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A B S T R A C T

The Galaxy Zoo project is a crowdsourcing platform to classify the
morphology of galaxies into different categories. Recently, the project
set out a challenge to automatically predict these crowdsourced clas-
sifications using machine learning techniques. In this thesis, one of
these machine learning techniques is explored and modified. This
technique, designed by Coates et al. [4], works by learning features in
an unsupervised manner using k-means. These features are rotation
sensitive, but since there is no up or down in space, the system would
ideally work rotation invariantly. Therefore, the system was modified
to account for rotation sensitivity in an efficient manner by chang-
ing the distance metric that is used by the k-means algoritm. Results
show that this improves the performance significantly by more than
5%: the regular method achieves a root mean squared error of 0.10789

while the rotation invariant method achieves a score of 0.10256.
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1
F R O M H A R D L A B O R T O A U T O M AT I O N

1.1 stellar classification

Classifying the stars has helped materially in all studies of the
structure of the universe. — Annie Jump Cannon

In the final years of the 19th century, a woman named Annie Jump
Cannon joined a team at Harvard led by Edward C. Pickering to cre-
ate a catalogue of the brightness of the stars. During Cannon’s time at
Harvard, she invented a stellar classification system that is still used
to this date1. The system was based on emission spectra, which show
the frequencies of emitted radiation due to electrons transitioning
from one energy state to the other. These transitions are characteris-
tic for a certain element. By using the emission spectra, Cannon was
able to determine the ratio of elements in a star. Later, these spectra
were determined to be related to stellar temperature. In her lifetime,
Cannon manually classified approximately 500,000 stars.

1.2 fast-forward to the start of the 21st century

In the year 2000 the Astrophysical Research Consortium started the
Sloan Digital Sky Survey project. In this survey, the redshift of distant
celestial objects is measured to estimate their distance from Earth
and ultimately build a model of the visible universe [10]. The survey
data now comprises millions of objects and more data is added every
day. This incoming stream of data is far greater than could ever be
processed manually by an individual.

1.3 galaxy zoo

In July 2007, the Galaxy Zoo project saw the light of day. Initially,
the goal of this project was to classify the morphology of galaxies in
three categories: elliptical galaxies, merged galaxies and spiral galax-
ies. The first instalment of the project used the SDSS2 data set, which
back then consisted of approximately a million galaxies. The classifi-
cation of these morphologies was not automatized. Instead, visitors
of the Galaxy Zoo website could vote on the morphology class given
a photograph of a galaxy. During the first year of the project, fifty
million classifications were received for almost a million galaxies.

1 Aptly named the Harvard spectral classification system
2 Sloan Digital Sky Survey
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2 from hard labor to automation

The current (fourth) version of the project uses data from more than
just the SDSS [9]. The CANDELS survey uses the Hubble telescope to
photograph the most distant galaxies and additionally the UKIDSS3

provides information on the age of stars, thus revealing the more
intricate structures of the inner parts of galaxies.

(a) An elliptical galaxy (NGC6782). (b) A spiral galaxy (M51).

(c) Two merging galaxies (NGC4676 A&B).

Figure 1: An example of each of the three morphology classes in the initial
version of the Galaxy Zoo project.

1.4 automation

While crowd sourcing the morphology classifications of galaxies is a
great idea and much faster than having researchers classify the galax-
ies manually, the amount of data is just too vast to keep up with.
Luckily, technological advancements have made it possible to auto-
matically classify these galaxies, using machine learning techniques.
In this thesis one of these classification techniques is explored, de-
signed by Coates et al. [4], and it is adapted to make it more suitable
for galaxy morphology classification.

3 UKIRT (United Kingdom Infrared Telescope) Infrared Deep Sky Survey



1.5 kaggle competition 3

1.5 kaggle competition

The Galaxy Zoo team and Winton Capital teamed up with Kaggle,
a machine learning competition platform. They created a challenge
where participants are to automatically classify galaxy morphologies
using high resolution photographs. The main goal of the challenge
is to see whether it is possible to devise a way to classify galaxy
morphologies automatically, where the classifications are as close as
possible to the crowd sourced classifications obtained from the Galaxy
Zoo website. The competition ran from December 20, 2013 until April
4, 2014. The winner of the competition was able to achieve a score4 of
0.07492.

