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Abstract

In this paper we introduce the Regulated Reactive approach to robotics, which adds regulation (local
control) to the existing Reactive Approach. Furthermore, we present a formal framework for structure-level
descriptions of systems and relate those to hardware requirements. We prove that for any given behavior
there exists a regulated reactive system that requires at most as many resources as an optimal reactive
or hierarchical system. Furthermore, we show that for particular behaviors in which common conditions
are true, reactive and hierarchical systems require more space resources than necessary as for those tasks
there exist regulated reactive systems that require less resources. This makes regulated reactive systems an
attractive framework for robotics design.
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Many approaches have been suggested and used to design fast and accurate robot software. This paper
introduces a new such approach that can help bridge the divide between what traditionally are two of the
main approaches, Reactive Robotics and Hierarchical Robotics.

Many of the first attempts in robotics can be classified as Hierarchical Robotics (e.g. Shakey [1]), which
developed alongside a similar approach to cognition (e.g. [2]). They commonly have a modular design with
preprocessing modules, a central planner, and postprocessing modules (Figure 1a). The preprocessing units
derive higher order information (e.g. the presence and position of an obstacle) from the sensory data. Then,
the central planner uses all that information to come up with a planning, most commonly by using some
sort of logical reasoning. Finally, this planning is turned into actual motor commands by the postprocessing
units, after which the cycle can start over.

Reasonable as this approach may be, it often turned out to be too slow to handle everyday tasks such as
walking effectively - even though it is quite effective when much reasoning is required. That is, the continuous
cycle of preprocessing, (usually tedious and time-consuming) planning and postprocessing commonly is not
flexible and fast enough to make all the quick minor adaptations that are required for such everyday tasks.

In response to this challenge to deal efficiently with everyday tasks, Reactive Robotics was introduced
[3]. Reactive Robotics does away with the central planner alltogether. Instead it uses several behavioral
layers that provide basic couplings between parts of the input and parts of the output (e.g. one such layer
could lead a robot to approach observed food) (Figure 1b). When combined, the outputs these behavioral
layers provide, result in intricate behaviors. Even though it is obviously less apt at complex reasoning,
reactive systems have been succesfull in producing everyday behaviors such as basic navigation and obstacle
avoidance.

Since many different variations of both Reactive and Hierarchical Robotics exist, we will not claim that
the above descriptions capture all those variations. However, we do feel that these descriptions capture the
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Figure 1: In these figures the different robotic systems here discussed are displayed. In an hierarchical system a central planner
(without different layers) takes prepocessed input and returns to be postprocessed output. In a reactive system, multiple
distinct, independent layers all produce (overlapping) parts of the output from parts of the input (no planning). In a regulated
reactive system, we have a reactive system with on top of that input-driven regulation (so no central planning).

essential features and their associated weaknesses. Therefore, we will stick to these descriptions of ‘basic’
Reactive and Hierarchical Robotics.

The remainder of this paper is organized as follows. First, Regulated Reactive Robotics will be introduced
(Section 1). Then, a formal framework for giving structure level descriptions of systems will be introduced
(Section 2 and 3) and related to the hardware requirements of those systems (Section 4). It is then shown
that a Brute Force approach has unfeasible hardware requirements (Section 5) and that these hardware
requirements can be reduced by generalizing (Section 6). Various ways to generalize are then introduced
(Section 7) and related to Reactive, Hierarchical and Regulated Reactive Robotics (Section 8). Regulated
Reactive Robotics is found to be more general and more resource efficient than those two existing approaches
(Section 9).

1. Regulated Reactive Robotics

Embodied Embedded Cognition (EEC) is a relatively young approach in cognitive science. In contrast
to the more traditional approaches, it stresses the importance of the body and environment of an agent to
the behavior it displays. That is, it emphasizes that patterns in the environment can often be exploited by
an agent to use simple, basic, automatic behaviors instead of deliberative, rational planning (i.e. “to be
lazy”) [4].

This resembles the Reactive approach quite a bit, but adds to that simple, basic, automatic, lazy reg-
ulation. Though we will formalize this in more detail later on, one can think of this as local influencing
of behavioral layers, rather than central control (such as in the Hierarchical approach). This is much like
the way in which traffic lights regulate the traffic in their proximity, as opposed to more central control
(e.g. air traffic control). Recently van Dijk et al. [5] suggested such regulation as a means to extend the
Reactive approach beyond automatic behaviors while trying to avoid the problems with central reasoning.
Simulations with such regulation have shown it more [6] or less [7] succesfull.

In this paper, we flesh out this proposal to what we call Regulated Reactive Robotics. Though we will
give a more formal definition later on, Regulated Reactive Robotics in essence comprises two elements (see
Figure 1c). The first element is a set of behavioral layers, like those in Reactive Robotics, that provide all
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Figure 2: To the left: A graphical representation of a system in its environment. The environment presents the system
(through its sensors) with values (an input value assignment) for its input set of input variables. This then goes through the
inner workings of the system, which results in the system assigning values (an output value assignment) to its output set of
output variables. These will, through the effectors of the system, in turn influence the environment. To the right: the different
perspectives from and levels on which a system can be described discussed in this paper. From the external perspective, one
looks at what the system does (its behavior), without considering its inner workings. The internal perspective on the other
hand, focusses on the inner workings and describes how the system does what it does. This description can be in terms of
(sub)mappings used (structure level), steps used (algorithmic level) and/or hardware used (hardware level). The arrows in the
graph denote the relations between the different levels and perspectives.

kinds of responses to basic situations. The second element is a set of regulative layers that regulate the
behavior of other layers to be appropriate for more complex aspects of the situation.

2. Representing system structure - conceptual structure

This paper is aimed at a formal comparison of Reactive, Hierarchical and Regulated Reactive Robotics.
To that end, we require a formal and comparable description of those approaches. Since the approaches all
describe the structure of systems!, a structure-level description of systems could well fulfill that need.

However, we are not aware of any formalism for describing the structure-level of systems that does not
assume a particular algorithmic implementation. Therefore, we will introduce such a formalism in this
paper. The remainder of this section is devoted to conveying the intuitions behind the main concepts of this
formalism and to relating the structure-level description of systems to other, more common, descriptions of
systems. In Section 3 these intuitions will be formalized and in the remaining sections this formalism will
be used to prove various statements about the hardware requirements of different systems structures, see
Figure 3 for an overview.

2.1. Systems

Each robot is an embodied system, i.e. it is an entity (roughly) separable from its environment that
produces output(value assignment)s when presented with input(value assignment)s. In more detail; the
environment instills a particular activation on the sensors (input variables in the input set) of the system
that then goes through the inner workings, resulting in a particular activation on the effectors (output
variables in the output set) which in turn influences the environment? (see left of Figure 2).

LA reactive system has multiple distinct independent layers, an hierarchical system has sense-modules, act-modules and a
central planner and a regulated reactive system is a reactive system with the addition of input-driven regulation. See as well
Figure 1.

2This description being sequential is not intended to suggest that the process being described should be as well.

3



unfeasible | Brute Force
g I O system

ndependent

signoring ;Preprocessing

siuswsalinbal atempaey
v
s8uiddewqgns jo Jagquwinu

Handling
z =
< &
- =1
1ent
'ere'n,ex'aﬂ"‘ 0 pwl.je'_aef'ﬂeﬂ context
L hles ' 45KS
\_I;_\.T'.ED Subte

Figure 3: A graphical representation of the statements formally proven in this paper. The hardware requirements of a system
are related to the number of submappings used to describe it on the structure level (Section 4). Since a brute force system
requires unfeasibly many submappings, it thus as well requires unfeasibly much hardware (Section 5). Fortunately, we can
improve on those requirements by combining submappings (Section 6). We discuss three conditions under which submappings
can be combined effectively (irrelevant inputs, (in)dependent subtasks and context) (Section 7) and relate those to the different
robotics approaches (Section 8).

One can describe a system from two perspectives, the internal and the external perspective. From the
external perspective, one only looks at what the system does, i.e. what outputs are produced for what
inputs. From the internal perspective, one looks at the inner workings of the system, how the system does
what it does, i.e. what is going on inside the system when it is presented with an input. Furthermore, from
the internal perspective one can describe a system with a particular level of implementational detail. One
can describe it in terms of its hardware, generalize away from that and describe its algorithm or generalize
even further and describe its structure (see right of Figure 2).

These levels of description of different systems have similarities to those first introduced by Marr [8] (but
see as well [9]). One could say that, roughly, the computational level of Marr is our external level description
of behavior. Similarly, the algorithmic and hardware level of Marr are comparable to our algorithmic level
and hardware level description respectively. In terms of the levels of Marr, the structure level then would
either be a special kind of algorithmic level description or a new level of description altogether. However,
these are only rough equalities. Therefore we will now discuss our levels of description in more detail and
stress relevant implicit properties thereof.

