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Abstract

Bradberry et al. [1] has shown that the assumption that brain signals
obtained through electroencephalography(EEG) do not contain enough in-
formation to decode complex movements such as 3d hand movements is
invalid. He showed this by running an experiment where participants had
to make self-initiated center-out reaches. He estimated these movements by
decoding the EEG signal and showed comparable results to more invasive
recording methods. For my thesis I replicated this experiment and showed
comparable results to that of Bradberry et al.. However, there were some
complications which makes our results not truly comparable.
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1 Introduction

Brain-computer interfaces (BCIs) use brain signals to deduce the user’s in-
tent [10], which allows people with severe motor disabilities to use them,
since they do not rely on peripheral nerves and muscles. Therefore, these
people could operate a speller or a robotic arm using a BCI. BCIs are
however far from perfect and still have trouble making rapid and accurate
classifications for more complex problems. One of the complex problems
researchers have been trying to resolve is the decoding of multidimensional
hand movement trajectories [1, 5, 7, 8]. Being able to rapidly and accurately
decode such trajectories could mean giving people who have lost the use of
their arm(s) through periperal nerve or muscle damage control over a pros-
thetic arm. Bradberry et al. did an experiment in which they decoded 3d
hand movement trajectories using signals acquired by an electroencephalo-
gram (EEG) [1]. The novel thing about this is that EEG signals have a
much lower accuracy when decoding movement compared to signals ob-
tained via electrocorticography (ECoG), magnetoencephalography (MEG)
and cortically implanted electrodes.[3]. Because of this lower accuracy there
has been a lack of attention on using EEG signals to decode more complex
hand kinematics such as 3d movement. However, Bradberry et al. showed
that it is possible to obtain comparable accuracies and that the lack of at-
tention was unjustified. For my thesis I intented to replicate the results of
Bradberry et al. , and extend upon it by incorporating imagined movement.
Just as Bradberry et al. I used EEG signals to decode the users’ real move-
ments. With the decoder trained on the real movements, I intended to apply
that decoder to imagined movement, where the user imagined executing the
movement instead of actually doing it. Due to lack of time however, I did
not incorporate this. I will first discuss the background of BCIs and hand
movement trajectory decoding in greater detail. Secondly, I will describe the
experiment I conducted to replicate the results obtained by Bradberry et al.
I will then show that I obtained results comparable to that of Bradberry et
al., but that there are some complications with the validity of those results.
I will end with the conclusion that the decoding technique of Bradberry et
al. is a simple yet effective way of decoding 3d hand movement trajectories.
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2 Background

In this section I will begin with an in-depth discussion of the different ways of
recording brain-signals and conclude with why it is important to investigate
the capabilities of EEG. Secondly, I will show where on the brain I expect to
find the relevant brain signals for movement decoding. Thirdly, I will discuss
the previous research done on the subject of hand movement trajectory
decoding. Finally, I will discuss the experiment of Bradberry et al. in
further detail.

2.1 Recording techniques

In this section I will discuss some of the methods used to record the activity
in the brain. The activity of the brain is defined by the activity of all the
neurons which are in it. When a neuron becomes active, the number of
”action potentials” it fires increases. Action potentials are short increases
in potential across the axon. The more ”active” a neuron becomes, the
more action potentials it fires. When an action potential reaches the end of
the axon, which is called the synapse, neurotransmitters get released, which
causes sodium/potassium pumps to become active on the receiving neuron.
This then causes an increase in potential in that neuron, which is called
the postsynaptic potential. In figure 1 is a schematic representation of two
neurons. The methods I will describe here all incorporate different ways
of recording the activity of the neurons in our brain. Gerven et al. [11]
also made a small summary of the several recording techniques, and have
made a schematic overview of the temporal and spatial resolution of several
recording techniques.

2.1.1 Electroencephalography

Electroencephalography(EEG) records electric activity of the neurons via
electrodes placed on the scalp. Because this activity has to pass through
the skull, which does not conduct electricty very well, the signal-to-noise
ratio is very low. The only electric activity from the neurons it is able to
detect is the postsynaptic potential, because the electric activity of a single
neuron is far too weak to be detected. However, the combined potential of
numerous postsynaptic potentials can be detected. Action potentials do not
sum up, and thus can not be detected using EEG.

