution. The algorithms
used to find the LCS are outlined in Appendix A referring to Platinum codes.
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6 Results
6.1 Two-class
For both frequency tagging and noise tagging all methods outlined in Section 5.2
are validated using 10-fold cross-validation on the train-sets. These train-sets
consisted of two classes. For each class 50 trials were used with a trial length
of 0.78 seconds. For the m-Gold codes this means that exactly one period is
presented each trial. The classification rates with respect to Frequency tagging
are shown in Table 4, the results with respect to Noise tagging are shown in
Table 5.

Note that these tables show different classification methods in one table.
More specifically, the tables can be grouped according to their respective classi-
fication domain (e.g. LDA classifying time signals and TMC matching signals),
or for TMC even the spatial filters that are used.

6.2 Reconvolution
All methods outlined in Section 5.2 are also used with reconvolution. However,
because reconvolution uses train data of only one class, the LDA and PCA-C
method are not applicable. These two require supervised data of at least two
classes. In addition, frequency tagging is left out from here, as reconvolution
cannot be applied to frequency tags if only one class is used. The classification
rates using reconvolution are shown in Table 6.

6.3 Multi-class
Figure 5 shows the performance against trial size in seconds and train size in
number of trials for a 6-class problem using the CCA method as outlined in
Section 5.2.2.2.4.
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Frequency tagging
Subject KLR DCS PCA-C PCA-R ICA CCA
1 0.83 0.83 0.79 0.82 0.85 0.91
2 0.60 0.76 0.65 0.64 0.72 0.92
3 0.47 0.64 0.49 0.41 0.59 0.92
mean 0.63 0.74 0.64 0.62 0.72 0.92

Table 4: Classification rates using frequency tags and full-training on a two-class problem.
The methods are validated using 10-fold cross-validation on 50 trials of each class. Each
trial took 0.78 seconds of EEG data. The classification rates are given for different analysis
methods that are outlined in section 4.5.2.

Noise tagging
Subject KLR DCS PCA-C PCA-R ICA CCA
1 0.96 1.00 0.99 0.99 0.99 1.00
2 0.93 0.95 0.91 0.89 0.89 0.98
3 0.85 0.92 0.96 0.55 0.80 1.00
mean 0.91 0.96 0.92 0.81 0.89 0.99

Table 5: Classification rates using noise tags and full-training on a two-class problem. The
methods are validated using 10-fold cross-validation on 50 trials of each class. Each trial took
0.78 seconds of EEG data. The classification rates are given for different analysis methods
that are outlined in section 4.5.2.

Reconvolution
Subject KLR DCS PCA-C PCA-R ICA CCA
1 - 0.96 - 0.93 0.84 0.98
2 - 0.81 - 0.75 0.73 0.98
3 - 0.92 - 0.52 0.71 1.00
mean - 0.90 - 0.73 0.76 0.99

Table 6: Classification rates using noise tags and reconvolution on a two-class problem. The
methods are validated using 10-fold cross-validation on 50 trials of each class. Each trial took
0.78 seconds of EEG data. The classification rates are given for different analysis methods
that are outlined in section 4.5.2.
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Figure 5: The performance against trial size in seconds and train size in number of trials for
the CCA method applied on a six-class classification problem. The performances are averaged
across all three subjects.

In Figure 6 the performance is given using the CCA pipeline and optimal
parameters, namely 0.78 second trials and 50 train samples. The performance
is plotted against the number of classes. Also a classifier performing at chance
level is plotted, and the corresponding classifier that performs exactly significant
(alpha = 0.05) above chance level. On the right the corresponding Information
Transfer Rate (ITR) is given as measured by the Wolpaw equation (Kronegg et
al. (2005)).

Figure 6: Performance and Information Transfer Rate plotted against the number of classes
used. On the left side trained on the one m-Gold code, on the right side trained on the other.
For both a trial length of 0.78 seconds and a train size of 50 trials is used. Note the two lines
representing the chance level and the significance level above chance with 0.05 confidence level.