2.2. Levels of description for systems

Behavior One very common description of systems from the external perspective is that of behavior. Here,
behavior will be taken to be a concise description of what outputs a system gives for what inputs®.

Hardware If one wants to look at what is going on inside a system, i.e. from the internal perspective, one can
look at its hardware. That is, how is the physical stuff the system exists of organized and how is
a stimulation of the sensors physically transfered to an activation of the effectors. Physics is a very
suitable tool to describe the hardware of a system and the interaction thereof. However, such a physical
description of a system would rapidly become very extensive - consider for example how hard it would
be to completely describe a robot (or a computer) and its behavior in terms of physics.

31t is becoming more and more common to speak of behavior not as just something that a system produces, but rather as
(the result of) a relation between a system and its environment. Since we are here focusing on systems, we will use behavior
more in the first sense. However, we wish to note that in our view behavior as it is used here is still compatible with the second
sense.



Algorithm Thus, a more common description — that generalizes away from the particular implementational details
of how it is physically realized — is that on the algorithmic level. On the algorithmic level one describes
what ‘steps’ (or computations, if the system described is a computer or robot) are undertaken by the
system. The specifics of the execution of these steps are ignored (which is why multiple hardware
structures can implement the same algorithm) and instead one looks only at what these steps do.
(Computational) complexity theory is the tool used to analyze algorithms and relate them to space
and/or time requirements [REF]. Computational complexity theory is as well used to relate behaviors
(and the (known) algorithms that can realize them) to space and/or time requirements [REF].

Structure However, sometimes even an algorithmic level description of a system can be too extensive. A com-
monly used, sofar informal, description that once more generalizes away, this time from the particular
steps used, is that of structure. A relevant example is the characterization of a system as reactive or
hierarchical. On the structure level, one describes the parts of a system, their specifications and their
relation. We will describe this in more detail in the following section. In a fashion similar to that of
computational complexity theory, we will try to relate structure level descriptions of systems to the
space requirements of those systems.

We want to stress several implicit properties of these levels of description. First off, every behavior can
be realized by multiple structures, algorithms and/or hardware configurations. We will give more extensive
illustrations of this later on, but a trivial example is that the addition of a useless (in terms of producing
behavior) “thing” to a structure/algorithm/hardware will not change its behavior — e.g. putting a sticker on
a robot (in a convenient spot) does change its hardware, but need not notably change its behavior. Likewise,
multiple hardware configurations can implement the same algorithm and multiple algorithms can implement
the same structure.

On the other hand, each structure, algorithm and/or hardware configuration realizes only a single behav-
ior. Likewise, each hardware configuration implements only one algorithm and each algorithm implements
only one structure.

Furthermore, we believe it is important to realize that the different levels of description introduced here
can in fact better be considered classes of levels of description. For example, a hardware level description
can be mechanistic, but might be in quantum mechanical terms as well and an algorithm can have steps
with various levels of abstraction (consider higher- and lower-order programming languages).

The last thing we want to stress is that all levels of description and perspectives of behavior are just that.
That is, one can describe the behavior, structure, algorithm and hardware configuration of one and the same
system, all at the same time, and those descriptions are in that way related. Thus, saying something on
the structure of a system will also say something about the hardware configuration of a system, as it limits
the possible hardware configurations to those — numerous as they may be — that implement algorithms that
implement that structure and that thus realize the same behavior.

2.3. On the structure-level

We will here use structure in the following sense: A structure is a specification of parts® in terms of
inputs distinguished and the relation between those parts.

We will define this ‘specification of parts’ by means of (sub)mappings and this specification of ‘their
relation’ by means of a produce call.

Note that the different approaches to robotics are not structure level descriptions, but rather classes of
structures. For example, Reactive Robotics defines the shared properties of the structure level descriptions
of all reactive systems. More formally, we will take an approach to robotics to be the set of all systems that
have the properties that characterize that approach.

4By using the word ‘parts’ here, we try to avoid the connotations that go with commonly used words such as components
or modules. Rather, ‘parts’ as it is used here can among others refer to the distinct layers of a reactive system, the central
planner of a hierarchical system and the input-driven regulation of a regulated reactive system.



3. Representing system structure - formal definitions

We will formalize the structure-level description of systems in terms of the different input value assign-
ments (Section 3.1) that are distinguished by the system and associated with a response. To that end we
will introduce submappings (Section 3.2) which are activated by a particular set of input value assignments
— where the wildcard symbol will be used to represent that a submapping generalizes over the input values
for a particular input variable.

Furthermore, we will introduce the produce call (Section 3.3), which describes how these submappings
are related to one another as they are used to produce output value assignments.

3.1. Variables and value assignments

We will be talking about variables (denoted by v), which can be among others input variables (denoted
by v!) or output variables (denoted by v°). Each variable v/ has a domain (denoted by D,/), which is a
set of values that variable v' can take. All domains contain the wildcard value (denoted by ?) (V. [?€D,//
). A variable set (denoted by V) is a set of variables, each of which can have a different domain. The domain
of a variable set V' (denoted by Dy~) is the union of the domain of all variables in it ( Dy = Uy ¢y [D,y]/
). A variable set containing only input variables or output variables is an input set (denoted by V?) or
output set (denoted by V©) respectively.

A value assignment for a variable set V' (denoted by wy) is a function wy-: V' — D such that
Vo ey [wy (v )eD, ] A value assignment for an input set or output set is an input value assignment
(denoted by w ) or output value assignment (denoted by w o) respectively. The value assignment
set for a variable set V' (denoted by W) is the set of all possible value assignments for that V' (W, =
{wy [})-

A value assignment wy is said to be complete if it does not assign the wildcard value (V¢ fwy (V')
# ?]). In turn, a value assignment set for variable set V’ is said to be complete (denoted by W¢.) if it
contains only complete value assignments (V,,/ L Eewe,, Nyev fwy (V) # ?]]).

3.1.1. Comparing value assignments

Due to the existence of wildcards, value assignments can be compared in three ways. They can be
completely equal if they assign the same value to all variables they are defined for. They can overlap if they
assign the same value or a wildcard value to all variables they are defined for. And one value assignment
can generalize another value assignment if it assigns the same value or a wildcard value to all variables the
other value assignment is defined for.

. The equals function E: Wy x Wy x 2V — {true, false} is defined on two value assignments, w!y and
w?y € Wy for the same variable set V and a variable set V7 subset of V, such that

o { true iff Vyey fulyv (@) = wy ()]

= false otherwise

We will use E({w!v, w?v, w’v,...}, V') as a shorthand for E(w!v, w?v, V') A E(w?v, w’y, V') A
Ew!'y, w’y, V') A ... (ie. equals yields true for all combinations of the given value assignments). As we
will later show (Lemma 1) this will yield the same result, regardless of the order in which those functions
are called.

. The overlaps function O: Wy x Wy x 2V s {true, false} is defined on two value assignments, w!y
and w?y € Wy for the same variable set V and a variable set V' subset of V, such that

0 { true iﬁvv/ehv/[ylv(v') =w?v(v)orwly (@) =72orw’y®) =79

- false otherwise

We will use O({w!v, w?y, w?y,...}, V') as a shorthand for O(w!y, w?v, V') A O(w?y, w’y, V') A
Oy, w’y, V') A ... (i.e. overlaps yields true for all combinations of the given value assignments). As
we will later show (Lemma 2) this will yield the same result, regardless of the order in which those functions
are called.



. The generalizes function G: Wy x Wy x 2V — {true, false} is defined on two value assignments, w?y
and w?y € Wy for the same variable set V and a variable set V' subset of V, such that
G:_{ true  iff Ve fw'v () = wly(v') orwly (v') = 7]

false otherwise

3.1.2. Properties of the equals and overlaps function
For the equals and overlaps function, the order of the arguments is irrelevant (Lemma 1 and 2).

Lemma 1. E(w!y, w?y, V') = EWw?y, wly, V')
Proof. trivial O
Lemma 2. O(w'y, w?v, V') = O(w®y, w?y, V')

Proof. The conditions for overlaps will yield the same result regardless of the order of the arguments w!y/
and w?y, since wly (v') = w?y (v') is equal to w?y (v') = w!y (v') and for each variable in V', both value
assignments are checked for having the wildcard value. O

3.1.8. Combining value assignments

Here we introduce a function that can merge different overlapping value assignments such that as many
wildcards as possible are replaced by non-wildcard values. This function will later on be used to merge
multiple overlapping value assignments with wildcards into a single value assignment with less (or no)
wildcards.

We as well introduce a function that can unite different value assignments for different value sets into a
value assignment for the union of those sets. This function will later on be used to unite multiple ‘partial’
input and output value assignments into a single input or output value assignments.