1.6 research

The classification strategy designed by Coates et al. [4] relies on unsu-
pervised learning to extract features from images. The extraction of
features is however rotation sensitive. While this is useful in most im-
ages, as an object that is rotated may have a different morphology, it
does not make sense to use a rotation sensitive system in recognizing
galaxy morphologies. All galaxies are photographed from Earth, and
since there is no up or down in space, the rotation of the photograph
is irrelevant for the morphology of the galaxy. In the next chapter,
some background information is given and an adaptation of the strat-
egy is proposed to make the system rotation invariant. Note that the
features that are extracted are still sensitive to rotation, but the algo-
rithm works around this by modifying the distance metric. This is
explained in detail in Chapter 4. In the final chapters, the results of
the rotation invariant system and the regular system are compared.

4 RMSE, lower is better





2
D ATA S E T

2.1 images

Galaxy Zoo has prepared a set of training and test images. All these
images come from the second version of the project, as part of the
SDSS catalog. This catalog contains many images that were photographed
in a region known as Stripe 82, which has been repeatedly imaged
over the years [1]. In this region of space, the SDSS has taken multiple
images of various galaxies. The images are all 424x424 3-byte (RGB)
pixels, which amounts to a total of 539328 bytes per image. In total,
there are 61578 images in the training set and 79975 in the test set.
This amounts to more than 71 gigabytes of data when uncompressed.

(a) Galaxy #100765. (b) Galaxy #101355. (c) Galaxy #801467.

Figure 2: An example of three of the images in the training set.

2.2 regressands

The images would need to be categorized into several classes. How-
ever, instead of merely predicting the morphology class, the classifier
needs to give a distribution of votes for each question, as explained
in further detail below. This comes down to a total of 37 values that
need to be predicted. These values correspond to the fraction of votes
on that particular class for the image, as gathered by the Galaxy Zoo
project. This creates a regression problem instead of a classification
problem.

2.2.1 Decision tree

The 37 values are not all on the same level. There is a hierarchy woven
into them, as illustrated in Figure 3.

5



6 data set

1

Is the galaxy simply smooth and rounded, 
with no sign of a disk?

Could this be a disk viewed edge-on?

Is there a sign of a bar feature through 
the centre of the galaxy?

Is there any sign of a spiral 
arm pattern?

Is there anything odd?

How many spiral arms are there? How prominent is the central bulge, 
compared to the rest of the galaxy?

How tightly wound do the spiral arms appear?

Does the galaxy have a bulge at its centre? 
If so, what shape?

How rounded is it?

Is the odd feature a ring, or is the 
galaxy disturbed or irregular?

Figure 3: The galaxy zoo decision tree [9].

In total, the decision tree consists of 11 questions, with each ques-
tion having between 2 and 7 possible responses. The questions are
the following:

1. Is the object a smooth galaxy, a galaxy with features/disk or a
star/artifact? 3 responses

2. Can the galaxy be viewed edge-on? 2 responses

3. Is there a bar? 2 responses

4. Is there a spiral pattern? 2 responses

5. How prominent is the central bulge? 4 responses

6. Is there anything “odd” about the galaxy? 2 responses

7. How round is the smooth galaxy? 3 responses

8. What is the odd feature? 7 responses

9. What shape is the bulge in the edge-on galaxy? 3 responses



2.2 regressands 7

10. How tightly wound are the spiral arms? 3 responses

11. How many spiral arms are there? 6 responses

All galaxies in the image sets were classified by humans and the out-
put consists of a distribution of those human classifications. As a
result, the probability at each question will sum up to 1. However,
the probabilities are weighted. For the first question, this has no ef-
fect, but for subsequent questions, probabilities are multiplied by the
value which led to that question. As an example, consider the fol-
lowing scenario: for the first question a probability distribution of
{.8, .15, .05} was found. For 80% of the users, the next question was
Q7 (see the tree in Figure 3). If the distribution of responses for Q7

was {.5, .25, .25}, then the weighted distribution would be {.5× .8, .25×
.8, .25× .8}. An exception to this rule is question 6, which is normal-
ized to sum up to 1.