2.1.2 Electrocorticography

Whiile electrocorticography follows the same principle as EEG, the elec-
trodes are not placed on the scalp, but instead directly on the cortex. They
both record the electric activity of the brain, but the brain signal does
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Figure 1: A schematic representation of two neurons. At the synapse is where the neurons
connect and where the neurotransmitters get released which causes an increase in action potential
frequency.

Figure 2: Schematic overview of the scale of spatial and temporal resolution of measurement
methods for BCI. Measurement methods are electroencephalography(EEG), magnetoencephalog-
raphy(MEG), near-infrared spectroscopy(NIRS), functional magnetic resonance imaging(fMRI),
electrocorticography(ECOG), local field potential (LFP) recordings, micro-electrode array(MEA)
recording and microelectrode(ME) recordings. Non-invasive methods are shown in blue and in-
vasive methods are shown in red.
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not have to pass through the skull, which means the signal-to-noise ratio
is much better. Furthermore, the spatial accuracy is significantly better.
The drawback of this method is that the electrodes must be placed through
surgery.

2.1.3 Magnetoencephalography

Magentoencephalography records brain activity via magnetic fields. All elec-
tric currents, including the currents in our neurons, cause magnetic fields,
which an MEG machine can detect. The advantages over EEG is that the
magnetic fields are not disrupted by the skull, which means they have a
relatively high signal-to-noise ratio. It also has a far greater spatial res-
olution. However, the signal is very small compared to EEG. The major
drawbacks are that MEG machines are significantly more expensive and not
very practical. The signal is disrupted by other magnetic fields, so a MEG
has to be recorded inside a chamber which blocks out magnetic fields. As
you can see in figure 3, the machine is quite large. Moreover, it requires
complete stillness from the user. For these reasons MEG is far from ideal if
you want to use it for a real-life practical application such as control of arm
prosthetics.

2.1.4 Local Field Potentials Recordings

Local field potentials are recorded by a up to hundreds microelectrodes
inserted into the cortex. These acquire the most spatially and temporally
accurate signal of the methods discussed here. However, the invasiness of
the surgery is even larger than that of ECoG, it causes damage to the brain
when inserted and there are some longterm compatibility problems. Polikov
et al. [6] investigated the damage it can cause and the brain’s response.
The insertion of the electrodes can cut through neuron and glial cells. Glial
cells support neuron cells by granting structure, protection and nutrients
and make up around 75% percent of the brain. Each electrode insertion has
60% chance to cause hemorrhage and 25% chance to cause edema, this may
seem a lot but only 3-5% percent of the affected area was actually covered
with hemorrhage or edema. They do suggest however that this may have
been underestimated due to the analytical methods employed. An electrode
can also cause a high-pressure region in the area around it. One of the major
responses of the brain is the forming of a ”glial scar” after about 6 weeks
around the electrodes. A glial scar is an isolation of an electrode by a barrier
formed by glial cells. The purpose of this glial scar is unclear, but it reduces
the effectiveness of the electrode signifcantly. Reports show that between
40-60% of the electrodes can lose their functionality. However, there are
many researchers investigating several ways to solve this problem. Polikov
et al. suggest that if these longterm problems can be resolved, implanted
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Figure 3: An MEG machine, note how the size of this machine would severely reduce the
practicality if it were to be used in a real-life application. MEG recording also requires complete
stillness, which reduces the practicality even further.
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Figure 4: These electrodes can be inserted into the cortex, where they can very accurately
obtain readings of brain activity. However, the insertion of these electrodes can cause brain
damage which can be risky.

Figure 5: An fMRI machine, this method has the same drawbacks as MEG.

microelectrodes have significant potential for providing control for BCIs such
as neuroprosthetic devices.

2.1.5 Functional Magnetic Resonance Imaging

Functional Magnetic Resonance Imaging measures the oxygenation level of
the blood. The underlying assumption is that when neurons become active,
they require more oxygen. A decrease in oxygenation of the blood causes a
change in the magnetic properties of hemoglobine, which an fMRI machine
is able to detect. Thus, an fMRI machine can detect where in the brain
neurons are becoming active. This technique is very accurate at determing
the spatial properties of the activity in the brain. However, because it
detects blood oxygenation, the lag between the activity of the neurons and
the decrease in oxygenation causes fMRI to be very bad at determining when
exactly the neurons started becoming active. It is however impractical for
the same reasons as MEG and is relatively expensive: it also requires the
subject to be completely still and it requires a large, immobile machine.
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2.1.6 Why EEG?

