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ABSTRACT

This thesis introduces two novel versions of the existing Lock-
in Feedback algorithm. This algorithm is a means of per-
forming stochastic optimization. The novel versions include
alterations that make them applicable on higher dimensional
function maximization problems. By running several simu-
lation tests and examining the cumulative regret returned by
each method, this thesis shows that the proposed extensions
prove to be performing well on function maximization prob-
lems of two dimensions. Both versions are also applied on
a function containing multiple maxima, in order to test their
ability to deal with more complex maximization problems.
By making adjustments to the Lock-in Feedback algorithm
inspired on the Artificial Bee Colony algorithm, it was made
sure that the method would uncover global in stead of local
maxima.
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INTRODUCTION

This thesis addresses the topic of (sequential) function max-
imization. In other words: performing experiments to find
the optimal value for maximizing the output of a function of
interest. Where the value’s level of optimality is assessed on
how well it maximizes the output and where the function is un-
known. An example challenge from the field of economics that
illustrates this topic is the determination of a selling price for
a product for which the product’s revenue will be maximized

(1] [3].

*T.J.G. acknowledges the support of Dr. Maurits Kaptein in conduct-
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When selling products it is wise to perform some sort of market
research in order to determine the best possible selling price.
A simple study could already be performed by presenting cus-
tomers with different prices at different times to subsequently
observe the total amount of products sold for each price. After
running this experiment for a certain period one could decide
to stop experimenting and start exploiting the best observed
selling price. Of course, reducing the total exploration time
can be very interesting in many situations. But it might also be
interesting to be able to perform a combination of exploration
and exploitation, where the option currently being exploited
is updated continuously [5]. Therefore, several literature on
the exploration/exploitation trade off already exists (see, e.g.,
[12], [14]).

What is also widely covered in the literature is one-
dimensional function maximization (see, e.g., [17], [4], [9],
[16]). One-dimensional functions are functions dependend
on a single controllable variable. Thus maximizing these
functions still includes a certain exploration period, but only
exploring the optimal value for this single variable. The eco-
nomic example illustrates a scenario in which one is interested
in picking, from a large set of options and at each moment in
time, the one option that will lead to maximum total revenue.
But, the option exists out of just one controllable variable,
namely the selling price.

The current study, however, is interested in function max-
imization dealing with two controllable variables (higher-
dimensional function maximization). A possible illustration
of higher-dimensional function maximization is the case of a
salesperson determining how many of the same product should
be sold in a bundle while at the same time determining how
much discount this bundle should get in order to obtain the
highest possible revenue. Think for example of a grocery store
selling two bags of the exact same potato chips for the price
of just one bag of potato chips. Another possible scenario
could be a salesperson thinking about introducing the concept
of *Group Buying’ to increase the sales of a particular prod-
uct. Group Buying is the concept of assigning a discount to a
product only when a specific amount of people decide to buy
the same product at once [2]. The salesperson could vary the
amount of people needed to obtain this discount as well as the
total discount itself.



What should be noted is that the current study is only interested
in function maximization of sequential nature. Sequential
means performing experiments, trying out different values for
each controllable variable, at different moments in time. One
experiment after the other. In a more formal sense, sequential
function maximization boils down to finding X,,,x = arg maxz
F(X), where arg maxz f(X) is the set of values for ¥ for which
S(¥) will attain its maximum value. X represents a vector
containing multiple controllable dimensions and which is used
in the mostly unknown function f(¥). And each trial is indexed
byt € {1,...,T} in order to make sure the experiments occur
sequentially.

There exist different kinds of methods to deal with sequential
function maximization. Among several methods of interest
for this thesis, which will all be introduced in the next section,
stands a method originating from the field of physics and
engineering called Lock-in amplifier technique. Kaptein and
Tannuzzi adapted the technique so that it could function as a
generic tool to find X,,,c = arg maxz f(¥) and named it LiF
which is short for Lock-in Feedback. The LiF method relies on
oscillating the controllable variable x at a fixed frequency and
to look at the response of the dependent variable y at the same
frequency via a lock-in amplifier [6]. Their focus was on cases
where x is a scalar and they suggest that future experiments
should also consider extending the original algorithm to make
it applicable on cases where x is a vector.

Cases where x is a vector do exist as one of the previous exam-
ples stated. So the development of a method that is able to deal
with higher dimensional cases could potentially result in sev-
eral applications. Therefore the goal of this thesis is to extend
the proposed LiF algorithm by Kaptein and lannuzzi so that it
can be applied on higher dimensional sequential fuction maxi-
mization. Meaning that it should be able to deal with multiple
controllable variables (X). The first research question of this
thesis is: How can the existing Lock-in Feedback algorithm
be altered to deal with higher-dimensional problems?

In the paper by Kaptein and Iannuzzi it is also stated that the
current Lock-in Feedback algorithm is prone to getting stuck in
a local maximum. This susceptibility may also remain present
when working with altered versions of the original Lock-in
Feedback method. So the second research question of this
thesis is: How does an altered Lock-in Feedback algorithm
perform when applied on functions with multiple maxima?

Next, this introduction will be followed by a literature review
of a collection of relevant and related research on sequential
function maximization. Most importantly the following sec-
tion will elaborate more on the LiF algorithm and why it is
of interest for this thesis. Subsequently, in the Method, the
extended versions of LiF will be presented as well as the simu-
lator which will be used to evaluate these novel algorithms as
well as the existing optimization algorithms. The evaluation
itself will mainly consist of comparing the cumulative regret
of the used algorithms. The different existing approaches used
in this thesis are the -first method as well as the Artificial
Bee Colony algorithm ([10], [8]). Both approaches will be
explained in more detail later on. The final sections of this

thesis will contain an interpretation and a discussion of the
results collected from the performed simulations.

LITERATURE REVIEW

The focus of the paper by Kaptein and Iannuzzi was to ef-
ficiently and sequentially find continuous (with x being IR)
treatment values which maximize some observable outcome of
an experiment [6]. Thus, they presented the Lock-in Feedback
method as a means of accomplishing this. LiF is a derivative
free method to perform stochastic optimization with bandit
feedback. Derivative free methods tackle the problem of op-
timizing an unknown function of which only its values, in-
cluding possible noise, at various points can be observed [16].
They are termed derivative free methods as one has only access
to the functions values rather than gradients. For a method
to perform stochastic optimization means that the algorithm
itself employs a probabilistic rule for improving a solution [8].
When bandit feedback is included the solution is improved by
making use of the observed value of the unknown function at
a single point [1].

LiF is based on the Lock-in Amplifier Technique originating
from the field of physics and engineering [15]. It relies on
oscillating the variable x at a fixed frequency and to look at
the response of the dependent variable y at the same frequency
via a lock-in amplifier. Following a scheme used in physical
lock-in amplifiers helps in providing direct measurement of
the value of the derivative of f at x = xo. In summary: x is
oscillated with time according to: x; = xo + A cos @t. Where
Xg is the central value of the oscillation and @ its angular
frequency. These oscillations return values y, for the unknown
function f(¥). Each returned value y, is multiplied by cos(wr)
following the scheme used in physical lock-in amplifiers which
results in yg. The running sum Yy, divided by the integration
time T will result in yj, which in turn is useful as an update
strategy for xp, namely: if y;, < 0, then x is larger than the
value of x that maximizes f. Or, if y}, > 0, x¢ is smaller than
the value of x that maximizes f. The information obtained
from calculating y;, with the oscillations will help in moving
Xo closer to x,,4. The update rule proposed in the work by
Kaptein and Iannuzzi is xo = xo + ¥ ¥;, where ¥ is the learn
rate of the procedure [6].