Merging value assignments. The merging function M: Wy x Wy x 2V s {true, false} is defined on a
variable set V' subset of V (V'CV) and two value assignments, w!ly and w?y € Wy, for the same variable
set V, overlapping on V' (O(w!y, w?v, V') = true) to yield a value assignment w* 1 such that

? iff = vgV’

wly () iff veV' and wlv (v)#£? and w?y (v)=*?
Voevw v ()] =< w?vv) iff veV' and w?v (v)#? and w'y (v)=7

wly () iff veV' and wly (v)=w?y (v)#?

? iff veV' and wly (v)=w?y (v)=2

We will use M({w'v, w?v, ..., w"v}, V') as a shorthand for M(w' v, M(w?y, ... M(w™ v, w"y, V')...,
V'), V'). As we will later show (see Lemma 3, 4 and 5 below), this is allowed and will yield the same result
regardless of the order in which those merges are ordered — provided that O({w!v, w?v, w’v,...}, V') =
true.

Here M({w’y}, V') will be treated as a special case and yield M({w’y, w’y}, V).

Here M({}, V’) will be treated as a special case and yield a w’y that assigns to all variables the wildcard
value 2.

Uniting value assignments. The unite partial value assignments function MA: W« x W2 — W12
is defined two value assignments, w’,: € W and w? v2 € Wy, for non-overlapping variable sets V! and
V2 (V1N V2 =0) to yield a value assignment w* 1,2 such that
1 e g =171
w'yi (V) iff eV
v /EVIUVQ/U} vigv? (')] = { LUQVQ W) iff v eV?

5We did not include conditions in which v€ V*, w!y (v )#w?v (v), w!y (v)#? and w?y (v)#? since a condition for applying
the function is that w!y and w?y overlap on V’, which implies such conditions will never occur.



3.1.4. Properties of the merging function
Lemma 3. (symmetry) V'CV A O(w'y, w?v, V') = true— E(M(w'y, wv, V'), M(w®v, w'v, V'), V)
= true

Proof. For each variable v not in V', both mergings will result in a function that assigns ¢ to v’. For
each variable v in V7, since the value assignments w’y and w?y overlap on those variables, we have three
options;

1. both have the same non-wildcard value, in which case merging will result in a function that assigns
that value to v/,

2. one of them has the wildcard value, the other a non-wildcard value, in which case merging will result
in a function that assigns the non-wildcard value to v/,

3. both of them have the wildcard value, in which case merging will result in a function that assigns ¢
to v'.

Consequently, both mergings will result in value assignments that assign the same value to all variables in
V, i.e. that are equal. O

Lemma 4. (transitivity) V'CV A O{wly, w?v, w’v}, V') = true— O(M(w'v, w?y, V'), w?y, V') =
true

Proof. As follows from the definition, the merging will result in a value assignment w*y that assigns to
every variable either ? or the same value as w!y and /or w?y do. Since w!y and w?y were assumed to
overlap with w®y on V', we know that for the variables v in both cases (i.e. for all variables) in V', w*y (v)
=wy(v)or wy(v) =7 orw’y(v)=? ie. that w*y and w?y overlap on V. O

Lemma 5. V'CV A O{w'v, vy, wiv}, V') = true— E(M(M(w'v, w?v, V'), w’v, V'), M(M(w'y,
LUgV7 V/)7 @QVy Vl)? V) = true

Proof. For each variable v not in V', both compared mergings will result in a value assignment that assigns
? to v'. For each variable v in V', since the value assignments M(w!v, w®y, V'), w?y, M(w!y, w’y, V')
and w?y overlap (Lemma 4) on those variables, we have three options;

1. both have the same non-wildcard value, in which case the compared mergings will both result in a
function that assigns that value to v/,

2. one of them has the wildcard value, the other a non-wildcard value, in which case the compared
mergings will both result in a function that assigns the same non-wildcard value to v/,

3. both of them have the wildcard value, in which case the compared mergings will both result in a
function that assigns ¢ to v.

Consequently, both compared mergings will result in value assignments that assign the same value to all
variables in V| i.e. that are equal. O

3.2. Submappings and mappings

Here we will introduce submappings and mappings. Mappings consist of submappings, each of which is
used to describe a situation that is distinguished and the output value assignment that is associated with
that situation. They will, later on (Subsection 3.3), be used to produce an output value assignment for an
input value assignment.

3.2.1. Submappings

A submapping for an input set V/ and an output set V¢ (denoted by mVI,VO) is a pair of an input
value assignment for V! and an output value assignment for V¢ (mVI’V(J = (wyr, w'0)). Note that for
Myt o, | V1| need not be equal to | V?|. To ease notation, for a submapping Myt yo = (Wyr, w'yo) we
define mVI,VOI ‘= ws and mVI’VoO = yo.

A submapping can have one or more of the following properties;

8



e it is basic if its input value assignment is complete (mvn’vol € WCV]/ ).
e it is partial if its output value assignment is not complete (mvn}vo O¢ cho/) .

e it is empty if its output value assignment assigns only the wildcard value (V..o [my: o Ow' )= ?]).

3.2.2. Mappings
A mapping for an input set V! and an output set V° (denoted by M Vi yo) is a finite set of submappings

for that input set and output set (My: o = {m? Viyos m2V17Vo, mBVI’VO, ...}) such that Vv, "t yo € My o [O(m/

m VI,VO , M
m'’ i o IV — o(m/ viyo o, m'’ i o O, V©)]. This condition, to which we will refer as the consistency
condition will prevent conflicting output value assignments when we use mappings to produce output value
assignments later on. Note that any set of submappings for the same input and output set to which the
consistency condition applies is a mapping (including the empty set).
A mapping MVI,V() = {m1 v vo, mQVI’V07 mSVI,V(), } with V]: {1}11, 1}]2, } and VO: {’UOZ, ’UOQ,
... } can be represented as a table as follows;

vll UIQ ,UOJ UOQ
m1 VI’V()](’UIZ) mIVI’VoI(’UIQ) ml VI’VOO(’UOI) ’mIVI}VoO(UOQ)
mQVI,VoI(’UH) mQVI!VOI(vIQ) mQVI,VoO(’UOI) m’QVI’VoO(’UOQ)
mgvz’vol(v“) m3V1,VoI(v12) mgvz,voo(vOI) m3v17v00(002)

We will refer to the input set and output set a submapping or Mapping My 0/ is for as its environment

(v, v)).

3.2.83. Uniting mappings

We here introduce three notions (extending a submapping, partial mappings and uniting partial map-
pings) that will later on be used to describe how two mappings for non-overlapping input sets and output
sets can be united into a single mapping for the union of those input sets and output sets.

A submapping m/ vir yor is extended to an input set V! such that VC V! and an output set V© such
that V9’ C VO by extending its input value assignment and output value assignment such that they assign
to all variables in V/\ V¥ and in VO\ V? the wildcard value.

The unite partial mappings function @ {MV”,VOJ |} X {MVIQ,VOB |} — {MV”UVI‘Q,VOIUVOQ |} is
defined on two Mappings M Vit yot S {MV”,VOI} and MQVIQ,VOZ € {MVIZ,VOZ} where VOIQVOQ = @6 to
yield the union of the submappings in M' 11 yo: and M? e yo- all extended to VN VI2 and VOINVO2,

Because the output sets of the mappings combined were enforced not to overlap, the output value
assignment of the submappings in the one mapping will always overlap those in the other. Thus the
consistency condition will be satisfied in the united mapping.

We will refer to a set of mappings that can be merged into another mapping as partial mappings of
that mapping.

3.2.4. Cltting mappings

We here introduce two notions (cropping a submapping and cutting a mapping) that will later on be
used to create such partial mappings.

A submapping m 1 o can be cropped to an input set V" such that V’C V' and an output set V¢’
such that VO’ C VY if its input value assignment assigns the wildcard value to all variables in V! not in V7
(V11 ey e [ szvol (v'") = ?]) and its output value assignment assigns the wildcard value to all variables

in V° not in VO (V0 vo\vor [m/ vy O (Y ) = ?2]). This cropping results in a new submapping m* Vi yor

6This might be overly restrictive, but will suffice for our purposes here.
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that assigns to each variable in V' and V© the same value as m’ vl yo does (Vi yu [m* Vn’voll (') =
m VI}VOI('UII)/ A Vv()/evm [m* Vi vor O(UO/) =m v, vo O(’UO/)/).

The cut function X: {My: yo [} X 2V x 2v {Myu yor |} is defined on a Mappings M y: o
€ {MV17V0 |} and subsets of the input set and output set V' and V9 to yield a mapping M* vir yor €
{MVII’VO/ |} that is the set of all submappings in MV’,VO that can be cropped to V" and V9, cropped to
V" and V9.

Notice that the cropping will only “remove” assignments of wildcards and that a cropped submapping
can thus easily be extended. As a result cropping and extending can be used to undo each other’s effect.
Likewise, cutting a mapping could be used to create partial mappings that can be merged into a mapping
once more. Observe that if for all submappings in that mapping there is a cropped mapping in those partial
mappings, this merging will result in the original mapping.