2.2.2 An example

An example of the probability distribution for galaxy #100765 (as
shown in Figure 2a) is shown in Table 1.



8 data set

Smooth Features/disk Star/artifact

Question 1: 0.069821 0.928216 0.001962

Yes No

Question 2: 0 0.928216

Yes No

Question 3: 0.108152015 0.820063985

Yes No

Question 4: 0.928216 0

No bulge Noticeable Obvious Dominant

Question 5: 0 0.637079195 0.291136805 0

Yes No

Question 6: 0.031074 0.968926

Completely In between Cigar shaped

Question 7: 0.031908197 0.037912803 0

Ring Lens or arc Disturbed Irregular

Question 8: 0 0 0 0.031074

Other Merger Dust lane

0 0 0

Rounded Boxy No bulge

Question 9: 0 0 0

Tight Medium Loose

Question 10: 0.568020853 0.360195147 0

1 2 3 4

Question 11: 0 0.599247896 0.049749593 0.084570688

More than 4 Can’t tell

0 0.194647823

Table 1: Probability distribution for galaxy #100765 as shown in Figure 2a.



3
U N S U P E RV I S E D L E A R N I N G

3.1 pipeline

The classification technique described and implemented in this thesis
is based primarily on the work of Coates et al. [4]. The technique con-
sists of three phases. In the first phase, patches, randomly extracted
from the training images, are fed into a k-means clustering algorithm.
The centroids that result from this algorithm can be used as feature
representations. In the second phase, features are extracted from the
training images using the previously learned centroids. In the third
phase, a classifier (or regressor) predicts the labels (or values) given
the feature vectors as outputted by the feature extraction phase. A
graphical overview of the pipeline is shown in Figure 4 and Figure 5.
In the following sections, the phases are described in more detail.

3.2 size reduction

Because working with such a huge data set is computationally expen-
sive, its size has to be reduced considerably. Input images are first
cropped to a size of 150x150 pixels. This greatly reduces the size of
the image, but does not necessarily signify a loss of information. This
is due to the fact that galaxies are already centered, resulting in the
outer border of the image to contain primarily blackness and noise.

After cropping, the images are resized to 15x15 pixels. This step
does reduce the overall accuracy of the system, but is required to
reduce the input size to manageable proportions. With more compu-
tational power it would be interesting to see the effect of decreasing
the resize factor.

Color data is kept at all times since a galaxy’s morphology is re-
lated to its temperature, which is expressed as different colors [7].
The stars in the arms of spiral galaxies are relatively young, which
results in a blueish color. However, old stars in the central bulge of a
galaxy are yellow-orange. This color information could help identify
the bulge and differentiate between elliptical and spiral galaxies.

3.3 clustering

From these images, square patches are randomly extracted. The patch
size has to be large enough to represent an image feature, but should
also not be too large, since this will result in multiple features being
represented in a single patch, which increases the amount of required

9



10 unsupervised learning
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Figure 4: A graphical overview of the training pipeline.

centroids. Larger patches also result in a longer running time. Coates
et al. [4] recommend using a patch size of 6x6 to 8x8 pixels when
the input image size is 32x32 pixels. Since the images in this data set
are over four times smaller after size reduction, a smaller patch size
was used. Looking at the ratio between patch size and image size as
suggested by Coates et al. [4], this would result in a patch size of 3x3

pixels for the Galaxy Zoo data set. However, since this proved to be
too small to represent any features, a patch size of 5x5 was chosen.

The randomly extracted patches are normalized and clustered us-
ing k-means. An optional optimization step is to whiten the extracted
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Figure 5: A graphical overview of the testing pipeline.

patches to reduce interpixel correlation. An explanation of whitening
can be found in Section 3.6.

Coates et al. [4] obtained optimal results by training 1600 centroids
using k-means. However, in order to account for rotation and scale
variance, this value was increased to 3000 centroids. A graphical rep-
resentation of the trained centroids can be seen in Figure 6.