The previous explanation for the update rule is explained in
figures 1, 2, 3,4, 5, and 6. In figure 2 a table is shown where x
is oscillated and five different values for y have been observed.
After multiplying each observation with cos(z) the total sum
is equal to 5. The sum is larger than 0 and thus the value of
x is smaller than the value of x that maximizes it. Thus the
value of x should be increased. This scenario is illustrated in
figure 1.

Figure 3 illustrates the opposite case, where the sum is smaller
than 0 and thus the value of x is larger than the value of x that
maximizes it. Therefore, the value of x should be decreased.
The exact values for this example are illustrated in figure 4.

The final scenario is where the value of x is near x;,,4,. In this
case the sum is equal to 0 and the value of x should neither be
increased or decreased. Which is illustrated in figures 5 and 6.



x+cos(wt) y y*cos(wt)
X-1 8 -8
X-05 7 3,5
g X 6 0
X+05 5 25
X+1 4 4
X Sum -5

Figure 1. Tllustration of the case that x; < % Figure 4. Table corresponding to the scenario illustrated in figure 3.

x+cos(wt) y y*cos(wt)
X-1 4 -4
X-05 5 -2,5
>
X 6 0
X+05 7 3,5
X+1 8 8
Sum 5 X
Figure 2. Table corresponding to the scenario illustrated in figure 1. Figure 5. Illustration of the case that x; = x4y
x+cos(wt) y y*cos(wt)
X-1 5 -5
X-05 6 -3
>
X 7 0
X+05 6 3
X+ 1 5 5
X Sum 0
Figure 3. Illustration of the case that x;, > x,,,4. Figure 6. Table corresponding to the scenario illustrated in figure 5.



This entire process assumes x to be scalar. Kaptein and Ian-
nuzzi suggest that, in the case x is a vector, a similar approach
can be taken to find the maximum of the function f(X) in more
than one dimension. When x is two dimensional, LiF can deal
with this problem by oscillating both elements of x at different
frequencies. Where the original LiF algorithm would start to
oscillate only at x( the new version will oscillate both elements
of x at different frequencies represented as @; and @». Thus:

X1, =x10+Ajcosmgt (1)

X2 = X2,0+ Ao cos wyt 2)

After having oscillated both elements of x, y; = f(x1,x2,)
can be observed and information regarding the gradient can be
retrieved by making use of both omegas to separately compute:

V1,0 = Y1 COS W11 3)

Y2,0 = Y COS Wyt 4)

While this will allow LiF to be used for higher dimensions
it should be noticed that @; and @, should not be equal to
or multiples of each other. This should prevent that the fre-
quencies will overlap. When the frequencies do overlap the
exploration for the optimal values for each element of x will
occur diagonally in the search space. When this overlap is not
present, the exploration will present a more circular pattern
which results in more options being explored.

Another remark made by Kaptein and Iannuzzi, relates to the
second research question of this thesis. They state that the
Lock in Feedback method is susceptible to finding local max-
ima instead of the sought global maximum. They propose that
a good solution to this problem could be oscillating multiple
independent xg at different starting points. This could possibly
lead to unveiling multiple maxima and this results in multiple
options in which one can expand the experiment. One could
for example choose to evaluate the different maxima and pick
the best one or decide to ignore certain found maxima and
keep updating the ones which are left.

One existing method seems to be performing the proposed
solution by Kaptein and Iannuzzi for dealing with multiple
maxima. This method is based on the behavior of a honey
bee swarm and is therefore named the Artificial Bee Colony
(ABC) algorithm. The term swarm is here used to refer to a
collection of agents interacting with each other. Inside swarms
exist division of labour which enables simultaneously task per-
formance by specialized agents. The general idea behind the
collective intelligence of honey bee swarms consists of three
essential components according to Karaboga [7]. These com-
ponents are: food sources, employed foragers and unemployed
foragers. Next to these components the minimal model behind
forage selection defines two modes of behaviour: recruitment

of unemployed bees to a nectar source and the abandonment
of a source [7]. The possible gain of each food source can be
represented in a single quantity, which can be represented by a
certain function f(x). Bees who are at the moment busy with
particular food source are employed bees as they are currently
exploiting the food source. They will return to the other bees
with information about this food source. The information it-
self is the value given by f(x). Unemployed bees on the other
hand are looking for a food source to react on. This gives us
two more types of bees, namely scouts and onlookers. The
scouts will go and search the area for unknown food sources.
Onlookers wait in the nest for new information on possible
profitable food sources which they could help to exploit.

This behavior relates to the strategy proposed by Kaptein
and Iannuzzi to deal with local maximum as it deals with
function maximization by making use of multiple starting
points. When an algorithm only deals with one starting point
it risks getting stuck in a local maximum as it will have no
knowledge of other possible maxima. Thus by making use of
multiple starting points and evaluating each observation done,
this risk is reduced.

An algorithm similair to the ABC algorithm is named the Vir-
tual Bee Algorithm and was created by Yang to solve numeric
function optimization [8] [13]. This algorithm only slightly
differs from the ABC algorithm. A swarm of virtual bees is
created to work on functions with two parameters. The bees
start to spread randomly in the space of the function. The bees
will interact on some values encoded by the function as if it
represents nectar. Finally, to solve the optimization problem
one only needs to look at the intensity of the bee interactions
on the function. Certain parameters for the function will be
visited more by the swarm then others.

According to Tereshko and Loengarov [8], who established
a robotic idea on the foraging behavior of bees, the swarm
possesses a significant tolerance. The failure of one bee does
not result in the failure of the entire swarm. Moreover, as the
individual bees might have limited capabilities and limited
knowledge of the environment, the entire swarm develops
collective intelligence.

Taking these statements in mind, these algorithms possess the
possibility to perform very smart and efficient behavior to
solve complex maximization cases by making use of smaller
parts of codes that perform very specific work. Where finding
the global maximum of a function without getting stuck in
a local maximum is an example of a complex maximization
case. For this thesis it therefore makes sense that a logical
extension of the current LiF-II algorithm would be to improve
it with the positive aspects of the ABC algorithm. This roughly
means that instead of oscillating around one xq the algorithm
would generate multiple starting points from which to start
oscillating. Each starting point could then be evaluated and
from there it could be decided to abandon certain points and
to focus on potentially more profitable points.

This thesis presents two extended LiF-II versions which will
be applicable on two dimensional problems. One version will
be extended by only making use of the suggestions made by



Kaptein and Iannuzzi by simply oscillating both elements of
vector x at different frequencies. The other version will include
the same extension but will also include additional changes
inspired on the ABC algorithm. Next to these two versions
of the LiF-II algorithm, this thesis will also be making use of
the ABC algorithm itself and the e-first algorithm. The e-first
algorithm makes use of two stages. The first stage is the ex-
ploration stage and here choices are made pure randomly. The
second stage is the exploitation stage and here the alternative
with the greatest estimated value rate is always chosen. Both
the ABC algorithm and the epsilon-first algorithm will solely
function as comparisons for the two extended versions of LiF-
II. The next section will go into more detail on all proposed
algorithms and will also discuss the simulation experiment
setup as well as the settings and functions used.

METHOD

As is made clear in the introduction, the current thesis is
interested in answering two research questions. These are:

e How can the existing Lock-in Feedback algorithm be altered
to deal with higher-dimensional problems?

e How does an altered Lock-in Feedback algorithm perform
when applied on functions with multiple maxima?

In order to answer these questions, two studies were performed.
Each study had its own data generating function on which all
implemented algorithms were tested. To accomplish this a
simulator was created.

In this section the simulator setup will be discussed. The first
part shall discuss the simulator and its general settings as well
as the pseudocode of the different algorithms that have been
implemented. The different algorithms are: LiF-II (extended
version 1), LiF-II (ABC inspired), Artificial Bee Colony al-
gorithm, e-first, and e-first,. Following this first part will be
a subsection on the functions which have been used to gen-
erate the data on which the algorithms were tested. In total
two data generating functions have been used. One function
only generates one global maximum, while one function gen-
erates multiple maximums. The latter generates in total 4
maximums, but with only one global maximum. The final part
of this section will discuss the evaluation procedure. Thus
the way the performance of each algorithm on the different
data is evaluated and why. Important to know is that all code
has been written in Python and in order to plot the different
functions and to make the various calculations numpy.py and
matplotlib.py have been imported.