Whilst signals acquired by EEG have a much lower spatial accuracy and
signal-to-noise ratio than many other recording techniques, it is a lot cheaper
and more practical to use for BCI’s than MEG and fMRI and a lot less
risky and invasive than ECoG and implanted electrodes. That is why it is
important to find out what I can do with EEG, even though it provides us
with sub-par recordings. The decoding limits of EEG for 3d hand kinematics
and finger kinematics have been investigated by Jose L. Contreras-Vidal et
al .(2010) [2]. They tested the accuracy of decoding 3d hand movement and
finger and whole hand gestures from EEG.

They tested 3d hand movement using the ’center-out-and-back’ task in
which participants self-initiated and self-selected one of the eight possible
spatial targets to reach for and touch in a given trial. The study showed that
the correlation between measured and reconstructed movements compared
reasonably well to the correlation reported by studies which used MEG or
invasive methods(ECoG).

They tested decoding finger movement by reconstructing finger joint
angles during a finger tapping task in which participants were asked to
tap their right index finger three times in quick succession in a self-paced
manner. It showed that these finger joint trajectories can be reconstructed
reasonably well when using EEG. Their results were comparable to studies
using invasive methods. Finally, it was suggested that EEG signals provide
enough information to reconstruct detailed movement kinematics. They
show promising results supporting the idea of decoding 3d movements using
EEG signals.

2.2 Where do I expect to find relevant brain signals?

Although I am not specifically guiding the decoder to certain brain areas,
it’s important to know beforehand at what location I should find the relevant
brain signals. Further inspection is needed if, for instance, I find out the
decoder is looking at completely the wrong areas but it still has reasonable
results, or the other way around. The left precentral and postcentral gyri
are the parts of the brain presumed to be responsible for motor execution in
the right part of the body, as seen in figure 6. Porro et al. [4] used fMRI to
investigate the intensity and spatial distribution of functional activation of
these areas during actual movement and imagined movement of self-paced
finger-to-thumb opposition movement of the dominant hand(which was the
right hand for all subjects, thus corresponding to the area of interest, the
left precentral and postcentral gyri). They were specifically trying to de-
termine whether imagined movement has increased activation in the same
brain areas as actual movement. They showed that imagined movement
has increased activation in the same areas as actual movement, but the
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Figure 6: Top view on a brain, the red and blue area(the precentral and postcentral gyri) are
parts of the brain presumed responsible for motor execution. I expect to see the most relevant
brain signals to originate from the left part of the brain from these two areas, this is simply
because in our experiment participants only use their right hand.

increase is about 2-3 times smaller. These are promising results, because
they mean I can train a decoder on actual movement and then use it to
decode imagined movement. It also has a negative aspect, since the sig-
nal strength of imagined movement seems very small. Another important
aspect of imagined movement is that the participants should imagine their
movements from a first-person perspective (motor imagery, MI), as if they
were doing it themselves, and not as if someone else were doing it (visual
imagery, VI). Neupera et al.[17] investigated the difference between MI and
VI in classification accuracy in a single-trial EEG study. Good recognition
rates were only achieved when the participant used the first-person perspec-
tive, whereas the recognition was almost impossible when the participant
used the third-person perspective. They also support the notion that there
is overlap of brain activity between real and imagined movement. However,
they do show that thus far there is no consensus whether the primary motor
cortex is involved in imagined movement, while it is certainly involved in
actual movement.

2.3 Research on hand movement trajectory decoding

In this section I will discuss some of the research that has been done on
movement trajectory decoding.