6.4 Optimal subsets
Subset selection was performed using an incremental method that at each step
added the least maximum correlating class to the current subset, until a subset
of a given size was formed. Figure 7 presents the same data as used in Figure 6,
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but now using an optimal subset. Again also chance level and 0.05 significance
level are plotted.

Figure 7: Performance and Information Transfer Rate plotted against the number of classes
used by using the optimal subset. On the left side trained on the one m-Gold code, on the
right side trained on the other. For both a trial length of 0.78 seconds and a train size of 50
trials is used. Note the two lines representing the chance level and the significance level above
chance with 0.05 confidence level.

6.5 Questionnaire
Two of the three participants filled out the questionnaire. These two indicated
that both participants were not consciously aware that they had focussed at 67
different flash patterns. Participants wrote they could distinguish approximately
four different patterns, especially ascribing huge difference between the noise
and the frequency codes. In addition, from the questionnaire the conclusion
could be drawn that these participants rated the flickering as being moderately
annoying, in one participant even resulting in a light feeling of a headache.
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7 Discussion
7.1 Two-class
Section 5.2 shows the classification rates for both frequency tagging and noise
tagging. From these it can be concluded that noise tagging outperforms fre-
quency tagging in all methods. However, it is believed that the lower clas-
sification rates of frequency tagging are caused by improper stimuli selection.
The two Frequency tags were 40 Hertz and 80 Hertz, which were chosen to
have fair comparisons with the m-Gold codes as these are the building blocks of
the m-Gold codes. However, these two frequencies show overlap in the higher
harmonics, which could be of disadvantage in correlation measures and even
in classifiers. It is therefore hypothesized that frequency tagging would per-
form better if proper stimuli were chosen. Therefore, the study cannot yet say
anything about noise tagging performing better than frequency tagging.

7.2 Spatial filter methods
Section 5.2 shows the classification rates for both frequency tagging and noise
tagging by using different methods. All spatial filtering techniques, except CCA,
are still outperformed by DCS. DCS even outperforms KLR. Note that DCS only
used Oz, O1 or O2 as best channels to classify on, which perfectly matches the
visual stimulation. However, the CCA pipeline seems to be the best method to
use. It is being hypothesized that this method performs best because it uses
the same optimization criterion (correlation) that is used in the classification
pipeline.

7.3 Reconvolution method
Section 5.3 discussed reconvolution applied to a two-class problem, which makes
the comparison between full training and reconvolution easier. Reconvolution
shows good performances, especially for the CCA pipeline. Therefore it could
be stated that reconvolution is able to predict the responses well, such that
classification rates do not decrease much.

Reconvolution is able to fit a response very well. However, this response can
be varied in length, such that more data is used to fit a bigger response. The
Figures below show the correlations of a two-class problem by using different
response lengths. In particular it shows the correlation of the real ERPs with
the predicted ERPs. The left figure represents reconvolution trained on class 1,
the right figure represents reconvolution trained on class 2. First of all, it can
be observed that using longer responses enhances correlation between the train
class and its prediction. However, this can be seen as over fitting, because the
correlation between the real and predicted ERPs of the non-train class decreases
after 0.15 seconds. Furthermore, the cross-correlations stay low, making the
distinction between auto and cross correlations big. In all, a response of 0.15
seconds fits the data best.
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Figure 8: Correlations between real ERPs (r) and predicted ERPs (p) using reconvolution on
a 2-class problem. On the x axis the response length in seconds is varied between 0.05 and
0.45 seconds. On the left side reconvolution is trained on class 1, on the right side it is trained
on class 2. These figures represent the average correlation over all subjects.

7.4 Multi-class
Section 5.4 shows that even in high numbers of classes reconvolution together
with CCA performs really good. Using low amounts of train data and short trial
lengths, still good performances are achieved that result in high ITRs. However,
there is something strange going on. Recall that subject 1 achieved highest
performances in the two-class full-train section. The same subject performs
worst using reconvolution in multi-class classification problems. Furthermore,
the classification rates of different participants differ much. In addition training
on the one train class yields different classification rates than training on the
other. Again some inter-subject and also inter-stimulus variability is found
which do not rely on bad channels, bad trials or bad experiment design.