Simulator and General Settings

The simulator could be operated by means of a GUI. This
GUI made it easy to perform several simulation runs on dif-
ferent algorithms and on different data generating functions
in sequence. Also, the simulator included some general set-
tings that are used for every run no matter which algorithm or
function is selected. These settings are:

e runs = 100

e horizon (T) = 10000

Runs is set to 100, which means that every simulation test will
run the selected algorithm on the selected function for 100
times. Next the horizon is set to 10000 for every simulation
test, which means that every algorithm will be iterated for
10000 times. So every run exists out of iterating the selected
algorithm on the selected function for 10000 times. These
values have been chosen as 10000 iterations seemed sufficient
for each algorithm to reach the maximum of each function.
And increasing the total amount of runs would result in a large
amount of time needed to collect all data. Thus, to be sure that
this thesis would be finished in time, it was decided to keep
the entire experiment to 100 runs.

Futhermore, every iteration is composed of three function calls
to the algorithm currently being used:

e algorithm.giveNextXt
e algorithm.giveNextYt

e algorithm.evaluate

The giveNextXt call ensures that the algorithm calculates the
subsequent values for each element of x;. Then giveNextYt is
used to observe the value y; returned by the data generating
function by making use of the previously calculated values for
each element of x;. Finally, the evaluate call tells the algorithm
to evaluate the observation which should enable the algorithm
to update each element of x;. Thus returning to the start of the
loop.

This simulator design was chosen as it led to a neatly struc-
tured implementation of the code. If needed, more algorithms
could easily have been included in the experiments as for the
general fashion of iterating each algorithm. Moreover, the
GUI ensured that multiple runs with different algorithms and
on both function could be started without having to change
the code constantly. For more detail on the simulator see
the Appendices.

Algorithms and Settings
LiF-Il extended version 1

The pseudocode presented in Algorithm 1 represents the algo-
rithm for the first extended version of LiF-II. In this algorithm
x is no longer a scalar but a vector as this version should be
used to deal with two-dimensional problems. Where the origi-
nal LiF algorithm would start to oscillate only at xy the new
version will oscillate both elements of x (X center aNd X2center)
at different frequencies represented as @; and @,. This can be
seen in lines 5 and 6.

Lines 7, 8, and 9 show how y, is obtained, multiplied, and
stored in yu, and yg,. Futhermore, in this implementation
the summation of these multiplied observations y; is used to
update Xjcenrer and Xocenrer- Which can be seen in lines 11,
12, 13, and 14. The algorithm itself is almost identical to the
algorithm used by Kaptein and Iannuzzi.

The algorithm requires several parameters which are listed
below:



® Xicenter and Xocenrer Tepresent the starting point of the al-
gorithm. Together they form X and the algorithm tries to
calculate the values for both in order to obtain x;,,,,. For this
thesis it has been decided to randomly assign starting values
to each element of X. Kaptein and lannuzzi suggested to let
Xo start as close to x,,,, as possible, which depends on the
available information on f(x). However, no available infor-
mation is assumed making each starting point a potentially
good starting point. Furthermore, as will be explained in
the next subsection, LIFII2 will include multiple distinct
starting points on which basically LIFII1 will be performed.
This makes it even more interesting to start LIFII at random
points instead of same fixed point each run.

e Aj and A; denote the amplitude that affects the costs of the
search procedure. This parameter will decide how wide the
oscillations will be, which might result in a large number
of x values with low resulting y values. Making A; and
Aj too large will possible lead to overshooting x,,,,. Both
A1 and A, are set to 1 in accordance with the simulation
test performed by Kaptein and Iannuzzi. For this thesis
no experiments have been run in order to find the optimal
setting for the amplitude.

Next is T which represents the integration time. Again the
value given to this parameter has different effects as a larger
T leads to a smoother update but also a slower convergence.
For this thesis 7 has been set to 10. Also no additional
experiments could be run to decide on the optimal setting
of T.

7Y is the parameter which determines the step size at each
update of xg. In the emperical regret study performed by
Kaptein and Iannuzzi they decided to set Y = 0.1, which is
also the value to which ¥ is set during this research.

Both yg, and yg, will contain a running sum of y, cos @t
over t that is used for the integration and is therefore an
empty list.

Finally, both @; and @, represent the frequency at which

S . . 2
the oscilation of each x; will be occur. @ is set to T as

this was also the setting used in the paper by Kaptein and
Tannuzzi. Because @, should not be equal to or a multiple of

. . R¥/4
m, it was decided to set @, to —. No further research has

been performed on the optimal settings for both frequencies.

The algorithm makes us of continuous updates of x{cepnser and
Xpcenter Which means that after each observation xjce,rer and
Xocenter are updated. The previous information can also be read
in the paper by Maurits and lannuzzi [6].

A short overview of all settings for Algorithm 1:

® Xicenter ANd Xocenser are assigned initial values in a random
fashion

e A=1
e T=10
e Y=0.1

Algorithm 1 Extended LiFII version 1 for 2 dimensional vari-
able maximization using continuous updates.

Require: Xiconrer,XacentersA1,A2,T,Y, Yo, ,yZ,Z

1 @ = 2, 3m

N 1= T ’ 0)2 - T

2:t=0

3: whiler < T do
t=t+1
X1,t = Xlcenter +Ajcosmt
X2t = X2center +Aj cos ant
yr = f(x14,x2,) + noice;
Yan = push(yg,,y: cos @;7)

9 Yo, = push(ya,,yr cos 1)
10:  ift > T then

»

11: Yo, = (Xye,)/T

12: Yar, = (LYar)/T .
13: Xlicenter = Xlcenter ?yZ)I
14: X2center = X2center 1 %y:()z
15:  endif

16: end while

LiF-Il ABC inspired

The pseudocode presented in Algorithm 2 represents the sec-
ond extended version of LiF-II which is inspired on the Artifi-
cial Bee Colony algorithm by D. Karaboga and B. Basturk [8].
The algorithm will be making use of several parameters which
can also be found as the parameters of either Algorithm 1 or
Algorithm 3 in this thesis.

The first parameter included in Algorithm 2 is SN. It represents
the popultaion size of the employed bees. The first part of
the algorithm includes a for loop that ensures that all bees are
initialized and the loop runs till the value of SN is reached. SN
was set to 9 the entire experiment. The reason this parameter
was set to 9 had to do with the initial starting point of each
bee. At first each initial starting point was chosen at random.
However, this could result in several bees starting at nearly
the same spot which in turn lessens the benefit of starting
multiple searches. Thus the current code ensures that each
bee has a specific starting point with enough space between
the following bee. For each function the starting positions are
represented in figures 7 and 8. The other parameters required
for this Algorithm to work are identical to the ones of Algo-
rithm 1. Therefore the values assigned to each parameter are
based on the same explanations as were given at Algorithm 1.