3.4 feature extraction

After obtaining the feature representations in the form of centroids,
features can be extracted from the training and test images. Coates
et al. [4] offer two approaches of doing this: the hard method and the
soft method.

Both methods start by extracting patches from the input image con-
volutionally. These patches are normalized and optionally whitened.
The hard method works by creating a sparse feature matrix (amount
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Figure 6: A random selection of 120 centroids, trained using k-means.

of patches by amount of centroids) where there is only one non-zero
value for each patch at index k where the distance between the patch
and the centroid ck is minimal. More formally, where x is a patch:

fk(x) =

1 if k = arg minj ‖cj − x‖2

0 otherwise
(1)

However, according to Van Gemert et al. [8] this scheme is too agres-
sive. Coates et al. [4] give an alternative: the soft coding scheme.

In this scheme, the resulting feature matrix is not completely sparse.
The scheme function outputs 0 for features where the distance to
the centroid is above average. If the distance is below average, the
distance value is outputted – subtracted from the mean distance –
instead of a 1, as would be the case in the hard-assignment coding
scheme. Formally:

fk(x) = max(0,µ(z) − zk) (2)

where zk is the Euclidean distance between the patch and centroid k
and µ(z) is the mean of the elements of z.

The resulting feature matrix is very large. To reduce this size we
can use a technique called pooling. Pooling works by summing acti-
vations in image regions. In this case, we pool over four quadrants,
summing up the activations in each quadrant, resulting in a feature
vector of length 4k.



3.5 classification 13

3.5 classification

We now have a training set of 61578 feature vectors and a test set
of 79975 feature vectors. Each feature vector is 12000-dimensional,
but roughly half of every feature vector is 0 because of the soft-
assignment coding scheme.

Coates et al. [4] suggest using a simple linear L2 support vector ma-
chine for classification. However, since the data set is rather large, a
stochastic gradient descent (SGD) algorithm was used. SGD runs lin-
early in the amount of samples and is very fast [2]. Note that linear
support vector machines also run linearly in the amount of samples,
but SGD was chosen because it proved to be slightly faster than sup-
port vector machines without losing any accuracy.

LeCun et al. [6] give some practical information on using stochastic
gradient descent as a classifier or regressor. They mention a series of
data recommendations:

1. The training set should be shuffled;

2. Each feature should have zero-mean;

3. Each feature should have equal variance.

Item 1 is taken care of by the implementation of the stochastic gradi-
ent descent algorithm provided by scikit-learn (see Section 5.1). The
other prerequisites are met by subtracting the mean from each feature
and dividing by its standard deviation.

3.6 whitening

Whitening is a preprocessing step to reduce correlation between in-
put values [5]. In images specifically, the adjacent pixel values are
correlated. If we whiten the data first, the classification algorithm can
be trained on uncorrelated data, which could have beneficial effects
on its results.

3.6.1 Procedure

Whitening only works if the data matrix X, which contains rows of
patches, has a zero-mean. Therefore, our first step is to subtract the
mean from each data vector xi ∈ X. The length of this vector is w×
w× d, where w is the width (and height) of the patch, and d is the
amount of channels. Since we are using RGB images, we have three
channels.

x̃i = xi −
1

#pixels

#pixels∑
j=1

xij (3)
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Our goal is to find the eigenvectors and eigenvalues of the covari-
ance matrix of X. We can use the eigenvectors and eigenvalues to
decorrelate our input vectors xi ∈ X.

We can easily compute the covariance matrix Σ sequentially on a
large data set in two phases. In the first phase we perform the follow-
ing sums:

S =

#patches∑
i=1

x̃ix̃Ti (4)

µ =
1

#patches

#patches∑
i=1

x̃i (5)

In the second phase we can get the final covariance by dividing S by
the amount of samples and by subtracting the product of the means
of the two data vectors:

Σ =
1

#patches
S− µµT (6)

Using singular value decomposition we can now find the eigenvec-
tors and eigenvalues of Σ:

Σ = USVT (7)

We can now compute a matrix P that we can multiply with our
original data matrix X to obtain a whitened data matrix Xwhite:

P = U
1√

S+ ε× I
UT (8)

ε is a regularization parameter to prevent extremely low eigenvalues
from blowing up P.

bi = x̃i − µ (9)

Xwhite = BP (10)

The whitened versions of the centroids as shown in Figure 6 can be
found in Figure 7.
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Figure 7: Whitened versions of the random centroids as shown in Figure 6.