2.3.1 3d robot arm control using implanted electrodes in monkeys

Schwartz [7] investigated 3d robot arm control in monkeys using electrodes
implanted into the cortex . In this experiment, monkeys had to complete a
reaching task with a robotic arm with 7 degrees of freedom. The monkeys
completed the task rapidly and accurately. This research showed that BCIs
can obtain very high amounts of control.
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2.3.2 Braingate, implanted electrodes in humans

Hochberg et al. [19] investigated the amount of control their braingate
system had when used by a 25-year old male tetraplegia patient (MN).
The braingate system is an array of microelectrodes, similar to that which
Schwartz used [7]. The array was implanted into the motor cortex hand area,
known as the ”knob”, the area of the brain which controls hand movements.
Hochberg et al. investigated the amount of control via several tasks in which
MN had to use imagined limb movements to control the BCI. One of the
tasks MN had to do was following a 2d cursor with his own cursor. The
results showed a significant correlation between neural cursor and followed
cursor(x: 0.56, y: 0.45), which is equal or better than the results obtained
via the decoding of real movement with intracortical electrodes in monkeys.
A few of the other tasks were opening a simulated e-mail or drawing a circle
in a paint program. MN could also adjust the volume, change the channel,
turn a television on/off and was able to play a game of neural pong. MN also
achieved control over two prosthetic limbs, which allowed him to manipulate
the environment around him. After a few trials, MN was already able to
control the opening/closing of a robotic hand. Lastly, MN used a simple
multi-jointed robotic arm to transport an object from one place to another.
These tasks illustrate control of several devices without requiring computer
cursor feedback, however the task dit . This could allow tetraplegic patients
to have some ability to manipulate their environment, which could enable,
for instance, self-paced eating. Each of these tasks was achieved rapidly and
could be completed while conversing, suggesting the amount of disruption
when using braingate to control prosthetic devices is comparable to that of
able-bodied humans using their own limbs. In other recording devices, for
instance EEG, brain signals get can get disrupted by even small movements
such as eye-blinks and conversing can make it nearly impossible to obtain a
brain signal at all.

2.3.3 2d movement decoding using ECoG

Schalk et al. [5] investigated the effectiveness of ECoG in decoding 2d move-
ment. By showing that ECoG can obtain comparable accuracy they dis-
proved the widespread assumption that the necessary kinematic parameters
can only be derived accurately from signals recorded via cortically implanted
electrodes. They also discovered a new brain signal, which they called the
”local motor potential” (LMP), which contains substantial amounts of in-
formation about movement direction as seen in figure 7. It has also later
been shown that this LMP can also be detected via EEG. This was a sig-
nificant step into investigating less invasive ways for decoding movement
trajectories.
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Figure 7: A plot of non-preprocessed brain signal(black) and the actual recorded movement.
The slow wave which is highly correlated with the actual movement is called the ”local motor
potential”. This has been taken from a channel situated near the motor cortex.

2.3.4 2d cursor control with EEG by Wolpaw and McFarland

One of the first steps into multi-dimensional movement control with non-
invasive techniques (EEG) were done by Wolpaw and McFarland [8]. They
focussed on two rhythms in the brainsignal, the mu(8-12 Hz) and beta(18-
26Hz) rhythms. After a large amount of training, subjects were able to
gain greater control over the amplitudes of these rhythms. Wolpaw and Mc-
Farland used an adaptive algorithm which encouraged the users to increase
their control in these rhythms. The algorithm was able to adapt in such
a way that it would choose to decode from the rhythm the user has most
control over. Each user developed two independent control signals which
did not interfere with each other: one for vertical movemement and one for
horizontal movement. This allowed for 2d cursor control comparable to that
of invasive studies.

2.4 The experiment of T.Bradberry et al.

In the previous section I discussed several ways to obtain control of cursors
or robot arm. All the methods described were either invasive, impractical
or required weeks to months of extensive training. Bradberry et al. went a
step further: with a minimal amount of training and setup they were able
to online decode 3d hand movement trajectories with EEG signals with
comparable accuracies to other methods. In this section I will discuss the
setup, preprocessing and decoding of the experiment of Bradberry et al. in
detail.

2.4.1 Experiment setup

There were five healthy, right-handed participants, sitting upright in a chair,
executing self-initiated, center-out reaches to self-selected push buttons near
eye level. These buttons were about 22 cm away from the central target.
The subjects were instructed to attempt to make a uniformly distributed
selection of eight targets without counting. For each subject, the experiment
was concluded when each target was acquired at least 10 times. To minimize
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the effects of blinking or eye-movements, subjects were asked only to blink
when their hand was resting in the center target and to fixate on the LED on
the central target. A researcher was also monitoring eye movements during
data collection.