A short overview of all settings for Algorithm 2:
e SN=9

e A =1

e Ay =1
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Figure 7. LIFII2 starting points for function 1

Figure 8. LIFII2 starting points for function 2

e v=0.1
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Algorithm 2 Extended LiFII version 2 based on ABC algo-
rithm for 2 dimensional variable maximization
Require: SN, A, A, T,7, @, in

1: employed_bees = empty list

2: locations_visited = empty list

3. fori=1,...,SN do

4:  location = self.scout(location_visited)

5:  employed_bees = push(LiFBee(location))
6: location_visited = push(location)

7: end for

8: =0

9: whiler < T do
10:  for bee in employed_bees do

11: t=t+1

12: bee.x1; = bee.X1censer +A1 COS W11

13: bee.xy; = bee.x2censer + Az COS Wt

14: bee.y; = f(bee.x; ;,bee.xs ;) +noice;

15: bee.yo, = push(bee.yg,, bee.y, cos w;t)

16: bee.ys, = push(bee.yq,, bee.y; cos w;t)

17: if 1 > T then

18: bee.yg, = (Lbeeye,)/T

19: bee.yg,, = (Lbee.ya,)/T

20: bee.X1center = DEE.X1center + %bee.y*a,1
21: bee.Xocenter = b€€.X2center + %bee.y}‘o2
22: end if

23:  end for

24:  if t%900 == 0 then

25: (worst_bee,best_bee) = self.rank(employed_bees)
26: worst_bee.location = self.scout2(best_bee)
27:  end if

28: end while

Like the Artificial Bee Colony algorithm, multiple starting
points are considered in order to speed up the search in com-
plex cases. But also to prevent getting stuck in a local maxi-
mum. In order to deal with multiple starting points, the algo-
rithm makes use of additional functions.

The functions shown in lines 4, 5, and 6 are used to initialize
the bees. The scout function requires a list of already visited
locations and will then, at random, return a new location.
The function also ensures that this new location has not been
visited yet. Thus it should be appended to the list of visited
locations, which happens at line 6. In line 5 we see that a
new bee is created and appended to the list of bees named
"employed_bees". We see that a LiFBee is appended, which is
a class that represents a bee that will perform LiFII1 in order
to maximize a two-dimensional function.



As each bee performs LiFII, the pseudocode of Algorithm 2
looks almost the same as the pseudocode of Algorithm 1.
However, line 10 is included to loop over all bees. Also
lines 24, 25, and 26 are included in order to evaluate all bees
after each iteration. This way the algorithm can determine
the current optimal values for each element of X. The rank()
function at line 25 will rank each bee from low to high and
return a tuple with the worst bee as first element and the best
bee as second element. The ranking occurs by making use of
the equation:

Rankt()tul,bee = clRankob.\'ervulion,hee + CZRankupdate,bee (5)

This equation considers the value returned by the data gener-
ating function for each bee. But also the values for y;, and
Yo, calculated for each bee. These latter values determine how
to update Xicenrer and Xocenrer. As explained when yj) > 0, X
is smaller than the value of ¥ which maximizes it. But when
vi, <0, than X is larger than the value of ¥ which maximizes
it. So how closer the values y;, and yy, get to the value of 0,
the closer the values of X get to X,,,c. SO when we consider the
absolute value of both y, and y, we can rank bees depending
on how high both values are. A bee is ranked high if it returns
a high observation y, (observation) but also still high values
for both yg, and yy, (update). Because if both yg, and yy,, are
returning high values, this means that they still have a long
way to go in reaching a value of 0. Thus the bee is still located
far from the actual top, which in turn may result in even higher
observations.

However, it should be noted that for this thesis it was decided
to set the value of constant ¢, equal to 0 in order to ignore the
values for yy, and yg, returned by each bee. The reason was
that not sufficient time was left to explore the optimal values
for both constants ¢; and c¢;. Therefore ¢; was simply set to 1
and ¢, was set to 0.

Finally, after all bees have been ranked, the worst bee is reas-
signed a new location in the search space. This new location is
near the location of the best bee, but not exactly the same spot.
The precise criteria is that the new starting position should at
least be 5 spots down and 5 spots to the left relatively to the
spot of the best bee. But for each element of X a random value
€ {0,...,10} is added.

So for example: best_bee.x;; = 5 and best_bee.x,, = 5.
Now for the worst bee the new location will at least be at
worst_bee.x| ; = 4.5 and worst_bee.x;; = 4.5, but as for the
random added value for each element of X it might as well
be worst_bee.x;; = 5.2 and worst_bee.xo; = 4.6. But it is
ensured that it is not the same spot as the best bee.

The entire process of evaluating all bees will only occur after
every 900 iterations. This is included in line 24 to make sure
that ever bee has performed 100 iterations (9 bees) before the
next evaluation is performed.

Artificial Bee Colony Algorithm

Algorithm 3 represents the pseudocode for the ABC algorithm.
It only requires 3 parameters which are:

e SN’ is an interger that represents the size of the population
of employed bees which the algorithm will need to initialize
first. As Algorithm 2 has SN set equal to 9, this is also the
case with this Algorithm.

e ’Limit’ is an interger that functions as a threshold. If an
employed bee has returned to the same food source for
a number of iterations equeal to the limit it will need to
abandon this food source and start finding a new one offered
by the scout function.

o T represents the number of cycles the algorithm will run.
Which is equal to the horizon, which in the general settings
of the simulator was set to 10000.

A short overview of the used settings:

e SN=9
e limit = 10
e T =10000

Algorithm 3 Artificial Bee Colony pseudocode for 2 dimen-
sional variable maximization
Require: SN, limit, T

1: employed_bees = empty list

2: loc_visited = empty list

3: abandoned = empty list

4: fori=1,...,5N do (initialize employed bees)

5:  location = self.scout(loc_visited)

6: employed_bees = push(employed_bee,Bee(location))
7. loc_visited = push(loc_visited,location)

8: end for

9:t=0

10: while r < T do
11:  for bee in employed_bees do

12: t=t+1

13: bee.observe +noice;

14: if bee.count() > limit then

15: abandoned = push(abandoned, bee.location)
16: bee.location = self.scout(loc_visited)

17: loc_visited = push(loc_visited,bee.location)
18: else

19: bee.location = self.scan_environment(bee)
20: if new location found then

21: loc_visited = push(loc_visited,bee.location)
22: end if

23: end if

24:  end for

25:  best_bee = self.evaluate(employed_bees,abandoned)
26: end while

The ABC algorithm depends on multiple starting points which
need to be chosen and assigned to a "bee". The for-loop
starting at line 4 makes sure this happens. First the "scout()"
function searches for a possible starting point. A point, or
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Figure 9. Neighborhood check by bees. Green represents the current
position and the numbers represent the order in which the bee checks its
neighbors.

location, is a combination of values for both elements of X, so
e.g. x; =2 and x» = 3. The function needs a list of already
visited points in order to find a new one. The scout function
works entirely random by making use of the random.py library.
But for every suggested random location it is also checked if
it is not present in the list of already visited points.

When a location is found, it is used to assign a new bee. As
can be seen in line 6, the class Bee() is called in order to create
a new bee. This bee is then appended to the list of employed
bees. Finally, as the new location is now engaged by a bee,
the location should be appened to the list of already visited
locations.

Now the iteration of the algorithm starts. Every bee has its
own location, form which an observation y; can be obtained.
The first operation performed by the algorithm, directly after
the observation has been memorized, is to check if the bee did
not exceed the limit. A bee may only visit the same location
for a certain amount of iterations. The threshold is thus the
limit, which is provided as parameter.

If indeed the bee exceeded the limit, the current location is
abandoned. This means that it is stored in a specific list named
"abandoned", which is still used later on in the algorithm.
Next a new location is searched by the scout function and the
new location is also appended to the list of already visited
locations.

However, if the bee did not yet exceed the limit it will per-
form a neighborhood scan. The bee will use the memorized
observation y; to perform the scan. Let us name it yiginas
for the moment. Of every location directly adjacent to the
current visited location, the observation y,eenpor, is retrieved
and compared to y,igina;- When a neighbor location returns
a better observation, this position is memorized until either
an other location proves to be even better or all neighbors are
checked. If a neighbor position did return a higher observation
than the original observation, then the bee will move to this
location. The entire scan process is illustrated in figure 9.

When a bee performs an environment scan it results in the
execution of multiple small iterations. The reason is that every
neighbor observation should count as one specific moment in
time in order to still perform a sequential experiment. Thus
every observation should result in the increment of .