3.7 using the hierarchy

Since there is a hierarchy woven into the classification problem, a re-
gressand can contain information useful for other regressands. How-
ever, in our case, all regressands are trained independently, which
means the hierarchy is not used at all.

To combat this, a random forest regressor is applied after the SGD
regression. It is trained on the predictions of the training images, as
generated by the SGD regressor. Now, predictions made by the SGD
regressor in the test set can be fed into the random forest regressor.
This method is used because using a random forest regressor initially
is computationally hard. A random forest regressor is however much
faster at predicting, so for this step, where the input is small (only
37 dimensional) it is a better choice than using another SGD regres-
sor. The predictions the random forest regressor makes – based on
the SGD regressor test predictions – are the final result that can be
uploaded to Kaggle for validation.





4
R O TAT I O N I N VA R I A N C E

4.1 the problem

There are three transformations that are relevant for object recogni-
tion: rotation, scaling and translation. In the Galaxy Zoo dataset, fea-
tures are ideally rotation, scale and translation invariant, meaning
that if a test image has a different rotation, scale or position than a
previously seen training image, the object recognizer will still clas-
sify the image correctly. Since patches are extracted randomly during
training, the system is already translation invariant. The rotation of
galaxies as seen from Earth has no effect on their morphology. Thus
if the system is rotation invariant, it should obtain a better score for
galaxies in the test set that are very similar to galaxies in the training
set but merely have a different rotation.

4.2 the naive way

A trivial way of solving this is to duplicate the training data multiple
times, each time rotating it a certain amount of degrees. This effec-
tively increases the training set and consequently reduces overfitting.
However, this way of creating a rotation invariant system comes with
a major drawback: its time complexity. The running time of the fea-
ture learning phase, the feature extraction phase and the classification
phase grows polynomially with the amount of rotations (ρ). This is
due to the fact that we have increased the size of the data set (ρ-fold),
but also because of the need of additional centroids (ρ times as many)
to accomodate for the extra features that are now present in the data
set.

4.3 modifying the distance metric

A better way would be to change the distance metric in the k-means
algorithm to accommodate for patch rotation. This would remove the
need for additional centroids and thus increase the time complexity
only linearly in the amount of rotations, as opposed to polynomially
if using the naive way of duplicating data. There are two things that
need to be changed in order to make the system rotation invariant us-
ing this method. Firstly, in the feature extraction phase, the activation
has to be calculated differently, specifically not taking into account
the rotation of a patch. Secondly, during the training phase, patches
have to be assigned to their closest centroid, regardless of the patch

17



18 rotation invariance

rotation. Both of these changes are fundamentally the same: modify-
ing the distance metric used in the k-means algorithm to be rotation
invariant.

4.3.1 Procedure

All modifications were made to the k-means implementation in scikit-
learn’s MiniBatchKMeans1 class. The method is comprised of the fol-
lowing steps:

1. Rotate every patch in the batch ρ times

2. Compute the Euclidean distance of all rotations of every patch
to all of the centroids

3. For each patch, select the rotation that resulted in the smallest
distance to a centroid

4. Assign the (possibly rotated) patch to the centroid to which the
distance was smallest

5. Update the centroids using only the best rotation of each patch
and the centroid it was assigned to

More formally, for each patch:

step 1

ri = rot(x,
360i

ρ
) (11)

where x is the flattened patch vector, ρ is the amount of rotations that
are taken into account, rot is a function that rotates a flattened patch
a certain amount of degrees and 0 < i < ρ where i ∈N.

step 2

dik = ‖ri − ck‖2 (12)

where dik denotes the Euclidean distance between rotation ri and
centroid ck.

step 3

{b,a} = arg min
{i,k}

dik (13)

where a is the index of the centroid the patch is assigned to and b is
the index of the best rotation.