2.4.2 Signal preprocessing

The EEG data were decimated from 1 kHz to 100 Hz by applying a low-pass,
anti-aliasing filter with a cutoff frequency of 40 Hz and then downsampling
by a factor of 10. A zerophase, fourth-order, low-pass Butterworth filter
with a cutoff frequency of 1 Hz was then applied to the kinematic and EEG
data. This was done because it was shown by Birbaumer et al. [20] that
only slow waves contain information about hand movements. Next, the
temporal difference of the EEG data was computed. To examine relative
sensor contributions in the scalp map analysis described in the section below,
data from each EEG sensor were standardized according to Equation 1, as
follows:

Sn[t] =
Vn[t] − µ

σ
(1)

For all n from 1 to N, where Sn[t] and Vn[t] are, respectively, the standard-
ized and differenced voltage at sensor n at time t, µ and σ are, respectively,
the mean and SD of Vn, and N is the number of sensors.

2.4.3 Decoding method

To continuously decode hand velocity from EEG signals, the following linear
decoding model was used:

x[t] − x[t− 1] = ax +
N∑

n−1

L∑
k=0

bnkxSn[t− k] (2)

y[t] − y[t− 1] = ay +

N∑
n−1

L∑
k=0

bnkySn[t− k] (3)

z[t] − z[t− 1] = az +

N∑
n−1

L∑
k=0

bnkzSn[t− k] (4)

x[t]−x[t−1], y[t]−y[t−1], z[t]−z[t−1] are, respectively, horizontal, vertical
and depth velocities of the hand at time sample t. N is the number of EEG
sensors, L(=10) is the number of time lags, Sn[t − k] is the standardized
difference in voltage measured at time lag k for sensor n, and the ax, ay, az,
bnkx, bnky and bnkz variables are weights obtained through multiple linear
regression.
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Figure 8: Task of Wolpaw et al.(top) and Bradberry et al.(bottom), note how the task of
Wolpaw has twice as many targets as Bradberry et al.: this makes the results of Bradberry et
al. not truly comparable to the results of Wolpaw et al.

2.4.4 Later Research

Bradberry et al. later investigated 2d cursor control with imagined move-
ment, using the same decoding technique as in their original experiment
[18]. They obtained accuracies comparable to those of other invasive or
non-invasive methods. They calibrated their decoder using motor imagery
during observation of cursor movement which took about 20 minutes and
had a practice session for the participant which also took about 20 min-
utes before the participant could use it. This is a significant decrease in
preparation times compared to those of Wolpaw and McFarland [8], which
took weeks or months of training to obtain the level of control needed. It
is however important to note that the task of Bradberry et al. was easier
than that of Wolpaw et al., as Wolpaw et al. had twice as many targets,
as seen in figures 8. This makes the results of Bradberry et al. not truly
comparable to the results of Wolpaw et al..
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3 Experiment

This section describes how I ran the experiment to replicate the results
found by T.Bradberry et al. and how I incorporated imagined movement.
With it, I intended to obtain the data to investigate whether it is possible to
predict 3d hand movement by continuously decoding the EEG signal, and
if so, whether the EEG-signal of the imagined movement can be decoded to
predict the average movement of the hand.

3.1 Participants

A total of six healthy, right-handed male volunteers were tested in this ex-
periment. Five of them were between the ages of 20-24 and a very handsome
man of only the age 37.

3.2 Software

For this experiment I used the matlab [13] environment. I did this because
there are several useful toolboxes available for running BCI experiments.
Two of these toolboxes I used were brainstream [12] and psychtoolbox [14].
Brainstream handles all the electrode recording and saving of the data. It
also allows other software, such as the software which was used to run the
experiment, to place markers directly into the data, which makes it very
easy to slice the data into the different trials during the analysis phase.
Psychtoolbox has several functions which are useful when writing code for a
psychology experiments. Two of the major functionalities psychtoolbox pro-
vided for the experiment was the view for giving instructions to the subject
and functions which have increased accuracy when determining timestamps
of the button-presses.