After all bees have been processed, an evaluation is started
in order to determine the current optimal values for each el-
ement of X. This evaluation is performed by comparing the

observations hold by each bee. The bee holding the highest
observations is ranked as the best bee. But not only the bees
are taken into consideration. The abandoned locations are also
considered as they might potentially hold the maximum of the
function. This is not certain, but a bee may never stay at a
potential maximum for longer then the determined limit. The
use of a limit can also be seen in the work by Karaboga and
Basturk [8].

e-first

The e-first pseudocode can be seen in Algorithm 4 and is com-
posed of two different parts. The first part is the exploration
part of the code. For €T iterations the algorithm will perform
random searches to find possible values for each element of X.
The values are used and y; is observed and stored.

The function call "rand_val()" in line 4 should not be con-
fused with known programming methods related to random
number generation. In the implementation used for this thesis,
"rand_val()" was a self-made funtion that would generate a
random suitable value for one of the elements of X. These val-
ues were suitable as the function would take into consideration
the values that were already assigned to X at an earlier mo-
ment in time. And it would also take care that no values were
considerded that would exceed the predefined x and y-axis of
each specific data generating function. The numpy library,
that includes its own "random" method, was used in order to
generate these possible values for each element of X.

After the first part has ended, the algorithm will start to fit
a parabola using the stored observations. This can be seen
in lines 8 and 9. The function "optimize.curve_fit(results)"
requires the stored observations and returns the parameters
for the fitted parabola. These(stored here in "info_line") are
then used in order to find the top of the parabola. The values
for each element of X needed to get to this maximum are then
returned as solution.

Now the second part of the algorithm starts, in which the
algorithm will exploit the found solution. This can be seen in
lines 12 and 13. It will exploit these values for the remaining
period of time, which is €T till T.

What should be noted is that this thesis uses two e-first ver-
sions as could be seen in figure 25. This has to do with the
function "optimize.curve_fit()". "curve_fit()" requires a model
of a parabolic function in order to fit the parabola. It needs
to know how many parameters it needs to estimate with the
observations provided. It is therefore interesting to see how
the algorithm works when two types of models are provided.

One perfect model and one basic model.

The first version will provide the "curve_fit()" function with
the best possible model parabolic function compared to the
actual function being used. If a more complex function is being
used, then a complex model function is provided with the exact
amount of parameters present in this function. The only thing
left for this version to do is to estimate the parameters of this
complex function.



The second version, named g-firsty, is provided with the same
basic model of a parabolic function no matter how complex
the actual function is. The basic model function was set to:

f(x1,x0) = —ax? +bx; —cxs+dxa 4

(6)

Thus when a more complex parabolic function is used, this
version will most likely fail to approximate its maximum.

Algorithm 4 Implementation of e-first for 2 dimensional vari-
able maximization.
Require: ¢, T
1: t=0
2: whiler < €T do
30 t=t+1
x1; = rand_val(), x» ; = rand_val()
yi = f(x1,4,x2,) +noice
results = push(results, (yr,x14,%24))
end while
info_line = optimize.curve_fit(results)
9: solution = self.find_max(info_line)

e A

10: whiler < T do

11 t=t+1

12:  x1, = solution[0]

13:  x; = solution][1]

14: y; =f(x14,x2,) +noice,

15 results = push(results, (y;,x14,%2,))
16: end while

The following settings will be used for the parameters of Al-
gorithm 4.

e =05
e T =10000
Functions

The following two subsections will discuss in more detail the
two data generating functions that have been used during the
experiments. What should be noted is that noise is added to
the values returned by the two functions. The noise is added
to the returned values no matter which algorithm is currently
being used. The noise is determined using the following line
of code: noise = numpy.random.normal(0.0,0.2,1). The "nor-
mal" method from the numpy library is used, which requires
three paramterers. These are loc, scale, and size.

e Loc (float) is the mean of the random distribution, which is
set to 0.

e Scale (float) is standard deviation for the distrubtion and is
set to 0.2 for this thesis.

e Size (int or tuple of ints) is optional and stands for the
number of samples that are returned. It is set to 1 for this
thesis.
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Figure 10. Plot of function 7, which represents simulated scenario 1.

Study 1

The interest of the first study was to answer the first question:
How can the existing Lock-in Feedback algorithm be altered to
deal with higher-dimensional problems? The data generating
function corresponding to this study is illustrated in a plot in
figures 10 and 11.

The function is:

Fm) = = +x1) — (3 +x2) @)
It represents a 3 dimensional parabola and has only one maxi-
mum which is located at (x; = 0,x, = 0). Initialization range
for this function was set to [—60,60] for both elements of X
during the entire experiment.

This function is included to see how the different algorithms
react on two dimensional problems as they are all inspired on
earlier versions used on cases of one dimension. Therefore
the function is kept simple with only one maximum and sym-
metrically in form. Moreover, the exact coordinates of the
maximum were not altered during the entire experiment.

Study 2

The second study was performed in order to answer the second
research question: How does an altered Lock-in Feedback
algorithm perform when applied on functions with multiple
maxima? The data generating function corresponding to this
study is illustrated in a plot in figures 12 and 13.

The second function is

f(xl,XQ) = —(x1 +3)(x1 + 1)(}61 — 1)(x1 —4)

—(n+3)e+)-1)(x—-4) ®)

It represents multiple 3 dimensional parabolas and has 4 max-
ima but with only 1 global maximum. The global maximum



Figure 11. 3D Plot of function 7, which represents simulated scenario 1.
Image source: http://www.wolframalpha.com

Figure 12. Plot of function 8, which represents simulated scenario 2.
Image source: http://www.wolframalpha.com

is located at (x; = 2.94,x, = 2.94) and the other maxima are
located at (x; = 2.94,x; = —2.22), (x] = —2.22,x; = 2.94),
and (x; = —2.22,x, = —2.22). Initialization range for this
function is set to [—5,5] for both elements of X during the
entire experiment. This function is included to see how each
algorithm handles two dimensional problems with multiple
maxima. It most important role is to see if the algorithms will
get stuck in local maxima. And also for this function, the exact
coordinates of the maximum were not altered during the entire
experiment.

Evaluation Procedure

The performance of all algorithms when applied on both func-
tions needed to be monitored in order to be able to answer
both research questions. The way these performances are
monitored is by making use of the cumulative regret at each
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Figure 13. 3D Plot of function 8, which represents simulated scenario2.
Image source: http://www.wolframalpha.com

iteration. Kaptein and Iannuzzi, when comparing the perfor-
mance by their method with two existing methods, made use
of emperical regret and defined it as follows [6]:

R(t) = ) (fXmax) = f(x)) )

M=

t=1

Here f(xmax) is the observed value returned by the function if
Xmax Would have been picked and f(x,) is the observed value
returned by the function when x; is picked. Thus regret is the
sum of the "loss" of picking a certain value for x without any
knowledge about the data generating function compared to
picking the optimal value for x that maximizes the function if
the data generating function was known.

For this thesis it was also decided to keep track of the cu-
mulative regret of all algorithms. As all algorithms were
executed on both functions, this resulted in keeping track of
two seperate values of cumulative regret for every algorithm.
The cumulative regret was defined as follows:

(f(xmax) _f(xl,tax2,t)) (10)

=

A(t) =

1

t

However, the way the cumulative regret was determined at
each iteration for each algorithm differed.

o LiFII: For the first extended version of LiFII the cumulative
regret was calculated by making use of the calculated obser-
vation y; + noise at each iteration. The noise that was added
to the observation was also used in order to calculate the
regret. Thus the total equation at each iteration was set to:

T
A(t) = ;((f(xmax) +noise;) — f(x14,%24)) (11)

e LiFII(2): For the second extended version of LiFII the cumu-
lative regret had to be calculated in a more complex manner.