7.5 Optimal subsets
Section 5.5 shows the performance and ITR by selecting the optimal subset
instead of some random ones. The method used, incremental least subset selec-
tion, still gets stuck in local maxima, but is able to improve the classification
rates and ITRs. Especially in the range between 20 to 40 classes, where the most
possible combinations are possible, the classification rates increase as compared
to random subset selection.

7.6 Design rules
From our experiment, given the specific modulated Gold codes, 160 Hertz clock,
the design rules for a BCI with a required number of classes and classification
rate can be made. The design rules specify the trial length and number of trails
needed for training to achieve a specific given classification rate for a particular
number of classes. These design rules are not yet completed as not enough data
is obtained. However, given a number of classes, the number of train samples
does not matter much. On the contrary, the trial size does have great influence
on the classification rate. Only if a higher number of classes is used, the number
of train samples becomes more important.

23



7.7 Neuroscientific interpretation
Apart from the classification rates, results may come out of this research that
are relevant for fundamental insights in neurocognition. One fundamental issue
is whether SSEP stimulation works because of attunement of neural oscillators
that become frequency and phase-locked to external stimuli (Kelso (1995)) . It
is not easy to derive characteristics of these hypothesised oscillators, e.g the
time course of their locking behaviour when a new stimulus appears and their
tracking behaviour when stimuli change frequency or phase. This is because
the measurement filters used in capturing their output also need reasonable
amounts of stable signal before they can detect changes. However, computa-
tional models of assemblies of oscillators exist (Large & Kolen (1994) and Large
& Palmer (2002)) and form a good background for conducting research on their
characteristics.

In this paper we propose non-periodic stimulation. If the responses to these
stimuli are predicted well by the models, and the same models predict the re-
sponses to periodic stimulation as well and predict them with the same spatial
distributions, we can conclude that hypothesising an internal active oscillator
that becomes coupled to the stimulation is not needed. A simple linear treat-
ment of the stimulus is then the better model. This has many consequences
when evaluating a large body of literature (Jensen et al. (2012), Kelso (2002),
Kalisch et al. (2009) and Maris et al. (2013)).

Figure 9: Topoplots of PCA-R component of presented with a noise tag (left) and frequency
tag (right) of one subject. Note that the colour range differs.

Figure 10: Topoplots of CCAWx component of presented with a noise tag (left) and frequency
tag (right) of one subject. Note that the colour range differs.
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As shown in Figure 9 the spatial filters constructed by PCA-R are different
for frequency tags as compared to noise tags. It is hypothesised that this is
caused by frequency tags demanding more complex visual processes that lie in
higher-order visual areas. However, strangely this effect is diminished by using
CCA, see Figure 10.

Frequency tags can be decomposed, but not as well as noise tags. Figure 11
shows the different subresponses extracted by applying reconvolution on noise
tags and frequency tags. Note the difference in response between noise tags and
frequency tags. Using reconvolution, 0.8 correlation values are achieved between
real ERPs and predicted ERPs. For frequency tags this value is around 0.5.
Thus there is extra processing over and above the decomposition. Though, still
after applying reconvolution the CCA spatial filters are the same for Frequency
en Noise tags. Thus there is a common linear processing active in both.

Figure 11: Shows the different suberps found by applying reconvolution. On the top the two
subresponses for the two subcomponents if trained on noise tags, below if trained on frequency
tags with the same subcomponents.

The residues after reconvolution can be also be CCA’d. These are expected
to map only to the higher brain centres. It is then hypothesised that Noise tags
also contain this signal but much less strong (occasional periodic parts), but it
maps to the same place. Thus, there is a way to separate processing. In all,
this also provides evidence for oscillators
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8 Conclusion
During this study different classification pipelines are tested for both Frequency
tags and Noise tags. First it can be concluded that Canonical Correlation
Analysis (CCA) provides ways to design spatial filters which optimally combine
electrodes to maximize correlation between trials and templates. Using CCA
and simple correlation measures high classification rates are achieved.