3.3 Apparatus

A monitor was used to display instructions and the clock which was used
for the imagined movement trials. A normal computer mouse was used to
allow the participant to indicate clock times. A rigging with four targets
and a central button was also constructed from a disassembled computer
mouse, buttons and piping used for plumbing, which can be seen in figure
9. I soldered the buttons to some wiring which I soldered to the mouse, so
that each button in the rigging was coded as a mouse press.

3.4 Recording

A total of 64 electrodes were used to record the brain activity. Electrodes
were placed using the International 10-20 system [15]. The brain signals were
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Figure 9: Picture of the rigging. It has 4 targets and a central button and is made from a
disassembled computer mouse, buttons and piping used for plumbing.

amplified and recorded at a rate of 2 kHz using a biosemi box. Although T.
Bradberry et al. used electrodes strapped to the forearm to record muscle
movement, I did not do so. An accelerometer of analog devices [16] was
strapped to the middle and index finger of the subject to record the actual
movements at a rate of 50 Hz. Our recording systems are quite different
from that of Bradberry et al.: I use all the electrodes, our EEG recording
device does not already incorporate some preprocessing and Bradberry et
al. recorded hand movements via a motion sensing system and a LED on
the finger of the subject.

3.5 Procedure

The participants were placed in an experiment booth with the rigging with
buttons in front of them on a table, and the fully visible monitor behind that.
A normal mouse was on the table. The EEG cap and accelerometer were
placed while the participants were reading the instructions. The experiment
consisted of two trials: the real and the imaginary trial. Both trials were
center-out reaches, self-initiated to self-selected buttons near eye level. The
participants were instructed to make uniformly distributed selections of the
four targets without counting, for both real and imaginary trials. They
were also asked to make their movements, also across real and imaginary,
as consistent as possible. Lastly, they were instructed to relax their face
and not blink during the trials. The experiment was finished when all four
targets were selected at least 10 times for both the imaginary and the real
trial, which means there was a minimum of 80 trials.

Before the experiment started, a couple of practice trials were run to
ensure the participant understood what he should do at what point. The
real experiment started with 10 real trials and then alternated between real
and imaginary. Here I will explain what each trial entailed.
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Figure 10: Schematic representation of the real trial. In A the participant presses the center
button, at which point a marker is sent to branstream. In B the participant presses a target,
where another marker is sent to brainstream and the identity of the target is saved. The data
was sliced two seconds before the center press and two seconds after the target press.

3.5.1 Real trial

The real trial was very straight-forward.The screen simply stated that the
real trial should begin. The participant had to press the center button and
then press one of the four targets with his right-hand using the fingers the
acceloremeter was strapped to.

3.5.2 Imagined trial

The imaginary trial was not as straightforward, and had several steps.

(A) The screen stated the imagined trial should start and the participant
pressed the center button, indicating he was ready to start.

(B) A clock was presented on the screen, with some text saying ”Get
ready...”, for a period of two seconds. During this time, the partici-
pant should relax his arms and make himself ready for the upcoming
imagined movement.

(C) The clock started running for five seconds. During this time, the par-
ticipant should perfrom the imagined movement, while keeping in mind
at what time on the clock he started and finished his movement.

(D) The participant indicated the time he started his imagined movement,
using the normal mouse to place the pointer.

(E) The participant does the same, but now indicates when he finished his
imagined movement.

(F) Lastly, he had to indicate to which target in the rigging he imagined
moving to by pressing it.

3.6 Analysis

The results of my preprocessing was similiar to those of Bradberry et al. I
also applied a low-pass, anti-aliasing filter with a cut-off frequency of 40 Hz,
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Figure 11: Schematic represenation of the imagined trial. In A the participant pressesd the
center button, indicating he was ready to start. In B the clock appears, at which point the
participant should relax his arms and prepare for the imagined movement. In C the clock
starts running, during this time the imagined movement should be performend. In D and E the
participant indicates when he performed the imagined movement, D for when he started it and
E for when he finished it. In F the participant indicates to which target he imagined moving to.
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but I downsampled by a factor of 20 instead of 10. This is simply because
our recording device has a sample rate of 2 kHz instead of 1 kHz, and thus
needed twice as much downsampling to obtain a frequency of 100 Hz. I then
applied a bandpass filter from 0.5 Hz to 1 Hz. The result of this is similiar to
the preprocessing of Bradberry et al., their recording device already applied
a filter between 0.5 and 100 Hz, and later applied a low-pass filter of 1 Hz. I
also removed bad trials and channels. For the real trials I sliced the data by
taking the data 2 seconds before the participant pressed the center button,
and 2 after the participant pressed one of the targets. The decoding method
was identical to that of Bradberry et al.: I also performed multiple linear
regression analysis to obtain weights for the decoding and used exactly the
same formulas.