This version includes several points that are attended. How-
ever, at each iteration only one point is observed and thus
the cumulative regret should be calculated by making use of
the observation of the point that is attended at each iteration
t. The same equation is maintained:

A1) = (12)

ngls

((f (Xmax) + noise;) — bee. f (x14,x24))

t=1

Only difference is that the observation is returned by the
bee currently busy.

o ABC: The same procedure as for LiFII(2) holds. Several
points are attended, but only one point at the time is truly
observed at each iteration. Thus the point currently being
observed should be used to calculate the cumulative regret
at iteration t.

e ¢-First: For both versions of the e-First algorithm, the cu-
mulative regret was calculated the same way. During the
exploration period, the randomly chosen x; ; and x; ; were
used to calculate the cumulative regret at iteration . But
during the exploitation period, the approximated x,,,, values
were used for the calculation.

Moreover, the cumulative regret was also averaged. This was
done as every algorithm was iterated 10000 times for 100 runs.
This resulted in 100 different lists of cumulative regret for
every algorithm and for every function it was applied on. As
not every run returned the same data, partially because of the
added noise, but also because of the design of the algorithms
themselves. The logical way to evaluate the performances,
was to average the data.

RESULTS

For each study performed the results were stored in seperate
excel files. Every excel file held the results of one algorithm
that was run on one specific function for 100 times. The excel
files included the following values of interest for every algo-
rithm for every iteration: the regret, the cumulative regret, and
the noise. But the files also included the needed parameters
and the calculated interim values in order to replicate the exact
same test run.

Using the data collected resulted in the plots that are illustrated
in figures 14, 15, 16, 17, 18, and 19. These figures depict the
performance on the two data generating functions by all five
algorithms used. It is expressed in the average cumulative
regret over 10000 iterations.

Figure 14 shows us that for the first study, the performance by
both proposed versions of the LiFII algorithm differ tremen-
dously with the performance by ABC, e-First, and e-First2.
When we then also look at figure 15, we notice that LiFII1
is performing even better, than LiFII2. As it does not exceed
the cumulative regret of 200000, even after 10000 iterations.
LiFII2, however, already exceeds the cumulative regret of
1000000 after approximately 1000 iterations.

But both LiFII1 and LiFII2 show a very steep increase in the
cumulative regret in the very beginning of the iterations. This
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Figure 14. Overview of the mean cumulative regret of all algorithms
applied on data generating function 1.

steep take-off is then also quickly followed by a more flat
increase of cumulative regret. This suggests that for function
1, both algorithms tend to get near the x,,,, very soon in the
iteration process. Relative to the other algorithms.

For the ABC algorithm, it is hard to say from figure 14 if it
approximates X, at an early or late stage. Mainly, as the re-
sults show us an almost straight line reaching high cumulative
regret. Occasionally this apperent straight line, seems to show
signs of flattening. This flattening occurs because of the limit
set for every bee. Thus after a certain amount of time each bee
tends to get close to x4« If the bee then sticks with a position
for more iterations than the threshold determined by the limit,
it is then assigned a random new starting location. This then
causes the cumulative regret to show a more steep increase
again and this increase will flatten when the bees get near the
Xmayx again.

Finally, for study 1 it seems that both versions of the e-First
algorithm show no additional regret after the 5000 iterations.
Figure 16 was included to show otherwise. Here only the
average cumulative regret of both e-First algorithms are shown
and also only from 5000 itertions till 10000 iterations. It
can be seen that in fact both algorithms still show increased
average cumulative regret from 5000 iterations onward. But
both algorithms use a model of the data generating function
which helps the algorithms approximate the x,,,. Because for
study 1 the function was not very complex, both algorithms
seemed to approximate the x,,,, fairly accurate, resulting in a
very flattened increase in the average cumulative regret.

Next, figure 17 includes all data on the performance of each
algorithm for study 2. Again it is clearly illustrated that both
versions of the LiFII algorithm show low values of cumu-
lative regret for the duration of 10000 iterations. However,
noteworthy is the fact that the two have switched in perfor-
mance. Where with the results of study 1 it was clear that
LiFII1 showed very low cumulative regret compared to LiFII2.
Now LiFII2 shows lower values of cumulative regret over the
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Figure 15. Overview of the mean cumulative regret of only the two pro-
posed LiFII versions applied on data generating function 1.
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Figure 16. Overview of the mean cumulative regret of only the two &-
First versions applied on data generating function 1.
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duration of the simulations for study 2. LiFII1 even seems to
show straight and steep linear regret compared to the linear
regret of LiFII2. The cause for this switch is partially the
complexity of the data generating function for study 2 as well
as the way both try to approximate x4y

LiFII1 is assigend random starting positions for each run and
only performs LiFII from this point onward. If this point is
far from the global maximum, this algorithm may never reach
it as it might get stuck in a local maximum. And because
the data depicted in figure 17 shows the averaged cumulative
regret, it shows straight linear regret as in a portion of the
runs LiFII1 gets stuck at a local maximum. LiFII2 makes
use of multiple starting positions and makes sure that after
every 900 iterations the current worst position is ignored and
a new position near the best current position is chosen. This
ensures that eventually the algorithm will get near the global
maximum.

The differences between the two algorithms is also illustrated
in figure 18. Clear in this figure is that LiFII2 still shows a
steep increase of cumulative regret in the first 1000 iterations.
During these first iterations, LiFII1 also shows lower cumu-
lative regret. But it quickly exceeds the cumulative regret of
LiFII2 after approximately 3000 iterations.

Taking another look at figures 14 and 17, we are able to notice
that the ABC algorithm seems to show the same performance
for both functions. It still shows an apperent straight linear
regret, but again for function 2 the cumulative regret seems to
flatten for a certain amount of iterations each time. But there is
a difference in the performance of the ABC algorithm on both
functions. It is very clear that the ABC algorithm returns a
lower cumulative regret for function 2 (approximately 650000)
when compared to the cumulative regret of this algorithm for
function 1 (approximately 12000000).

The ABC algorithm showed such a high cumulative regret for
function 1 as it makes use of 9 points from which it tries to
approximate x,,,,. But instead of ignoring the worst position
after a certain amount of iterations like is the case with LiFII2,
it includes a limit that prevents the algorithm from sticking to
the same position for a certain threshold. Therefore it does not
only take this algorithm more iterations to get to move towards
the global maximum of function 1, but it has to repeatedly start
from new positions and move towards the global maximum
again.

This is ofcourse still the case when it is applied on function
2, but this time the function is more complex. There are more
maximums and the difference between the local maximums
and the global maximum is very little. Thus even if a position
is visited a certain amount of iterations exceeding the limit, the
algorithm now has more chance picking a new position near
one of the many maximums. Resulting in a lower regret. Still,
the ABC algorithm shows a higher average cumulative regret
then LiFII1. While LiFII1 does not even consider multiple
starting positions.

The possible reason for this difference in performance of both
ABC and LiFII1 on function 2 is partially because of the com-
plexity of the function that was also the reason for the lower
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Figure 17. Overview of the mean cumulative regret of all algoritms ap-
plied on data generating function 2.

average cumulative regret for ABC on function 2 when com-
pared with its performance on function 2. But also because of
LiFII1 only considering one starting position. Again because
of the complexity of the function, this starting position has
now 4 possible maximums it can be near to and the differences
between the maximums is not very great. Moreover, as LiFII1
only has to deal with one position in the entire simulation, it
can very fast move towards one of these maximums. There-
fore, LiFII1 shows lower values of average cumulative regret
compared to ABC for function 2.

Finally, contrary to study 1, now only &-First seems to show
no regret after 5000 iterations. €-First2 algorithm however,
shows straight linear regret and seems to perform the worst
of all included algorithms for study 2. The possible cause for
the performance of e-First2 is that it uses a simple model of
the data generating function in order to approximate the x;;,x
after 5000 iterations. This simple model does not fit the actual
used and more complex function for study 2, but did however
fit the simple function used for study 1.