Second, it can be concluded that the reconvolution method enables training
on one class while predicting all others. In all it can be stated that using m-Gold
codes, CCA and reconvolution, a computationally simple pipeline is constructed
that is able to classify well. This pipeline predicts well even with low amounts
of train data reflected in the number of trials and the trial length.

Third, it could be concluded that using Platinum codes, that are a subset
of m-Gold codes selected by taking the least correlating subset in the predicted
responses, it is possible to further improve the pipeline enhancing classification
rates.

8.1 Future work
Future work could further improve the pipeline by improving the subset selection
algorithm that currently still gets stuck in local maxima using the incremental
method or still needs to visit a high number of combinations. In addition re-
convolution parameters could be optimised like the events that are used to fit a
response to. Currently only the length of on-pulses is used, whereas off-pulses
could also convey information.

Future work could also investigate the effects of different stimuli. Currently
only desktop lights are used, which is not a convenient solution for a real Tagging
the World application. Smaller or even single LEDs could be a solution, but
could also lower the brain response.

Another practical issue is the use of spatially overlapping stimuli, like in a
speller design. The current research studied responses on single stimuli exactly
in the perceptual field. Using the speller design, different stimuli would be used
simultaneously. Then the stimuli have overlap and selective attention will play
a critical role in encoding the intention from the brain signals. Thus, future
work should validate the applicability of this system using multiple spatially
overlapping stimuli.

The neuroscientific interpretation of SSEP and BBEP could still be improved
too. We have outlined a reasoning scheme to investigate the neural processes
behind SSEP with respect to neural oscillators. This work continues. Some
other questions that are still open are whether BBEP also works at other clock
frequencies, whether these will then use similar components shapes, and what
will happen when a loose clock is used? However, apart from that, still a com-
plete model of the cognitive processes behind SSEP and BBEP is still demanded
which could broaden the perspective on these questions.
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11 Appendix A: Sequences

Below the creation processes and properties of m-sequences, Gold codes, m-Gold
codes and Platinum codes are given. This forms an overview of Gold (1967)
and Meel (1999) that may be consulted for further details. Note that for some
measurements (balance property and run-length distribution), the sequences are
assumed to contain ones and zeros, but others (auto- and cross-correlations) are
expressed easier if these symbols are remapped to +1 and -1 respectively.

Maximum Length Sequences
Creation

Figure 12: The m-sequence generation process
for M = 5 with feedback tap positions at [6,1].
The bits at the taps are xor-ed, the results is
inputed into the register, which therefore shifts
one bit and outputs a bit. This process is re-
peated until a maximum length sequence is cre-
ated.

A maximum length sequence (MLS),
or m-sequence, is generated by hav-
ing a Linear Feedback Shift Regis-
ter (LFSR) of length M , with certain
feedback tap positions. This regis-
ter can initially be chosen randomly,
leaving out the all-zero option. A
common way to initialize the regis-
ter is filling it with ones only. An-
other initial register will only produce
a shifted version of the m-sequence.
At each loop, the bits that are in the
register at the feedback tap positions
are xor-ed (modulo-2 addition), see
Figure 12. The result is used as output and also fed back into the register that
therefore shifts one bit. This procedure is repeated until a length of N = 2M −1
is reached. The register may never be in a state with all-zero’s (as it will stay
there indefinitely), hence the minus one. If, during the process, the initial reg-
ister state shows up earlier than 2M − 1, the feedback tap points are chosen
incorrectly. The feedback tap positions should be connected according to a
primitive polynomial. A primitive polynomial is said to be primitive if it can-
not be factored (i.e. it is prime), and if it is a factor of (i.e. can evenly divide)
xN + 1, where N = 2M − 1 (the length of the m-sequence). All primitive poly-
nomials that have a degree equal to M are considered to be fine for m-sequence
generation. Note, that all good sets of feedback tap positions thus contain an
even number of positions.