1 http://scikit-learn.org/stable/modules/generated/sklearn.cluster.

MiniBatchKMeans.html

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html
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step 4 and 5

Update centroid ca using patch rb.

4.3.2 Feature extraction

In the feature extraction phase, the activations of all ρ rotations are
computed as described in Section 3.4. The rotation that provides the
highest activation is selected. Note that the image is rotated in its
entirety, not the patches separately. This is done to ensure that the
rotation of subimages remains the same throughout the computation
of the activation.

4.4 complexity

In Table 2 the complexities per phase are shown for the regular method,
the naive method and the adapted distance metric method. It shows
that while the naive method grows quadratically in the amount of
rotations, the modified distance metric method grows only linearly
in the amount of rotations. This is due to the fact that we do not need
extra centroids in the modified distance metric method.

In the following explanation, i denotes the amount of images, s de-
notes the size of the image and ρ denotes the amount of rotations that
are taken into account. In the modified distance metric method, the
amount of patches is the same as in the regular (not rotation invari-
ant) method: is. In the naive method, we need to process isρ patches,
since we duplicate the data and thus have ρ times more patches.
c denotes the amount of centroids that we use in the regular (not

rotation invariant) method. In the naive method, we need ρ more
centroids, while in the modified distance metric, we need c centroids.

Computing the distance between a patch and a centroid has a con-
stant cost in the naive approach, but has a cost of ρ in the modified
distance metric, since we need to compute the distance for every ro-
tation. In the naive method we also need to compute the distance
for every rotation, but since the patches were duplicated, we do not
need to modify the cost because we can abstract from the fact that the
patches are rotations of each other.

For the regular method, the time complexity of the feature learning
phase and the feature extraction phase grows with the amount of
images, the size of the images and the amount of centroids, thus the
complexity is O(isc). For the modified distance metric, we need to
multiply this by ρ because we need to compute distances for every
rotation. For the naive method, this is multiplied by ρ2 because we
have ρ more centroids, and we have ρ more patches.

For the training of the classifier, the complexities for the regular
method and the modified distance metric are equal. However, since
the amount of centroids was multiplied by ρ and the amount of input
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vectors was also multiplied by ρ, the complexity of the naive method
grows to O(icρ2).

We assume that the classifier runs linearly in the amount of samples
and the amount of iterations for k-means and the classifier is constant
for all methods.

Feature learning Feature extraction Classifier training

Regular O(isc) O(isc) O(ic)

Naive O(iscρ2) O(iscρ2) O(icρ2)

Modified
distance
metric

O(iscρ) O(iscρ) O(ic)

Table 2: The rough complexity of each of the phases for several methods. i
denotes the amount of images in the initial data set, s denotes the
size of each image, c denotes the amount of initial centroids (the
amount one would use if there was no rotation invariant algorithm
being used), ρ denotes the amount of rotations that are taken into
account.

4.5 remarks

Note that it is only possible to find four rotations of a square image
without having to extrapolate pixels. In the following chapters, ρ is as-
sumed to be equal to 4. In Section 7.5 a method by Charalampidis [3]
is explained that can efficiently work with more than four rotations.
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5.1 implementation

Most of the implementation was done using the scikit-learn Python
library and MATLAB. MATLAB was chosen for the feature extraction
phase, since using the GPU is very easy in MATLAB. Using the GPU
decreased the running time significantly to about 20% of the original
running time. The feature training and classification phases were not
very suitable for GPU processing, since memory on the device is lim-
ited and both phases require a lot of memory compared to the feature
extraction phase.

Especially useful were the following scikit-learn modules:

• sklearn.cluster.MiniBatchKMeans

• sklearn.linear_model.SGDRegressor

• sklearn.ensemble.RandomForestRegressor

The repository containing all code used in this thesis can be found
on GitHub: https://github.com/StevenReitsma/galaxyzoo/.