Getting back at the performance of &-First. Figure 19 was
included to show that this algorithm in fact still shows an in-
crease in average cumulative regret beyond the 5000 iterations.
But compared to the cumulative regreat of the other algorithms,
this increase could not be noticed in figure 17. This algorithm
makes use of an accurate model of the actual used function
in order to approximate the x,,,, after 5000 iterations. Which
is the reason for the results showing low average cumulative
regret.

The results of study 2 gave the impression that LiFII1 still per-
formed very well when compared to the ABC algorithm and
the two versions of the e-First algorithm. But LiFII1 makes
use of random starting positions each run and this means that
every run on the complex function of study 2 resulted in differ-
ent cumulative regret after 10000 iterations. Therefore it was
decided to include boxplot 20 representing these differences
in cumulative regret for every run. Here one is able to see
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Figure 18. Overvew of the mean cumulative regret of only the two pro-
posed LiFII versions applied on data generating function 2.
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that while the mean cumulative regret was relatively low in
comparison with the ABC and e-first algorithms. It did return
cumulative regret values for different runs that vary a lot of
each other. This is suggested as for the large interquartile
range of the boxplot of LiFII1. Which means that at some runs
LiFII1 could have returned the cumulative regret almost equal
to that of ABC and &-First. Therefore these results suggest that
LiFII1 may not be that convenient for more complex function
optimization, while the cumulative regret vary tremendously
for the different runs performed. Other boxplots are included
as appendices.
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Figure 20. Boxplots for the 10000th iteration for all algorithms for study
2.

DISCUSSION AND FUTURE WORK

This section includes a discussion of the obtained results per
study as well as the conclusions which can be drawn from
these results. After the results of each study have been dis-
cussed, this section will consider the decisions made during
the research and provide suggestions for future work.

Study 1

The results illustrated in figure 14 suggest that both extended
versions of the original LiFII method perform well on a sim-
ple two-dimensional function maximization problem. Both
algorithms show linear regret, but the regret flattens very fast
after just a few iterations compared to the regret of the ABC,
e-First and e-First2 algorithms. This suggest that both ver-
sions of LiFII fairly acurrately approximate x,,,, after already
1000-2000 iterations.

Meanwhile, the ABC algorithm and both &-First algorithms
still show a massive growth of cumulative regret around 1000-
2000 iterations. Both versions of e-First even show almost the
same plot. As stated, the difference between the two versions
of e-First are that the first version in given an exact model of
the function currently being used, while the other version gets
a simple parabolic model. As the data generating function
used for study 1 is a simple parabolic function, both versions
of g-First get a very accurate model that do no differ very
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much from each other. This results in approximately the same
plot for this study.

Moreover, both versions seem to easily approximate the X,
of the data generating function for study 1. This can be con-
cluded, because both versions show very little increase in
cumulative regret from 5000 iteration till 10000 iterations.
This is the period used by both versions to exploit the approx-
imated x;,,,. Till this period, both versions show a massive
linear growth of cumulative regret.

Likewise, the ABC algorithm shows linear regret. At first the
average cumulative regret of the ABC algorithm does grow
a bit slower than average cumulative regret of both versions
of e-First. But it keeps on icreasing even after the 5000th
iteration. This has to do with the fact that the ABC algorithm
uses bees and that each bee will explore its neighborhood
in order to find a more suitable postion. The exploration of
the neighborhood costs a lot of iterations and observations,
resulting in a high cumulative regret. Also the fact that there
are several bees observing different positions result in this fast
growth of cumulative regret. Take the case where only one
bee is near the top, while the other bees are not even close.
They will explore a neighborhood of points that will all result
in a high regret. Only the one bee near the top will return low
regret.

This is also the case for LiFII2, which is inspired on the ABC
algorithm. While the performance of LiFII2 in study 1 is
better than the perfomance of ABC considering the average
cumulative regret. It is still performing worse than LiFII1.
This is depicted in figure 15. LiFII1 shows a small growth
of average cumulative regret and its plot already flattens after
approximately 1000 iterations.

For LiFII2 the average cumulative regret shows a higher
growth and it keeps increasing until approximately 2000 iter-
ations. The difference can be explained, because of the bees
used in LiFII2. Each bee starts at a different position, with
only 1 bee starting near the x4, as illustrated in figure 7. The
other bees will return high values of regret relatively to the
regret returned by the bee starting near the x,,,,,. And because
each bee is observed in sequence, it will result in a high in-
crease of cumulative regret in and high amount of iterations
needed for every bee to get near the top. Therefore, LiFII1
outperforms LiFII2 in terms of average cumulative regret.

But when taking a look at figures 21 and 22 we notice that the
average cumulative regret returned by LiFII1 is accompanied
by large varying values of cumulative regret at every 1000th
iterations. Meaning that every run by LiFII1 returned vastly
different results. The reason for these large values of standard
devations lays in the fact that for this thesis the starting point
for LiFII1 was initialized at random for each new run. As it
was argued in the paper by Kaptein and Iannuzzi, the perfor-
mance by LiF can be improved by picking a starting point
close to the actual x;,,,. Thus, if a starting point near the X,
was picked and not altered for each new run, then the results
should have returned cumulative regret values that would have
differ a lot of each other.
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Figure 21. Boxplots for every 1000 iterations for study 1 but only of
LiFII1.
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Figure 22. Boxplots for every 1000 iterations for study 1 but only of
LiFII2.

Study 2

In the section Results it is already concluded that LiFII2 out-
performs LiFII1 when considering the average cumulative
regret over 100 runs of 10000 iterations. Also it was shown
that LiFII1 showed a large interquartile range in comparison to
LiFII2, ABC, and the &-First algorithms. Meaning that LiFII1
should not be considered suitable to deal with more complex
function optimization.

These differences in performances can be explained due the
fact that LiFII2 uses different bees that inspect different start-
ing points and the algorithm reassigns a bee if it is returning
low observed values. The bee is then put to work near the bee
currently observing the highest observed values. When taking
a closer look to figure 8§ it can be noticed that one of the bees is
already starting near the global maximum and will thus return
high values. As this bee is left alone it will move closer to
the maximum each iteration that it is observing. Eventually,
the other bees will be moved to a new spot near this bee and
this explains the low interquartile ranges of each boxplot for
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LiFII2 presented in figure 23. Mainly, because the the algo-
rithm succeeds in approximating x;,,,, which is illustrated in
figures 17 and 18 by the flattening line.
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Figure 23. Boxplots for every 1000 iterations for study 2 but only of
LiFII2.

The ABC algorithm, which also makes use of bees, does not
show such a good performance as LiFII2. The same explana-
tion as given for the returned results at study 1 for this algo-
rithm holds. Each bee used by ABC needs a certain amount
of iterations to check its neighborhood. This results in a lot of
observations that all cause some form of regret, either low or
high. But because all bees need to be attended after a certain
amount of iterations and because of this neighborhood scan,
this algorithm returns high values of cumulative regret for
a relatively long amount of iterations when compared with
LiFII2.

Also the boxplots presented in figure 24 show higher interquar-
tile ranges for this algorithm when compared with LiFII2,
mainly because the bees are initialized using random starting
points. And when the limit is reached and a place needs to be
abandoned, a bee is assigned a new location also at random.
Which is in contrast with the technique used by LiFII2 were
ther bees were assigned a new location near the currently best
bee.
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Boxplots for every 1000 iterations for study 2 but only of

Finally, in contrast with study 1, different results are observed
between both versions of &-First. The first version, which is
given a perfect model of the function used, shows approxi-
mately the same plot of the data as was the case at study 1.
After 5000 iterations the exploitation phase is entered and
using this perfect model, this verson of the €-First method is
able fairly accurately approximate the x;,,,. This results in
low values of additional regret beyond the 5000 iterations.