Properties

First of all, m-sequences are almost balanced. More specifically, m-sequences
contain one more 1 than 0’s. This is since the all-zero state is never met, meaning
there are N1 = 2M−1 ones and N0 = 2M−1 − 1 zeros.

Second, m-sequences have a special run-length distribution. For all runs,
meaning subsequences of only ones or zeros, one-half has a length of 1, one-
quarter has a length of 2, one-eighth has a length of 3, and so forth and so on.
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Figure 13: Two m-sequences with their frequency spectrum.

In addition, for each run, there is an equal amount of runs of ones and of runs
of zeros.

Third, the auto-correlation of an m-sequence is two valued. Obviously, the
auto-correlation at time-shift 0 is 1. At all other time-shifts the auto-correlation
is equal to − 1

2M −1 . Basically, m-sequences have the auto-correlation property
that best allows detection of the sequence when its phase is not available.

Last, the cross-correlation (between sequences) is not as well as desirable as
their auto-correlation. So two different m-sequences may still be highly corre-
lated.

Gold Codes
Creation

Figure 14: The Gold code generation process:
two m-sequences from which one is shifted in
time, xor-ed to create a Gold code. This pro-
cess is repeated by shifting one m-sequence
over all time shifts, therefore creating all Gold
codes.

A set of Gold codes is generated by
having two m-sequences that are gen-
erated using preferred pairs of feed-
back tap positions.

Preferred pair of m-sequences are
generated by having a preferred pair
of feedback tap positions for the same
register length M . A preferred pair
of feedback tap positions satisfies the
following conditions:

1. M is odd or mod(M, 4) = 2

2. take integer k and an odd inte-
ger q, than either q = wk + 1 or q = 2(2k) − 2k + 1
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Figure 15: Two Gold codes with their frequency spectrum.

3. the greatest common divisor of
M and k, gcd(M,k) = 1 when
M is odd and gcd(M,k) = 2
when mod(n, 4) = 2.

If a preferred-pair of m-sequences is obtained, a set of Gold codes is generated
by xor-ing (modulo-2 addition) the two at all time-shifts, see Figure 14. Because
it is just adding, the products will also have a length of N = 2M −1. Because all
time-shifts are used, 2M − 1 new codes can be generated, plus the two original
m-sequences which gives a set of 2M + 1 Gold codes.

Properties

First of all, the balance property of Gold codes is not entirely met. Approxi-
mately one-third of a set of Gold codes is not balanced in which some contain
more ones and some contain more zeros. For the two-third part that is balanced,
all codes contain one more one than zeros, like an m-sequence has.

Second, the auto-correlation function of Gold codes is not as good as for
m-sequences. Obviously, it shows a peak at 1 at time-shift 0. At all other time-
shifts it shows the same three values as in the cross-correlations, but in different
proportions.

At last, the cross-correlation of a set of Gold codes generated by a preferred
pair of m-sequences is three valued. Recall that N = 2M − 1. Then if M is
even, the cross-correlation values are −1

N , −2((l+2)/2)+1
N and 2((l+2)/2)−1

N with
an occurrence of approximately 0.5, 0.25 and 0.25 respectively. If M is odd,
then the cross-correlation values are −1

N , −2((l+1)/2)+1
N and 2((l+1)/2)−1

N with an
occurrence of approximately 0.75, 0.125 and 0.125 respectively.
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m-Gold Codes
Creation

Modulated-Gold codes or m-Gold codes are generated by having a Gold code
that xor-ed (modulo-2 addition) with a double-frequency bit-clock. This proce-
dure is known as Phase Shift keying (PSK). Because the code is up-sampled, the
length of the m-Gold code is N = 2 ∗ (2M − 1).

Figure 16: The Modulated-Gold code gener-
ation process. A Gold code is modulated by
xoring it with a double-frequency bit-clock.

Properties

All m-Gold codes are balanced. More
specifically, each m-Gold code con-
tains as much ones as zeros, thus
N1 = N0 = 2M − 1.