5.2 working with big data

Since the data set is too large to fit into memory, some of the tech-
niques used by Coates et al. [4] had to be adapted to allow for sequen-
tial or batch processing. Examples of this are the MiniBatchKMeans
module, which can run k-means on separate batches of input data,
but also the computation of the covariance matrix for the whitening
step as described in Section 3.6. With these adjustments, the entire
pipeline can be run on a computer with just 4 gigabytes of mem-
ory. This prevents the need of a cluster or a computer with a higher
(32GB+) amount of memory, which can be costly.

5.3 interests and experiment setup

The first experiment is to test whether the rotation invariant distance
measure as described in Chapter 4 improves the final result. Further-
more, the effects of whitening, the patch size and the amount of cen-
troids are tested. Because the duration of each test is longer than 24

hours, the amount of tests has been kept to a minimum.
The reported scores are all obtained by uploading the result to Kag-

gle. However, this does not provide us with the variance of the scores
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which makes it harder to do a statistical test to determine significance.
The variance is therefore estimated using a small portion of the train-
ing set, of which the results are known and of which the mean and
variance can be calculated. This portion of the training set was not
used for training.

In the next section, the results are shown.
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6.1 compared to benchmarks

In Figure 8 the root mean squared errors of the benchmarks and con-
test winner are shown, together with the score obtained using the
method as described in this thesis.
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Figure 8: Root mean squared error for several benchmarks, the thesis score
and the score obtained by the winner of the Kaggle competition.

6.2 rotation invariance

In Table 3 the root mean squared errors of the two pipelines are
shown. The difference appears to be small, but it is significant with
a p-value smaller than .001. As mentioned in Section 5.3 the variance
is estimated to determine this p-value. The estimated variance values
are shown in Table 4. However, since the sample size is so large (79975

galaxies), even if these estimations are off by over a factor of 10, they
would still result in a p-value below the threshold of .05. In Figure 10

the difference in root mean squared error is shown for each separate
question (questions are shown in Section 2.2.1).

23



24 results

Regular 0.10789

Rotation invariant 0.10256

Table 3: Root mean squared error for the regular pipeline and the modified
pipeline as described in Chapter 4. ρ = 4

Regular 0.055823

Rotation invariant 0.048997

Table 4: Standard deviation of the error for a subset of the training data (held
back from the training procedure itself). These values are used to
determine the standard deviation in the test set to estimate the p-
value.
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Figure 9: Scatter plot of the root mean squared error of 5000 samples of the
regular pipeline and of the rotation invariant pipeline. There are
a total of 3179 data points below the x = y line. This shows a
significant improvement with a p-value < .001.
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Decision tree question
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Figure 10: The difference between the root mean squared error of the regu-
lar method and the rotation invariant method for each question in
the decision tree as shown in Section 2.2.1. Negative values mean
that the rotation invariant method performed better for that ques-
tion. Note that the predictions were scaled to sum up to 1 for each
question in this graph in order to make a fair comparison.

6.3 whitening

In Figure 11 the results for the whitening step are shown.
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Figure 11: Effect of whitening on the root mean squared error. The reported
results were obtained without using the rotation invariant dis-
tance metric.

6.4 patch size

In Figure 12 the results for various patch sizes are shown. Not all
patch sizes between 3x3 and 10x10 were tested due to high computa-
tion times.
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Figure 12: Effect of the patch size on the root mean squared error. The re-
ported results were obtained without using the rotation invariant
distance metric. Whitening was used.
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6.5 amount of clusters

In Figure 13 the results for different amounts of clusters are shown.
Again, not all cluster amounts were tested due to high computation
times.
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Figure 13: Effect of the amount of clusters on the root mean squared error.
The reported results were obtained without using the rotation
invariant distance metric. Whitening was used. A patch size of
5x5 was used.
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7.1 whitening

As shown in Figure 11, whitening significantly reduces the error. This
matches the conclusion reached by Coates et al. [4]: that whitening is
a crucial step since k-means is blind to correlations in data.