This is not the case for the second version of &-First. The
results for study 2 show linear regret for the entire period of
10000 iterations. This can be explained by the fact that this
version is given a simple model of the function used and will
therefore approximate a x,,,, that is still very different from
the actual x,,,,. This approximation is then used beyond the
5000 iterations and results in the tremendous increase of the
cumulative regret.

General Conclusions and Future Work

Several conclusions can be drawn given the results obtained
by the experiments, but the main interest of this thesis was to
answer the proposed research questions. When we consider
the results obtained with study 1, it can be concluded that
both extended versions of the original LiFII algorithm have
proven to be performing well on two-dimensional function
maximization problems. Thus an answer on research question
1 (How can the existing Lock-in Feedback algorithm be altered
to deal with higher-dimensional problems?) is that both the
suggestions made by Kaptein and Iannuzzi as well as a LiFII
algorithm inspired by the ABC algorithm prove to be good
alterations on the original algorithm in order to make it suitable
for two-dimensional problems.

Furthermore, an answer on research question 2 (How does
an altered Lock-in Feedback algorithm perform when applied
on functions with multiple maxima?) is that LiFII2 knowns
how to deal with a complex function consisting multiple maxi-
mums, while LiFII1 does not seem to be fit for such scenarios.
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If then both answers are compared, it can be concluded that
LiFII2 seems to be the best possible alteration of the two
proposed ideas. In both studies it showed low values of cumu-
lative regret when compared to the other applied algorithms
and it was also able to approximate the x;,,, of a function with
multiple maximums.

However, several remarks can be made about these conclu-
sions. First of all the algorithms that were included for means
of comparison did not prove to be very efficient in there search
for x;,qx. The ABC algorithm was constantly observing ev-
ery bee it had working for it, while most of the time these
bees might not even be near the actual global maximum. One
suggestion for future improvement of the experiment could
be to improve the way the bees scan the environment and are
reassigned to a new location. This way the ABC algorithm
could possible prove to be a good adversary for the LiFII2
algorithm.

Also the € used for the e-First algorithms during the experi-
ment could be lowered in order to reduce the total exploration
time. For this thesis the optimal value for € has not been re-
searched. Lowering the value could have very little effect on
the approximation to be used during the exploitation phase.
But it could potentially lower the total cumulative regret. As
could be seen for the first version of the &-First algorithm, it
returned low values of additional regret during the exploita-
tion phase. Therefore advancing the moment this phase starts
could cause this version of € to return a better performance in
comparison to both versions of LiF.

Next, LiFII2 made use of predefined starting positions for each
of the 9 bees that were used. These predefined starting posi-
tions required some sort of knowledge of the optimal search
space for the data generating function that was used. Without
these predefined starting positions and the required knowledge,
the algorithm could have returned higher values of cumulative
regret resulting in a poor performance. But the performance
could then possibly be improved by experimenting with the
best evaluation function for each bee. For the current exper-
iment it was decided to neglet the information on the y}, by
each bee. However, as this information is used for updating the
elements of X it could provide a excellent way of ranking the
current positions of each bee. For future work it is therefore
suggested to experiment with different evaluation functions.

Among other aspects of the experiment that provide sufficient
research possibilities for future work, the settings used during
the experiment could be revised. Currently each algorithm
was only run for 100 times and iterated 10000 times. It was
not researched what the effect of a smaller or larger amount of
runs or iterations could have had on the average cumulative
regret returned by each algorithm. Moreover, there was no
additional research performed on using different settings and
parameters for each algorithm. Most of the settings were
copied directly from the work by Kaptein and lannuzzi as
well as from the work by Karaboga and Basturk. Take for
example the integration time 7" which was set to 10 or the
amplitude A which was set to 1 for the entire duration of the
experiment. The adjustment of these settings or one of the
other settings could also lead to totally different results. This



should therefore be researched in future work in order to find
the most optimal settings for both extended versions of LiFII.

Finally, the performed research only considered two-
dimensional function maximization. The proposed algorithms
are thus only applicable on two-dimensional function maxi-
mization cases. If the algorithms are altered for use on cases of
a dimension higher than 2, it could possibly lead to a drop in
performance by both versions. Also this fact makes it difficult
to give a general answer on research question 1, and instead
this thesis only provides an answer for the case were the func-
tion maximization problem is of two-dimensions. For future
work it is therefore suggested to alter the LiF algorithm to
ensure that it can deal with a variable amount of dimensions.
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APPENDICES

Simulator

The simulator used for this thesis includes a GUI which is
shown in figure 25. The two leftmost columns of buttons and
also the button labeled "LiFII2" have as primary function to
change the current settings. The buttons in the first column
may be used to change the current data generating function.
For example: by clicking on the button labeled "f_1(x_1,x_2)",
the current function will be changed to function 1.

The same story holds for the middle column of buttons and
the button labeled "LiFII2". Only this time, by clicking on
one of these buttons, the current algorithm being used will be
changed to the algorithm corresponding to the button that has
been clicked. For example: by clicking on the button labeled
"LiFII", the current algorithm will be set to LiFII.

The rightmost column includes buttons to run a simulation
test. The button labeled "start" will simply start the iteration of
the chosen algorithm on the chosen function. When the start
button has been pressed, it will only become available to press
again after the simulation test has been finished. When a test
run is finished, the button labeled "Answers" may be pressed in
order for the GUI to present the results of the test in the white
text field which is located just above the buttons. For now the
"Answers" button will only show the name of the algorithm
that has been used and the values for each element of x for
which the algorithm calculated that they would provide x4y
However, this button was only included to be able to check
for bugs and to see if the algorithms worked as they were
supposed to work. Currently the button lost his functionality
and was only left there to make it easy for future testing to
check for bugs.

The function of the last button of this column was to reset all
variables used during a run. This button was included to make
sure that a new simulator test would not start with the values
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returned by the previous run. But the button does not reset the
settings picked by the user. All variables used are simply set
to their initial values. But also this button lost his functionality
when the final tests were run. Mostly because for the simulator
to start several runs in sequence it should itself know when to
reset the values of each variable, without an user constantly
having to click the reset and start button. Thus the current
code includes a loop making sure that this is the case and the
reset button was only left there for future testing for bugs.

What should also be noted is that a simulator run can already
be started directly after the GUI has been launched. This is
enabled as the code includes initiale settings for the algorithm
and function to be used during a run. The initiale algorithm is
set to "LiFII" and the initial funciton is set to "function 1".

This simulator design was chosen as it led to a neatly structured
implementation of the code. Moreover, the GUI ensured that
multiple runs with different algorithms and on both function

could be started without having to change the code constantly.
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Figure 25. Simulator GUI
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Figure 26. Boxplots for the 10000th iteration for all algorithms for study
1.
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Figure 27. Boxplots for the 10000th iteration of only LiF for study 1.
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Figure 28. Boxplots for the 10000th iteration but not of LiF for study 1.
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Figure 29. Boxplots for every 1000 iterations for study 1 but only of LiFI LiFIi2
ABC.
Figure 32. Boxplots for the 10000th iteration of only LiF for study 2.
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Figure 30. Boxplots for every 1000 iterations for study 1 but only of

e-First. Figure 33. Boxplots for the 10000th iteration but not of LiF for study 2.

Cumulative Regret (R(t))
o
.
Cumulative Regret (R(t))
o

1 ,py0UUUUL

\ .
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iterations (t) Iterations (t)

Figure 31. Boxplots for every 1000 iterations for study 1 but only of Figure 34. Boxplots for every 1000 iterations for study 2 but only of
e-First2. LiFII1.
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Figure 35. Boxplots for every 1000 iterations for study 2 but only of
e-First.
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Figure 36. Boxplots for every 1000 iterations for study 2 but only of
e-First2.
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