3.3. Producing output value assignments with a mapping

With our formal definition of mappings in place, we can now introduce the produce function. The
produce function will by means of mappings get an output value assignment on the basis of an input value
assignment. As we will use the combination of the produce function and its arguments as the structure
level description of systems, we will only define it on complete input value assignments (since wildcards are
intended for internal use)

3.3.1. Activating mappings
To define the produce function, we first need to know which submappings are relevant in responding to
an input value assignment. The activated function will serve that purpose.
The activated function A: {ms yo [} x WE 1 = {true, false} is defined on a submapping m' 1 o €
{my: o |} and a complete (i.e. containing no wildcards)” input value assignment, w’\; € W such that
A true iﬁQ(m’V17VoI, w i, V)
= false otherwise
A submapping (m/ vi,yo ) distinguishes between all input value assignments that activate it (¥, > [A(m/ Vi yo I
w' 1 )=true/) and those that do not (v, ¥ [A(m VI,VOI , w1 )=false]). A mapping whose input value as-

signment contains more wildcards, will overlap with and thus be activated by more input value assignments,
which effectively leads to it doing less specific (or more generalized) distinguishing.

3.3.2. Using a mapping to produce output value assignments
The produce function P: {Mr o [} x WY, — Wyo is defined on a mapping M i yo € {myr yo
|} and a complete input value assignment, w’, € W such that

P = M({m’VI7VOO of am'yi yo € Myt yo | A(m' i yo, w'yi) = true}, Vo)

Or, in more natural language, a mapping produces for an input value assignment an output value
assignment that is the combination (merging) of the output value assignments of all submappings in that
mapping that were activated by the given input value assignment. Note that the consistency condition
enforces that all activated mappings have overlapping output value assignments, which satisfies the condition
for the merging function and thus allows for it being used here.

"This is because that input value assignment is something that is presented to the algorithm by its environment, while
wildcards are intended for internal use. If one interprets wildcards as unassigned or unknown values, it would as well be quite
odd to present an algorithm with an input value assignment that contains wildcards.
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3.4. The behavior and structure of a system

With a produce function that has particular arguments (among which a mapping) we can appropriately
describe how an output value assignment is produced when an input value assignment is presented in terms
of situations distinguished and structure. We can as well describe behavior as a function on complete input
value assignments that yields complete output value assignments.

In this section we will define these notions more formally, coming to a formal description of the behavior
perspective on a system as well as the structure perspective on a system. These formal descriptions will
then be related, much like in Figure 2.

3.4.1. A formal definition of systems

With the terminology in place, we can now define a system as an input set, an output set and “inner
workings” such that for certain complete input value assignments to that input set it gives output value
assignments to that output set. More concise descriptions of these inner workings can be given at the
different levels of the internal perspective (e.g. on the structure, algorithm, or hardware level).

3.4.2. A formal definition of behavior

We define the behavior for an input set V' and an output set VO’ as a function Beh vir yori 2
o _v,ve

wo s
2" v that is defined on a complete input value assignment w’ s from a subset of the set of all complete
input value assignments to yield a complete output value assignment w’ 0, from a subset of the set of all
complete output value assignments.

These subsets of complete input and output value assignments on which a behavior is defined are the
input domain (denoted by DomIBth], and output domain (denoted by Domogehvl, ) of that

behavior. Notice that all these value assignments are necessarily complete as the wildcard was defined only
for internal use and the behavior is the external perspective.

vOo’ ) vOo’

3.4.3. Realizing behavior with a produce call

Consider a produce function with all its arguments filled in except for an input value assignment for
input set V! that yields an output value assignment for output set VY. We can now pick the biggest set of
complete input value assignments W<’ v for which that produce function will produce a complete output
value assignment. We define WC’Vo/ as the set of all complete output value assignment thus produced.
Consequently, that produce function is a description of a system. Furthermore, that produce function
realizes a behavior Behy: o0 with input domain we v and output domain we Vo -

Here it is important to notice that it is not just the mapping (or mappings) used that realizes this relation
between aforementioned produce function and the behavior, nor is it just the produce function. Rather, the
mappings used describe what input value assignments are distinguished and the way in which they are used
in a particular produce function describes in what way those mappings are organized and ‘connected’ to one
another.

To capture this, we define the produce call to be a produce function with all its arguments filled in
except for an input value assignment for input set ¥/ that yields an output value assignment for output set
VO that produces for complete input value assignments from input value assignment set W<’ v complete
output value assignments from output value assignment set W¢’ yor. Such a produce call thus describes a
system with input set V' and output set VO on the structure level. It also realizes a behavior with input
domain W ., and output domain W 0,.

Since this effectively means that the arguments — except for the input value assignment — of a produce
call are fixed and part of the way in which the produce call realizes the behavior, we will represent a produce
call by underlining all these fixed parameters, as that is how we have been denoting functions. To refer to
any produce call (without considering its arguments) for an input set V' and an output set V¢, we will
use Pyu yor.

Consider for example P(M VI, vo s Wyt ), which is a produce call for all complete input value assignments

for which it produces a complete output value assignment. We will construct less trivial examples later on.
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Observe that because a produce call realizes a behavior, it as well has an input domain and output
domain.

3.4.4. Multiple structures realizing the same behavior

As we suggested in Figure 2, one can now observe that multiple different structures (formalized produce
calls) can all realize the same behavior. This can easily be illustrated with the following trivial example.
Assume that P(M VI yo s Wyt ) realizes a particular behavior. If we now add an empty submapping m’ VIO

to M’ vi yo that submapping will not change the output value assignment produced by the produce call and
thus P({m’ 1 yo }UM' 1 o, wy:) will realize the same behavior.

Comparing the behavior of structures. Knowing this, we can compare different produce calls on if they realize
the same (or a more extensive) behavior or not. To that end we define the differs function. The differs
from function D: {P i yor |} x {Pyu yor |} — {true, false} is defined on two produce calls P (0, and

PQVI/’VO/ € {PVN,VO' ‘} such that
{ true Zﬁ Hw/ ;€ Dom! » /E(PZ VI yor (LU/ VI)? P2 v yor (M/ VI), VO) = false/
Q = -V P 2 2

VI/,VO/
false otherwise

Or, in more natural language, a produce call is said not to differ from one another produce call if it
produces for all (complete) input value assignments in the domain of that other produce call equal (complete)
output value assignments, i.e. if it realizes the same (or more extensive) behavior.

Since the produce calls are only compared on complete input value assignments from the input domain
of the second produce call, even if the function yields true, it might be that the input domain of the first
produce call is in fact a superset of that of the second produce call. The function thus is not symmetric.

4. More submappings in a produce call, more hardware required

In the previous Section we have given a formal definition of a system, behavior and produce calls and
shown that they are, in fact, all different sides of the same coin. In what follows we will use these relationships
to show that (truly) extending the behavior of a system, equals extending the structure of a system, equals
extending the hardware of a system — which is to be expected as they are all different descriptions of the
same thing (a system).

Imagine a system described at the structure level by produce call PV’,VO that uses a set of submappings

M with the following properties;

e there are no submappings in M that could be removed without changing the behavior of Py 0 (i.e.

there are no redundant submappings)

e the hardware only implements P (0

. : I
. M has input domain Dom Py o

Now if we would want Dom!p , _ to include a new input value assignment w’ 2 we have only the following
\aN%
options;

e s is included in Dom/p i yo without any changes to Pys yo. This implies that w'r was already in

Domlpv, ,o and thus that it is not truly new.

e w . is included in Dom/ P, o With changes to Pys 0. These can be one of the following;

— P10 is adapted into by another produce call that covers the new, extended input domain.

However, changing the produce call is changing the structure of the system and would thus result
in another system.
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— Pyr yo is extended by adding a new submapping to M that properly handles the new input value

assignment w’ . Since P 0 now does more than it did, it will require more hardware.

So, if one wants to add a submapping to a mapping in a produce call, which is necessary to (truly)
extend the input and output domain (without changing (the structure of) that mapping), one will need
more hardware.

5. Brute force approach as a bad baseline

A brute force system is a produce call P(M VYo w' 1) such that MVI’VO contains only basic

submappings (¥, , ¢ [m/ 1 o is basic]).
vi v ’

vl vO

Lemma 6. VM'vaVo [v’mlvjvvo €M o [m i o is basic] — [M i yo| > |D0m1£(M’V1,Vo, y’vz)lj

Proof. Since a basic submapping m’s 0 contains per definition no wildcards, it will only overlap and thus
be activated by one particular input value assignment (the one equal to m’ Vol). Thus, there needs to
be at least one basic submapping for each input value assignment in the domain Dom/ POM 1 o, wi]) in
M, 0 to even have activated submappings. O

Note that we will need more than one submapping iff not all those submappings produce a complete
output value all by themselves (i.e. if they are partial submappings), or if the submappings have overlapping
input value assignments.