4 Results

My results were comparable to the results of Bradberry et al., argueably
they were better. I computed the mean correlation between the measured
and computed acceleration across cross-validation folds. The mean decoding
accuracy across subjects were 0.45, 0.35 and 0.39 respectively for the X,Y
and Z directions as seen in figure 12. Peak performance was a correlation of
0.65, as seen in figure 12. Bradberry et al. obtained average accuracies of
0.19, 0.38 and 0.32 for the X,Y and Z directions respectively.

To check how accurate the accelerometer was, I computed the position
of the hand recorded by the accelerometer by taking the cumulative sum
of the accelerometer data and then taking the cumulative sum of the result
of that; the first one to turn acceleration into velocity, and the second one
to turn velocity into position. It is important to note that because the
accelerometer was strapped to the participants’ fingers and I was not able
to place it at the angle needed to make sure that the X direction decoded by
the accelerometer corresponds to ”left/right”, the Y direction corresponds
to ”up/down”, or the Z direction corresponds to ”forward/backward”. I also
computed the variance of the end positions of the movements to each target
separately and together to see whether the high accuracies could be due to
a low variability of the movement. In figure ?? you can see the variance of
all the movements and in figure 14 you can see the average of the variance of
the separate targets. There does not seem to be a correlation between the
variance and the accuracy which implies that our results are not dependant
on the variability of the actual movement. If there were a high correlation

In figures 15 and 16 you can see the results for two subjects, where each
different plot represents a different target, which demonstrates how much
the recordings could differ from each other. The recordings of subject 4
branch out to several directions, while the recordings of the different targets
of subject 6 stay relatively close together.
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Figure 12: The correlations for the different directions. The mean accuracy across subjects
were 0.45, 0.35, and 0.39 respectively for the X,Y and Z directions, these results are slightly
better to those of Bradberry et al. who obtained accuracies of 0.19, 0.38 and 0.32 for X,Y and
Z respectively. However, I will show that the validity of these results are affected by the lack of
accuracy in our accelerometer.

Figure 13: Variance of the end points of the accelerometer recordings across all targets. There
does not seem to be a correlation with the results. Subject 5 and 6 have comparable performance
but subject 5 has much lower variance.
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Figure 14: The mean of the variance of the movements towards a single target. Again, there
does not seem to be a correlation with the results.
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Figure 15: Accelerometer recordings of subject 4. Each different color represents the recordings
of the movements towards a single target. Note how they branch out towards the different targets.
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Figure 16: Accelerometer recordings of subject 6, here you can see that the recordings of the
different targets are very much alike. Note how they do not branch out nearly as much as subject
4. This could explain why subject 6 has such high performance.
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Figure 17: Accelerometer recordings of the trajectories towards a single target, note that the
recordings do not converge back into a specific position as would be expected.

In figure 17, you can see two plots of recorded trajectories towards a sin-
gle target. Note how the recordings do not converge back to a single position
as would be expected of an accurate accelerometer. Although these plots
represent the most erratic recordings, they do imply that our accelerometer
could not have recorded the actual movements accurately, which implies our
decoder was not only trained to decode actual movements, but also artifacts
created by the accelerometer.

I calculated the sum of the weights bx, by and bz, as seen in equation
2-4, across all time lags across all trials for each electrode to determine the
importance of that electrode for the decoder. I plotted this as can be seen
in figures 18 and 19. Although some weight maps showed unexpected areas
with great importance, such as in figure 18, some weight maps showed a clear
centering around the motor cortex as seen in figure 19. The weight maps
showed expected results, because the subject with the least centering around
the motor cortex has the worst performance, while the subject with a very
clear centering has the greatest performance. This shows that I are decoding
from the area of the brain presumed to contain the most information about
the actual movement.