The normalized auto- and cross-
correlation properties of Gold-codes
are retained by this modulation treat-
ment.

The modulated gold codes only exhibit run-length of 1 or 2. This shapes
their spectrum, and reduces low frequency content. This is a desirable property
when used to modulate audio or light intensity as long runs become noticeable
and annoying and make the tags perceptually distinguishable.

Figure 17: Two Modulated Gold codes with their frequency spectrum.

Platinum Codes
Given a generative model, a mapping from stimulus to response, one can con-
sider correlations in brain activity to be able to take the P best performing
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m-Gold codes. These P m-Gold codes are then considered to be Platinum
codes.

Creation

Thus, Platinum codes are a subset of m-Gold codes. Assume a set of m-Gold
codes is used to evoke brain responses, denote these responses as the set R. The
set Platinum codes of P m-Gold codes, is that subset taken from R of size P
that has the lowest maximum cross-correlation between any pair. This subset
is called the Least Correlating Subset (LCS) and forms a set of Platinum codes.

The first and simplest way to find the LCS is by using a brute-force or ex-
haustive approach. This approach generates all possible subsets from R and
computes the maximum cross-correlation within each subset. The optimal sub-
set is then found by taking the argmin. This method will always find the optimal
subset, but explodes in the number of combinations and is therefore not appli-
cable.

Another method is finding the LCS by clustering the elements in R on sim-
ilarity. The clustering is achieved by constructing a dendrogram using the hi-
erarchical complete-link clustering algorithm. Afterward the tree is cut into P
clusters. The search space is now narrowed down as from each cluster only one
element has to be chosen. From this point, all possible subsets are created using
one element from each cluster. The optimal subset is than selected by taking
the argmin of the maximum between-pair correlations. However, as this method
narrows down the search space, the number of combinations is still enormous
making the evaluation computationally hard.

Another way to find the LCS is by stepwise selection. This method increases
the subset by initially taking the least correlating pair from R. From that point
it adds the element from R that has the lowest maximum correlation with the
generated subset from the previous step. This step is repeated until the subset
contains P elements. An extension to the algorithm is to evaluate the current
subset also with backward stepping leaving out the worst correlating element in
the current subset, and adding one from R that correlates be better. However,
still this algorithm could get stuck in a local maximum as it evaluates step by
step, looking one in front and one in behind. On the contrary, this method does
find a solution in low amounts of time.
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12 Appendix B: Reconvo-
lution

In commonly used Brain Computer Interfaces (BCI), all present classes have to
be seen in a training phase. However, when the number of classes gets bigger,
like for example in a visual speller with twenty-six or even more characters, the
training phase gets too large. Reconvolution is a way that enables to train on
one class only, and predict all others. In the next sections, reconvolution will
be explained in more detail.

Assumptions
Linearity
Reconvolution assumes the brain to be a linear system. So, first it should
hold that if A is put into the system resulting in C, and afterward B is put
into the system which results into D, inputting A + B should give C + D. In
addition, it should hold that if the input is vA + wB the system should give
vC + wD. Though it is known that the brain is not an entirely linear system
as in the combination in EEG of contributions from different areas through
volume conduction. And, as is shown in this thesis, reconvolution is capable of
predicting a large percentage of the variance in the responses.
Composability
Reconvolution assumes that all classes are build up from the same building
blocks. In fact, the class on which is trained, should be build up from all sub-
parts that can be found in the to be predicted classes. In other words, reconvolu-
tion decomposes the trained class into subcomponents. For each subcomponent
a response is found. Only these responses are used to build the predictions.
Concluding, classes should have a similar composable structure. The compo-
nents could be the actual value at each sample time (like in true convolution),
but also the positive and negative flanks, or positive pulses of various lengths
present in the signal.