In real world situations, a system (such as a robot) has to be defined for all possible situations it can run
into (in so far as they are distinguishable as different input value assignments). It is a logical impossibility be
that a system does not behave in the real world (even doing nothing is a behavior). Thus, to work properly
in real world situations only mappings whose input domain (Dom! PIM 1 o, wli] )) contains all possible

combinations of values for its input set are usable. The size of the input domain will then exponentially
grow with the size of the input set (|D0mI£(M’V1,Vo, wi))l = Tt e viIDyl))-

Consequently, the number of submappings used by a brute force system will grow exponentially with the
size of its input set (follows from above lemma) if it is to be applied to real world situations. As for realistic
problems these input sets will be quite large, this (and thus a brute force system) would better be avoided
to prevent excessive hardware requirements.

6. Combining submappings: a tool to reduce resource requirements

So, we know that for real-life problems with realistically sized input sets the use of only basic submappings
requires unfeasible amounts of hardware. Hence, we are in dire need of non-basic mappings that still produce
the same behavior. To this end, we have set up all of the above with wildcards. As it is used in most of
the above definitions, assigning the wildcard value to a variable effectively implies that it will be ignored;
it does not play a role in overlapping anymore, it is not given priority in merging and a produce uses both
overlapping and merging. Consequently, the wildcard can be used to ignore particular differences between
situations (input value assignments in the input domain) when determining how to handle them. This way,
one can use a single submapping to handle multiple situations. In what follows we will flesh out this method
and define conditions under which one can introduce such non-basic submappings.

6.1. Illustration of the method

Before we introduce a formal notion, we will first illustrate the method that we intend to use:

Assume we have a mapping M}, {0} (Where ¥, ¢ yiy0;/[Dv = {0,1}]) (see Figure 4(a))

We can recognize that all submappings that are activated by an input value assignment of 0 to a, give
the same output value assignment to o (both 0), regardless of the input value assignment to b. So we could
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Figure 4: Illustration of how we will combine submappings. If we have a mapping (a), we can realize that particular variables
can be generalized over (b) by the introduction of a new submapping with wildcards (c) that can replace the non-generalizing
submappings originaly in the mapping (d), which could well reduce the size of the mapping.

replace those submappings by a single submapping that just ignores b (by giving it the wildcard value) (see
Figure 4(d)).

A produce call using this mapping for an input value assignment of 0 to a will still yield the same result,
but we have reduced the number of submappings by one.

We will formalize this as a two-step method. First the replacing submapping will be introduced into the
mapping (see Table 4(a-c), Section 6.2). Second, all submappings that have as a consequence become empty
will be removed (see Table 4(c-d), Section 6.3).

6.2. Combining submappings

The combine function C: {M: o |} X {my o |} X 2v° {M: o |} is defined on a mapping
M i yo € {My: yo |}, asubmapping m' 1 o € {mys o |} and an output set VO C VO with the following
properties:

e Set of submappings G = {m" 1 yo € My o | Q(m/VI,VOI7 m//vf,v(’l; V1) = true}

b vm//vffvf) € G/Q(mﬂvf,vo °, mIVI,VOO’ Vo) = truef

. vm”vf o €M o /Q(m/vf,vol, mNVI}VoI, V]) = true— Q(m/VI}VO O, mHVI,V()O, VO/) = true/

to yield a new mapping

C:= M’VI,VO @] {m’VI,Vo} @] {m”’VI}V() | m”’vlyv()l = m”vl,v()l, m’”VI,VOO :M({m”VI’V()O},

VO\VO), m”’y o € G\ G
Or, in more natural language, we add to mapping M ’Vz yo the submappings m’y o and we replace

each submapping in G by a new submapping that is different only in that it assigns ¢ to all variables in
VO’ (see Figure 4(c)).

6.3. Removing empty submappings
The remove empty sumbmappings function R: {My: yo [} = {My: yo |} is defined on a mapping
M’y yo € {myr yo |} to yield a new mapping
R = {m’vfyvo € M’ijvo | = m’VIyVO is empty}

6.4. Properties of combining and removing
Lemma 7. D(P(..M yi yo..., wi]'), P(..R(M i yo)..., wfi]')) = false

Proof. An empty submapping contributes nothing but wildcards to a merging. Since the end result of a
produce is a merging, an empty submapping contributes nothing but wildcards to a produce either. Because
a differs from checks if two mappings differ in the output value assignments they produce for input value
assignments in the input domain of the first, removing all empty submappings will thus not cause a difference
noted by a differs from. O
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If a submapping is activated by an input value assignment, a submapping that generalizes that submap-
ping will also be activated by that input value assignment:

Lemma 8. Q(mQVI!VOI, m! VI}V()I, VI/) N A(ml VI VO M/VI/) — A(mQVI}V(), M/VI/)
Proof. trivial O
Lemma 9. D(P(..M i yo ..., wfi] ), P(-C(M i yo, 1 yi yo, VO').., wly])) = false

Proof. By combining, in M’ vi,yo a set of mappings G is replaced by a set of mappings that assign the
wildcard value to all variables in VO but are otherwise equal. The mapping m’ VI, vo has an input value
that generalizes that of all mappings in G and produces an output value that is generalized by that of all
mappings in G. Hence, for all input value assignments in the input domain of M vi yo that the mappings in
G are activated by, the replacing mapplngs will contribute to a produce the same output value assignment
for all variables not in V¢ while m/ Vi, yo will contribute to a produce the same output value assignment
for all variables in V9’ (Lemma 8).

Thus, combining will not cause a difference noted by a differs from. O

Lemma 10. D(P(..M i yo..., w[i]), P(.. R(C(M yi o, m'yi yo, VO ))..., wli]')) = false

Proof. Follows trivially from Lemma 7 and 9 O

Observe that removing empty submappings reduces the size of a mapping. Observe that combining can
result in empty submappings.

Consequently, by combining n times in the same mapping, resulting in a total of m submappings becoming
empty submappings and then removing all empty submappings, if m > n, we can reduce the size of a mapping
(as in the illustration of the method). Note that all this is done without differences in the behavior of the
mapping arising, i.e. the same thing is being done with less resources.

So, combining and removing can be used to reduce the size of a mapping. Now all that is left to do, is
find effective ways to structuraly combine in such a way that we end up with a mapping that is notably
smaller. However, to do so more effectively, we will first introduce a function that allows us to efficiently
combine multiple times with a single function call.

6.5. Combining over

To more efficiently use the combine function, we here introduce the combine over function which combines
multiple combines into a single function call.

The combine over function Coyer: {Myr o [} X 2V x 2V {My: o |} is defined on a mapping

MVI,VO € {mvjyv() [}, an input set V¥ € 2V and an output set V9 ¢ 2V’ with the property that:

, 1 I .2 _ 0, m? o yor) _
° vmivﬁvo’ m? o € Mt o [O(m VIyo s Moy VO s ) true— O(m VI yO m”yr oo, Ve =

true/

Where G is the set of mappings {g%, ¢°, ..., ¢"} that consist of the mergings of the input value assignments
over VI and output value assignments over VO for all biggest sets of mappings with overlapping input
value assignments (and thus output value assignments)
G := { Myl 0 | mvr7VoI = M{{m/vlyvol of a m/VIyVO S M*VI}VO |}, VI/),

mV17VOO = M({mlvflvoo ofa m/VI,V() S M*VI}VO ‘}, VO/),

Myt yo € { M/VI,VO < MVI,VO | Vy0s My o € M”VI‘VO[Q(WZ vf,v“lf mgvf,vol’ V") = true],

/Q(ml VI’V()I, mgvf’vol, VI/) = true— m! vivo € M/VI’V()/}}

1
m

1 4 2 !
mioyr yo € Myryo, mTyr o € MU yr o

to yield a new mapping
Cover = Q(Q(...Q(M’Vz}vo, g, Vo)., ¢, V), ¢', V)

Combining over will increase the size of a mapping by the number of distinct non-overlapping input value
assignments for variables in V! of submappings in it (since that is the size of G).
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Figure 5: Example of the application of the combine function to a mapping with irrelevant variables. In the mapping to the
left, variable b is irrelevant, and thus one can combine over the other variables which results in the mapping in the middle.
Removing the empty submappings from that mapping results in the mapping to the right, which is much smaller than was the
original mapping.

7. Conditions that allow for effective combining

In this section we will define various conditions (listed in Figure 3) on the environment that allow for
effective combining of submappings in a produce call (i.e. such that the number of submappings can be
significantly reduced). For each of the subsections that follows we will for each condition give a formal
definition and an example of how it allows for combining, the results of which we then generalize to formal
proofs of its effectiveness.

7.1. Irrelevant input variables

Not all variables in the input set of a mapping are necessarily of relevance for determining the correct
output value assignment; they can be irrelevant as well. Consider for example the input value assignments
a robot would receive from a broken (or useless) sensor. Such an irrelevant variable will reveal itself in
the mapping because submappings that only differ on the value they assign to that variable will not have
different output value assignments.