These results show that I was able to obtain high accuracies, but that
there were some complications with the accuracy of the accelerometer which
could have affected the validity of the results. The calculations of the validity
have shown that the similarity of the movements is not the reason the subject
6 has such a high performance, as I previously suspected. The weight maps
show that our results have validity as I are decoding from the area of the
brain presumed to contain most of the most information about the actual
movement.
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Figure 18: Absolute weight map of subject 2. There are many unexpected areas which are
have a large importance for this subject. This subject has the worst performance.

5 Discussion

In this section I will discuss the several differences between my replication
and the actual experiment of Bradberry et al. and the implications of those
differences, after that I will discuss the implications of the experiment of
Bradberry et al. and my replication on research on BCIs. There are several
differences between the replication and the actual experiment which I will
discuss here. The difference with the most impact was the actual position
detector. Bradberry et al. used a motion sensing system and I used an
accelerometer. The lack of accuracy of the accelerometer means I cannot
truly say I are decoding the real 3d hand trajectory. This means I am not
able to conclude definitely that I was able to replicate the results obtained
by Bradberry et al. Another difference is that in my experiment there were
only 4 targets, and in the experiment of Bradberry et al. there were 8 tar-
gets. Bradberry et al. investigated the effect of movement variability on the
decoding accuracy and concluded there was a negative correlation, mean-
ing that the more variable the movement, the lower the accuracy. Because
my experiment only had 4 targets there were only 4 kinds of movements
instead of 8, which implies a lower movement variability, which implies I
should have obtained a higher accuracy. Although I did obtain a higher
accuracy, I cannot determine how well my participants would have done if
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Figure 19: Absolute weight map of subject 6. Although it seems as if the centering is around
the parietal cortex, the EEG cap was placed a row of electrodes too much forward, which means
this is actually a very clean and centering around the motor cortex. This subject has the best
performance. The most important time-lags seem to be the first and the last time-lag. The reason
for this could be that I am decoding accuracy and thus determining the difference between these
two time points is how the decoder is determining the estimate.
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Figure 20: Split the space into 8 areas

there would have been 8 targets. This also makes the results I obtained
not truly comparable to the results of Bradberry et al. The final difference
between the two experiments is that my decoder was decoding the accelera-
tion and Bradberry et al. was decoding velocity of the movements. This is
should not have a significant difference on the results, simply because you
are still decoding movement and the only difference is the representation of
that movement.

I originally intended to incorporate imagined movement, with the de-
coder trained on the real movement and tested on the imagined movement.
However, due to lack of time I did not incorporate this. To test the accuracy
of imagined movement I intended to determine whether I could accurately
predict the general direction of the imagined movement. I intended to split
the 3d space up into 8 areas, one for each combination of X,Y and Z direc-
tion, as seen in figure 20, and test whether the decoder would decode the
imagined movement towards the right area. However, the areas are not split
up as seen in figure 20. The reason for this is that the X,Y and Z directions
as recorded by our accelerometer are not in the same direction for each sub-
ject. The angle of the accelerometer for each subject was slightly different,
which means the recorded directions are also slightly different. In order to
determine the general direction I would have to calculate the general direc-
tion by taking the mean of all the movements towards the targets and fit
the 8 areas around them.
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6 Conclusion

Although there were some complications with the validity of our results
due to poor accuracy of the accelerometer and the fact that my experiment
has fewer targets, I were able to conclude through the weight maps that
the results have some validity. This allows us to conclude that I were able
to replicate the results of Bradberry et al. to a certain extent, and that
the decoding method of Bradberry et al. provides rapid and effective way of
decoding 3d hand movement trajectories and that it is possible to accurately
decode 3d movements from EEG signals. In the last decade there has not
been many research into decoding multidimensional movement from EEG
signals. Although it still has to be shown whether this can be used in real-
life applications such as robotic arm control, researchers who have used less-
invasive recording techniques have continued to show comparable accuracies
to their more invasive counterparts.

7 Future Research

There are several things which can be done to adapt the experiment for
future research, and the imagined movement data could still be analysed
as described in the results section. This experiment could be repeated, but
with a more accurate movement recorder, such as a motion sensing system
used by Bradberry et al., which records the actual postion of the finger. The
low accuracy of our accelerometer impacted the validity of our results, and
resolving this issue would increase that validity significantly.
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