Method
In Figure 18 the process of reconvolution is shown for the trained class only. On
the left side, the composability is shown. On top the whole sequence is given,
which is decomposable into two subcomponents, being a long and a short im-
pulse, the events. These events are shifted in time such that, if all are added up,
the original sequence is found back. During training by repetitive stimulation
with this sequence, and eventually averaging over trials an ERP is constructed.
The ERP corresponding to the sequence on the left is shown on the top right.
It is then assumed that each subcomponent on the left, evokes its own subERP
on the right. Note that for each short event, the same subERP is given and
for each long one another. Summarizing the previous, we have a sequence that
is decomposable into two subcomponents being a short and a long event. In
addition we have an ERP corresponding to that sequence with its subERPs
corresponding to these short and long impulses.
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Figure 18: The process of reconvolution. On the left the decomposition and composition of a
noise code. With arrows to the right the corresponding responses are shown. Following the
same decomposition and composition process, reconvolution is able to predict responses.

Now, notice that also the subERPs are shifted according to the time-lag in
the corresponding event. If all the subERPs are added up, it is assumed that the
original ERP will be reconstructed. By applying least squares regression it is
possible to find these specific subERPs on each event. By using a similar method
as convolution, a prediction of the whole ERP can be constructed. However,
due to the non-linearity of the brain this prediction is not entirely equal to the
original ERP, but the normalized correlation between the two is on average 0.8.

Now note that all our sequences are build up from the same subcomponents,
again recall the composability assumption. Because the responses on these
subcomponents are already known, it is possible to fit these subERPs into the
structures of all these other sequences.

Concluding, by training on one sequence, an ERP is obtained. Then, the
sequence is decomposed into a structure giving the exact timings of the indi-
vidual events. Using regression the ERP is also decomposed into the individual
responses, yielding single responses for each individual subcomponent. Because
all sequences (the other classes) are build up from the same subcomponents, the
brain response can be predicted by convoluting the structure of these sequences
with the subERPs.
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Formal
The description above introduced the reader into the workings of the method.
However, depicting it mathematically makes it more precise. In Desain, Far-
quhar, Blankespoor, & Gielen (2008) a formal description has been given on
reconvolution using some other events as above. In the description rising (0-1)
and falling (1-0) events are used, which would correspond to an on-going light
and an off-going light respectively, in the context of this thesis. However, in
this thesis short (1-1) and long (1-1-1-1) events are used. Note that it is thus
possible to have different events. Another option could be to use both on and
off sequences, including the short and long bits. The formal model that is pre-
sented below abstracts from these events, by providing a summation over all
events, whatever they are or represent.

The model of decomposition could then be written as:

x(t) =
L∑
τ=1

E∑
j=1

Ij(t)rj(t− τ)

where, x(t) is the total response at time t, L is the duration of the response,
E are the events, rj is the response on the jth event and Ij is the indicator
function that is 1 if the jth event is at time t and 0 otherwise.

To do the regression part a Toeplitz structure is used, that lists the events
at each point in time. In Desain, Farquhar, Blankespoor, & Gielen (2008) the
model is then expressed as:

x =


... · · ·

...
Ij(i : i+ L) · · · IE(i : i+ L)

... · · ·
...


 j

...
rE

 = Mp

where, x are the modelled responses at each time,M is the decomposition matrix
containing events shifted one sample at each row, and p is the concatenation of
all the types of responses. This means that the equation is linear with respect
to the responses, and as of that the parameters can be found using least-squares
regression.

Optimal Component Selection
Throughout this article, multiple methods are outlined that find different com-
ponents (e.g., PCA, ICA, CCA, but also DCS). Using reconvolution a new way
to find the best component is acquired. Before reconvolution already a real ERP
is defined by averaging over trials. By applying reconvolution a prediction of
this ERP can be constructed. Call these ERP and PRD respectively. Now,
by applying the component (e.g., select a channel or apply a spatial filter) to
both ERP and PRD a correlation value can be computed corresponding to this
component. By maximizing over this correlation, the best component is found.
More specifically, by using this optimal component selection algorithm, that
component is selected, that maximizes the correlation between the real ERP
and predicted ERP.
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13 Appendix C: Question-
naire

The questionnaire that is used to investigate the usability and user satisfaction
of the tags that are used.
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