7.1.1. Formal definition

A set of input variables V!’ subset of an input set V7 is said to be irrelevant to a mapping M’ VI, vo if
all two submappings m! VI VO m? Vi o in M Vi, yo that overlap on all not irrelevant input variables also
overlap on the output set (O(m? Vz}vol, mQVIJVoI, VIN\V") — O(m! VI’VOO, mgvzlvoo, VO)).

7.1.2. Example
See Figure 5 for a graphical representation of the method we will use to reduce the size of a mapping by
combining over irrelevant variables.

7.1.3. Results

As can be seen in the example, one can readily combine over irrelevant input variables, which results
in quite a big reduction of the number of submappings (it is halved in the example with just one binary
irrelevant input variable).

Combining over irrelevant input variables. From the definition of irrelevant variables follows that if V'
subset of V7 is irrelevant to mapping M’ vi yo we can readily combine over VINV and VO; C,per(M Vivos

VANV VO). Since this will replace all submappings in M’ vi yo by empty submappings (besides adding
the new submappings), we can remove all empty submappings; R(Cyyer (M VYo VINVI' VO)). This will
remove all submappings originally in M’ ;1 0 and leave us with only the added new mappings.
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Reduction of size by combining over irrelevant input variables. Would we combine over a set of irrele-
vant input variables V! as described above, in the mapping M’ Vi, yo of a brute force system (P(M RTE

w/(;]')) that is defined for all possible input value assignments to V7 (| M vivol = | Dom! ppp

vl yo E[I/l)l
= L./ ¢ vi/1D11]), we would thus reduce the number of submappings needed (to [, ¢ v\ v [1D]]) by
o ¢ v [1D]]. This is an exponential reduction of size, just by ignoring irrelevant inputs.

7.1.4. Discussion

As we have shown, combining over irrelevant variables reduces the size of a mapping, while the behavior
is unaffected. We will refer to this as ignoring those irrelevant variables, because that is effectively what
happens.

Through showing that irrelevant variables can be ignored, we have also demonstrated the application
and applicability of our methodology. The following conditions that allow for combining will be discussed
in a similar sense.

7.2. (In)dependent subtasks

In a mapping it might well be that for determining the correct output value assignment for variables in
a subset of the output set, only variables from a subset of the input set are of relevance. We will refer to
the combination of aforementioned subsets of the input set and output set as a subtask. For example, the
activation of the sound-sensor of a robot need not be relevant for one activity (such as picking things up) —
even though it can be relevant for other activities (such as avoiding predators). Such a subtask will reveal
itself in the mapping because submappings that only differ on the value they assign to variables not in the
input set of a subtask will not have different output value assignments for variables in the output set of that
subtask.

We will distinguish between two kinds of subtasks. In an independent subtask, none of the variables in
the input set of that subtask is of relevance for determining the correct output value assignment for a variable
not in the output set of that subtask. For a dependent subtask, the same is not true for a particular subset
of the input set of that subtask. This way, an independent subtask represents a subtask that has nothing
to do with any other subtask (hence the nomer independent), while there exists a dependency (through the
particular subset) between a dependent subtask and other subtasks.

7.2.1. Formal definitions

A set of input variables V' and output variables VO, subset of an input set V! and output set V¢
respectively, is said to be a subtask to a mapping M Vi, Vo if all two submappings m’ VI VO m? VI vo
in M vivo, that overlap on those input variables also overlap on those output variables (O(m! v’,v”l;
mQVI}VOI, V]/) — Q(m1 vl vo O, mQVIyV() O, VO/)).

In other words, a subtask consists of parts of the input and output set such that the rest of the input
set is irrelevant in determining the correct values for that output set.

Independent subtasks. A subtask V. VO to a mapping M’ v/ yo is said to be an independent subtask if
all two submappings m? Vi vo, m? vi,yo in M vi,vo, that overlap on the input variables not in VI overlap on
the output variables not in VO (Q(m’ 1 yo!, m® 1 yol, VINVY) = O(m' i 0@, m? i 0@, VO\V)).
In other words, an independent subtask is a part of the input and output set such that the rest of the
input set is irrelevant in determining the correct value for that output set and such that that input set is

irrelevant in determining the correct value for the rest of the output set.
Observe that if for M+ o subtask V', VO is an independent subtask, then so is V/\ V¥, VO\ V9.

Dependent subtasks. Two subtasks will be said to be dependent if they have overlapping input sets, but
non-overlapping output sets.

Consider M Vi, yo with subtasks V1, V0! and V2, V92 such that V! U V2 = V! and V9! U V92 =
VO. If the input sets of those subtasks overlap on V¥ = VII N0 V2 and V9! N V92 = (), those subtasks
are dependent.
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Figure 6: Example of the use of the partial mappings to handle dependent subtasks. In the mapping to the left, one can
distinguish two dependent subtasks ({a,c},{o} and {b,c},{p}). One can then combine over those two subtasks (as is done
in the mappings in the middle). Removing the empty submappings from the resulting mapping yields the mapping on the
topright, which could be much smaller than was the original mapping. This mapping in turn can be rerepresented as the two
partial mappings on the bottomright.

Relation between independent and dependent subtasks. Note that if the overlap between dependent subtasks
is the empty set, we are in fact talking about independent subtasks. Hence, the independent subtask is a
special case of the dependent subtask, where the overlap is empty (V = {)). Consequently, in what follows
we will focus on dependent subtasks (and then specify what our findings imply for independent subtasks).

7.2.2. Ezample
See Figure 6 for a graphical representation of the method we will use to reduce the size of a mapping by
combining over dependent subtasks.

7.2.8. Results

As can be seen in the example, by combining over subtasks one can reduce the size of a mapping without
affecting its behavior. In the following sections we will prove this more formally. Furthermore, we will
rerepresent the resulting mapping as a pair of partial mappings, each performing one of the subtasks.

Combining over (in)dependent subtasks. From the definition of dependent subtasks follows that if we have
mapping M s yo consisting only of dependent subtasks V1 VOT and V2, VO? and define VI = VI n
V12 we can readily combine over these subtasks; Cyyer(Cover (M RLY VIt vor) vI2 vO?) Since the
mapping consists only of the two subtasks, this will replace all subméppings originally in M’ vi,vo by empty
submappings (besides adding the new submappings). A remove empty submappings R(Cover(Cover (M’ ViyOs

Vi ver), vi2 vO2)) will thus remove all submappings originally in M’y o and leave us with only the
added new mappings.
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Reduction of size by combining over (in)dependent subtasks. Would we combine over two subtasks V!,
VOl and V2, VO2 with input sets overlapping in V! as described above, in the mapping M Vi, 10 of

a brute force system (P(M'y: yo, w/i]')) that is defined for all possible input value assignments to %4

(|M i ol = | Dom! ppp o ¢ villDy1]), we would thus reduce the size to [[,r ¢ v» /1Ds|/

VIO 2/1]/)| =
* (ILy e vi\v AD1] + 11t € viz\ v [1Dy|])- This is a rather big reduction of size, even though it gets
smaller as the overlap of the subtasks (V?') gets bigger®. Notice that if the two subtasks are independent,
the overlap has minimal size (V¥ = {)) and the reduction by combining over the subtasks will be maximal.

What is more, each of the submappings in this new mapping only has to determine the value for part
of the output set (on the basis of only part of the input set), which will presumably reduce the resource
requirements even further.

Rerepresenting a Mapping that has Combined over Subtasks. Consider the mapping resulting from combining
over (in)dependent subtasks V!, V9! and V2, VO? in a mapping M’ vi,yo that consists only of those
subtasks (such as the mapping in the top right corner of the example Figure 6). Because that mapping has
been combined over both subtasks successively, it will contain only submappings that either have wildcards
for VI and VP! or wildcards for V' and VO?. As wildcards effectively are ignored one can imagine that
these two groups of submappings can be easily rerepresented as M? Vi1 Yot (by cutting over V! and VO1,
X(M i o, VI, V1)) and M? i o (by cutting over V# and Vo2 X(M viyo, VI, VO?)) respectively.
These two mappings could then be united by using the unite partial mappings function to yield M VI vo
again.

Consider for example the mappings M{q 4 c},{0.p}» Mfa,c},{o} and My cy (1 (see Figure 6). One can
easily observe that M, c} {o.p3 = ©(M{a,c},{0}> Mfp,c},{p} ). From this one can derive the following;

° M{a,c},{o} and M{b,c},{p} are partial mappings of M{a,b,c},{o,p}

e We can use the produce function with the merged partial mappings as follows; P(© (M, ) {0}
Mib,cy (p} ) W'ta,b})

e Which will thus have the same result as using M, 5.} {0,p}; D(P(®(M{a,c}, 103> Mip,c},1p} )y Wiab})s
P(Miap,c} .10} Wiany)) = false

7.2.4. Discussion

We will also refer to this use of partial mappings for (in)dependent subtasks as the use of subsystems.