7.2 patch size

Of the tested patch sizes, a 5x5 pixel patch size performs best, as
shown in Figure 12. It seems that patches of 3x3 pixels are too small
to hold features and patches of 10x10 pixels are too big and as a result
might hold multiple features. Using more centroids could improve
the results of suboptimal patch sizes.

7.3 amount of clusters

As shown in Figure 13, increasing the amount of clusters from 1600

to 3000 shows a significant improvement. However, increasing the
amount of clusters even more, to 4000, does not show a significant
difference in the error.

7.4 rotation invariance

Since the p-value indicates a significant difference between the root
mean squared error of the regular pipeline and the error of the rota-
tion invariant pipeline, and the difference is in the right direction, we
can conclude that the rotation invariant pipeline is better at classify-
ing the morphology of galaxies. Generalizing features (e.g. by making
them rotation invariant) to detect variants of a patch seems to be good
practice in certain domains, certainly for galaxy morphologies.

In Figure 10 it is shown that the rotation invariant method is better
for most questions but is worse for others. The two questions for
which the rotation invariant method is worse are the following:

• Can the galaxy be viewed edge-on?

• How many spiral arms are there?

One possible explanation for this is that when dealing with spiral
arms, the rotation is important. Consider the example where there
are two spiral arms. When rotating one of the spiral arms, it will

29
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form a perfect overlay on the other spiral arm. For the rotation in-
variant algorithm, these spiral arms are thus encoded by the same
centroid. This will result in a higher activation in the feature extrac-
tion phase, and due to the soft activation function should result in a
higher value in the final feature vector. However, during the feature
extraction phase, the activations of an image are calculated without
rotating subregions of the image. The image is always rotated as a
whole. Normally, this is desired – since otherwise an image with a
rotated subregion would have the same activation as one with an
unrotated subregion – but for the spiral arm question, this way of
computing the activations does not produce good results. This is due
to the fact that the features (centroids) are still rotation sensitive. They
encode for only one of the rotations, it is just the distance metric that
makes the system rotation invariant. If an image contains two spiral
arms, only one of them can be detected, since the image and its 180

degree rotation will both have the same activation for the spiral arm.
It cannot be detected twice because the image is rotated as a whole.
In the regular method this does not form a problem since the differ-
ent spiral orientations in an image are encoded by different centroids
altogether.

A possible solution would be to use the regular results for the ques-
tions above, and the rotation invariant method for the others. This
could improve the performance even more.

7.5 further work

As explained in Chapter 3 the size of the images was reduced from
424x424 to 15x15 pixels because of the high running times of the sys-
tem. This reduction will definitely have impacted the performance of
the system and it would be interesting to see how the system would
perform with a decreased reduction factor.

7.5.1 Circular shift invariant k-means

Charalampidis [3] modified k-means so that it is circular shift invari-
ant. A circular shift can be seen as a function that shifts all values in
a vector n places, for example, where x = (1, 2, 3, 4, 5):

circ1(x) = (2, 3, 4, 5, 1) circ2(x) = (3, 4, 5, 1, 2) (14)

In Cartesian coordinates, a circular shift does not correspond to
a rotation and will be useless to make the system rotation invariant.
However, if we convert the Cartesian coordinates to polar coordinates
first, circular shifts will correspond to rotation. The advantage of us-
ing the system Charalampidis [3] developed is that it is much more
efficient and thus can take into account more rotations than the four
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used in the research of this thesis. It would be interesting to see the
effects of using more rotations.

7.6 final remarks

In Chapter 3 and Chapter 4 some theory background is given on un-
supervised learning using k-means and adapting the distance metric
to account for rotation sensitivity within the system. In Chapter 6

it is shown that making the system rotation invariant improves its
performance significantly.

There still exists a gap between the winner of the Kaggle competi-
tion and the score achieved using unsupervised learning as described
above. However, this system has very few hyperparameters and runs
much faster than the deep learning techniques utilized by the winner
and runner-ups.

Using the Kaggle challenge, the Galaxy Zoo team has shown that
the performance of automatic classification is improving. Whether
automatic classification is going to replace manual classification or
crowd sourcing in its entirety any time soon remains to be seen.
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