Observe that the partial mappings each are responsible for part of the behavior of the total system and
that the output value assignment of the system is due to both partial mappings. This is very similar (or
even equal) to what the behavioral layers (input-output couplings) of a reactive system do.

Thus, we can draw the following conclusions. A reactive system, formalized by means of partial mappings
for behavioral layers, is an effective way to reduce hardware requirements if (in)dependent subtasks are
present. Our findings, interpreted as such, thus not only show that Reactive Robotics is an effective way to
reduce resource requirements, but as well define a condition under which that is true (presence of subtasks).

7.3. Context

As could be seen in the previous section, dependent subtasks — i.e. subtasks with overlapping input sets
— can be effectively handled by two partial mappings that both take the overlapping variables into account.
Now imagine the special case in which those overlapping variables could be used (and ‘processed’) by both
of those partial mappings in the same way. In what follows we exemplify this special case that is commonly
referred to as context. Furthermore, we discuss that there is some redundancy in both partial mappings

81 ], e VIV NDi|] =2and [] EVENTL [\D1]] =2 (ie. for the simplest case where | VII\ V| = |VI?\ V| = 1 and
all variables are binary (have a domain of size 2)) there will be no reduction (as a * (2% 2) = a * (2 4 2)), but otherwise the
strength of the reduction will increase strongly with the number of and size of the domain of the variables
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taking those overlapping variables into account separately (the ‘processing’ thus being done twice). To
reduce this redundancy we then propose to preprocess the overlapping variables and proof the effectiveness
thereof.

Context for behavior. Context is not something that one can run into. Rather it is the role something plays
to a system. Consider for example a museum. The museum is no context, but plays the role of context
to a visitor when she is responding to an object (i.e. piece of art) in it. We will try to clarify this in the
following example.

Ezample of context. Consider for example the mapping for a brute force system in Figure 7 in which {¢,d}
acts as context to subtasks {a},{o} and {b}, {p}.
This response pattern can be represented as the following conditional statement-structure keyed on ar-

bitrary Boolean formulas for input value assignment w, p, ¢ a};
i (wia,b,e,ay(c) = 0 20T Wia b cay(d) = 0) then

if Wia,b,c,ay(a) = 0 then the produce call should assign 0 to o

if Wia,b,c,ay(a) = 1 then the produce call should assign I to o

if Wia,b,c,ay(b) = 0 then the produce call should assign 0 to p

if wiq,p,c,ay(b) = 1 then the produce call should assign I to p
if =(wiap,e,ay(c) = 0 zor Wigp,cay(d) = 0) then

if Wia,b,c,ay(a) = 0 then the produce call should assign I to o

if Wia,b,c,ay(a) = 1 then the produce call should assign 0 to o

the produce call should assign 0 to p

So one could say that there are different states the context can be in (in this case wyq ¢ q) (¢) = 0 zor
Wa,b,c,d} (d) = 0 and its negation), on which the response pattern of different subtasks is dependent in a
consistent way (here the response pattern to a is inverted, whereas the response pattern to b is inhibited if

Wia,b,c,d} (C) = 0 wor Wia,b,c,d} (d) = 0)
Observe that the example in Figure 6 that we used before, {c} is context to subtasks {a}, {0} and {b},

{r}.

7.8.1. Formal definitions

We define an input set V subset of V! to be context to a mapping M Vi, yo if there exists values
(representing aforementioned states) for a variable ¢ for each submapping in M’ yo such that these can
(1) substitute V" and (2) be derived from V. Here, substitutability is intended to mean that if we know the
value for i, we can ignore the values for V/'; V, om0 €M o [O(m" 1 o, mgvz,vo L Liyuvi\vt)
— O(m' i1 yo 0, m? Vi yo O, V9)]. Derivability is intended to mean that we can derive the value of i from
the values for V': V,
of i for mgvz’vo/

Notice that with this definition of context, one can treat every V' C V! as context to a mapping M’ VIO

1 I 2 Iyl . 1 _
o0yt yo €Mt o [O(m viyol, miyt yol, V2 ) = walue of i for m* i o = value

The easiest way to do so, is to introduce for each combination of values for variables in V' a value in D;
and use that value for each submapping in which the variables in ¥ have that combination of values. Even
thought the domain of i now is rather big, it can clearly substitute V' and be derived from it. In other
words, V' is context.

However, as we will show later on, the introduction of an i is only useful (for reducing the number of
submappings) if D; is smaller than []r o v [ D]/

7.8.2. Example
In Figure 7 one can find the partial mappings used to handle a task with context by combining over
context (under the headings with ‘preprocessing’).
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7.3.3. Results

With the use of variable ¢ we can combine over the context. This results in a produce call that first
derives the value for i from the context via a nested produce call and then uses that value to derive the
correct output value assignment (see next paragraph). Under certain constraints this results in a reduction
of the number of submappings used (see the paragraph after that).

Combining over context. Assume a mapping M vi,yo that consists only of subtasks VL VOl and V12, vOZ?
overlapping in context V!, that can be substituted by a variable i that can be derived from it. By considering
i part of the output set, we can combine over V¥ and i due to the derivability constraint; Cyyer (M’ Viyos
VI’ {i}). By considering i part of the input set, we can combine over all input variables (including i) except
for the context and the output set VO due to the substitutability constraint: Cyyer (M’ vivo, {JUVI\V,
Vo).

Now we need to connect these such that ¢ is used only internally, which can be done by the following

produce call, which arranges nicely that indeed ¢ is an input variable for the one and an output variable for
the other mapping; P(X(Cover(M' 1 yo, {iU VINVI", VO) | {iduVI\V", VO) | MA(P(X(Cover(M i o,
VI i) VI A wye ) wyn i) )

Note the use of the unite value assignments function (MA) to unite the value for ¢ produced by the
nested produce call and the rest of the input value assignment. Note as well the use of the cut function
(X) to crop the mappings used, which will allow for a clearer graphical representation of the used mappings
later on.

Observe that we can now combine in the first mapping (the one that uses ¢ as an input variable) over
the subtasks, just like we did before. These subtasks will now only be dependent in {i}.

Reduction of size by combining over context. Consider the two mappings in the produce call above. The
nested mapping (that produces a value for ¢) will in the worst case contain a submapping for each combination
of values for the variables in the context V?' (note that this might be improved on); |Coper (M i o, V',
{i})| = Il ¢ v#/ID|]. The other mapping (that uses the value for ) will in the worst case contain a
submapping for each combination of values for ¢ and the variables in the input set not in the context
VI\ V" (note that this might be improved on, for example by combining over the subtasks); | Cover (M i1 o,
{Z}U VI\VI', VO)| =1l ¢ VI\VI/[IDUIU * |DZ|

The sum of these is the total number of submappings used; [[,r ¢ v [| D] + [L0 ¢ vi\ v 1D,11] * [Dil.

We will now compare this to the number of submappings used by a brute force system (P(M' 1 o, w/i]'))

that is defined for all possible input value assignments to V! (= |D0m[£(M/ Y wi))l = 1L e villDyl))s

which can be (re)written as; [T, ¢ i\ v [[Dyl] * [1 ¢ v |1D,1]]. Now it is easy to observe that if the
domain of i is sufficiently much smaller than is [],r o = /|D,r|/, this will yield a reduction of the number of
submappings used. Note that this reduction becomes bigger as the domain of ¢ becomes smaller.

What is more, each of the submappings in this new mapping only has to determine the value for part
of the output set (on the basis of only part of the input set), which will presumably reduce the resource
requirements even further.

Combining over context and subtasks. As mentioned before, apart from combining over context, we can
combine over subtasks as well. For the mapping discussed above, this would result in the following produce
call; P(®(X(Cover(M' 1 yo, {UVINVY, V1) {GUVINVY, VOI) | X(Cover (M 1 o, {HUVIE\ VY,
VO2)  A{BUVIAVY, VO2) ) MA(P(X(Cover(M i yo, V', {i}) . VI', {i}) , wyn ), wyn g ).

The number of submappings required for this produce call can now be expressed as; [[,+ ¢ v [|1Ds|] +
( o € VIJ\VI//]DUIU =+ Hvl c VIQ\VI/[ID,UI|/) * |Dl|

Assuming all conditions for effective combining over subtasks and context hold, this is once more a big
reduction of size, bigger than that of just combining over subtasks or just combining over context.

See Figure 7 for a more concrete example and comparison of the different ways to combine over context
and subtasks as well as their effectiveness in reducing the number and complexity of submappings.
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7.8.4. Discussion

We have found that if a set of variables can be substituted by a value for a variable i derived from it (i.e.
is context) and the domain of that variable i is sufficiently small, combining over that set can once more
yield a reduction of the number of submappings used. We will refer to the process of combining over that
set as it has been described above as preprocessing. We believe that this use of the word preprocessing
fits nicely with the common use of the term, as the nested mapping produces an output value (for ) that
is then used by another mapping as an input value.

As the term preprocessing suggests, the method here used is very similar to the use of preprocessing in
hierarchical systems”. Thus, we can draw the following conclusions. A hierarchical system, formalized as
using preprocessing as above, is an effective way to reduce hardware requirements if contexts with sufficiently
small domains can be found. Our findings, interpreted as such, thus not only show that Hierarchical Robotics
is an effective way to reduce resource requirements, but as well define a condition under which that is true
(presence of contexts).

When using both preprocessing and partial mappings, another interpretation becomes possible. As
before, we can interpret the partial mappings for the subtasks as the behavioral layers of a reactive system.
On top of that, we now have the preprocessing partial mapping that is used to adapt the output values
produced by those behavioral layers (as those behavioral layers take i into account). In other words,
the preprocessing regulates the behavioral layers. This is very much in line with the Regulated Reactive
Approach. Our findings, interpreted as such, thus not only show that the Regulated Reactive Approach is
an effective way to reduce resource requirements, but as well define the conditions under which that is true
(presence of subtasks and/or contexts).

8. Relating the found ways of combining to robotics approaches

First of, the following observation; multiple ways of combining as discussed in the previous Section can
be used in the same system. That is, one can ignore several irrelevant variables one after another, preprocess
one context, separate between subtasks in one of the resulting partial mappings and then preprocess another
context — provided these irrelevant variables, contexts and subtasks are present. Furthermore, each of this
ways of combining can yield a further reduction in the number of submappings used. A more concrete
example of this can be found in Figure 7, where a combination of preprocessing and the use of partial
mappings uses less submappings than preprocessing or the use of partial mappings on their own.

With this observation in place, we can now recall the way in which the different approaches to robotics
have been related to ways of combining (see also Figure 8 and 9).

e the use of partial mappings for subtasks was found to be very similar to the way in which the behavioral
layers of Reactive Robotics,

e the use of preprocessing was found to be very similar to the pre- and post-processing of Hierarchical
Robotics,

e and the use of both partial mappings and preprocessing was found to be very similar to the behavioral
layers and regulation of Regulated Reactive Robotics.

We believe that by describing the approaches to robotics in terms of the ways of combining related to
them in the list above, we capture their main characteristics. On the other hand, there probably are various
characteristics of different architectures derived from the approaches to robotics not captured by such a
description'®. However, all these (derived) architectures will likely still use preprocessing (if Hierarchical
Robotics) or subsystems (if Reactive Robotics). Thus, unless those other characteristics are somehow

9And the postprocessing of such hierarchical systems can easily be interpreted as preprocessing as well.

100ne notable example is the subsumption architecture[3]. Because some mechanisms for combining the output value
assignments of different behavioral layers are defined in that architecture, one could say that it contains some form of regula-
tion/preprocessing — albeit limited and restricted.
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Figure 7: Four different mappings that (with the proper produce call) can all produce the same behavior. Here {a,c,d}, {o}
and {b,c,d}, {p} are subtasks, with {c,d} as context. The mapping to the left consists of only basic mappings and could thus
be used by a brute force system. Combining over subtasks in that mapping would result in the partial mappings next to that.
Combining over context would result in the partial mappings second to the right, of which the left one preprocesses the context.
Combining over both subtasks and context would result in the partial mappings to the right, of which the left one preprocesses
the context. Compared to the other (partial) mappings, these latter partial mappings use the least submappings in total. As
is shown in the text, this difference will only get bigger as the input set gets larger (provided combining over subtasks and
context is still possible).

-8 - o

(a) Hierarchical Robotics (b) Reactive Robotics (c) Regulated Reactive Robotics

Figure 8: Graphical representations of the way in which the different robotic approaches utilize the ways of combining. In each
of the figures the input variables (circles to the left), output variables (circles to the right) and partial mappings used (boxes
in between) and the way they are structured (arrows in between) are shown. The top two input variables (denoted by lighter
arrows) can be effectively used as context variables. Note that the systems here displayed could well use the partial mappings
defined in Figure 7.
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reduced by

Figure 9: Here all systems that display a particular behavior can be plotted according to the extend in which they use either
preprocessing (x-axis) and/or subsystems (y-axis). Note that all these systems would have the same behavior, yet different
produce calls and thus different amounts of submappings used and thus different hardware requirements. Brute Force systems
(bottom-left) are those that use subsystems nor preprocessing. Reactive systems (left) are those that could use subsystems
but no preprocessing. Hierarchical systems (bottom) are those that use some preprocessing but no subsystems. Regulated
Reactive systems (all) are those that could use subsystems as well as preprocessing. A regulated reactive system (such as the
one denoted by *) could well use less submappings than any reactive or hierarchical system, if both some subtasks and context
are present.
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Figure 10: This Figure is the same as Figure 9, with the addition of a third axis. Imagine that one would find another way
of combining over (represented by the third axis), that strongly reduces the number of submappings needed but somehow is
not compatible with a (Regulated) Reactive approach - assuming that such an incompatibility is possible. Then it could be
that there exists for particular tasks an hierarchical system (such as the one denoted by *) that requires less submappings
than does any reactive of regulated reactive system. Likewise, another way of combining over could be used to have a reactive
system require less submappings than any hierarchical or regulated reactive system. Notice that this is only possible if such an
incompatible way of combining exists.

conflicting (see Figure 10), what we say about the approaches to robotics described in terms of these ways of
combining will also apply to those derived architectures. Therefore we believe it justified to in the remainder
of this paper describe the approaches to robotics as such.

In combination with the observation made above, such a description of the approaches to robotics allows
for clear-cut conclusions. For we have shown that the use of subsystems and preprocessing reduces hardware
requirements. Thus, our findings imply that both Reactive and Hierarchical Robotics use effective ways to
reduce hardware requirement and that Regulated Reactive Robotics reduces hardware requirements even
more effective as it uses a combination of subsystems and preprocessing.

Furthermore, we can observe that Reactive and Hierarchical Robotics, when described as we did, are
special cases of Regulated Reactive Robotics (with no preprocessing and no subsystems respectively). Con-
sequently, Reactive and Hierarchical Robotics will never require less resources than does Regulated Reactive
Robotics.

9. Discussion

In this paper we have briefly discussed Reactive and Hierarchical Robotics (introduction) and introduced
the new Regulated Reactive Robotics (Section 1). Furthermore, we have introduced a new formalism for
discussing the and comparing different systems on the structure level (Section 2 and 3). This formalism was
used to show that all approaches to robotics here discussed have characteristics that result in a reduction
of their hardware requirements (in comparison to a brute force system) (Section 4, 5, 6, and 7). These
reductions were caused by using subsystems for subtasks (in reactive systems), using preprocessing for
context (in hierarchical systems), or both (regulated reactive systems) (Section 8). Thus, in this respect,
both Reactive and Hierarchical Robotics can be considered special cases of Regulated Reactive Robotics that
will in particular cases (with subtasks and/or context) always require more hardware than does a system
from Regulated Reactive Robotics.
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These findings are relevant from a roboticists perspective for several reasons. First of we did not only
introduce Regulated Reactive Robotics, but have shown its effectiveness in reducing hardware requirements
as well. Furthermore, we found conditions under which subsystems and preprocessing can effectively be
applied (subtasks and context respectively). Roboticists could well use these findings to decide which
approach is best for the desired behavior. For example, a robot that is to take many contexts into account
with few opportunities for distinguishing subtasks might, given our findings, be best served by an hierarchical
or regulated reactive system. And last but not least, the formal framework could well be used to help find
and prove the effectiveness (in terms of reducing hardware requirements) of other ways of combining.

Furthermore, there are exciting possibilities for extending the scope and applicability of this work. One
such possibility is the investigation of systems that take time into account. This could be done by having
preprocessing partial mappings take into account (as an input variable) the value they have produced before
(for an output variable), i.e. by introducing loops. Another such possibility would be an investigation of the
difficulties and possibilities of developing or learning the structure of a regulated reactive system. As has
been shown using computational complexity theory that under many conditions doing so will be NP-hard
[10] trying do do so might well pose interesting challenges. One notable example of learning in a structure
that shows remarkable resemblance to Regulative Robotics (incorporating temporal structure as well) is the
one by Yamashita and Tani [11].

To conclude, we would like to make some final remarks on the generalizability of our findings and
framework. For even though we here interpreted those from a roboticist perspective, no assumptions were
made that would require one to do so. Thus, our research can be extended to all systems, including, for
example, computer programs, organizations and cognitive systems. And for all systems the conclusion would
be valid that it probably is beneficial for the hardware requirements to use subsystems for subtasks and to
preprocess context. In other words, it is probably beneficial to use a Regulated Reactive approach.
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